

EPRI Research Highlights ACI 349-A

Together... Shaping the Future of Energy®

Monday April 31, 2025

Salvador Villalobos

 in
 X
 f

 www.epri.com
 © 2025 Electric Power Research Institute, Inc. All rights reserved.

Overview – High temperature expossure

- General overview
- Materials testing
- Structural testing
- Summary

Background and Current Knowledge

- Advanced reactors are likely to operate at higher temperatures.
- Elevated temperatures may cause: Cracking, spalling, and/or cement paste breakdown
- Ambient and operating (current limits)
 - 150 °F general
 - 200 °F for small areas as long as strength is 115% of 28 day f'c
 - Important to have testing and evaluation

- Testing and evaluation
 - Different materials in the concrete mix
 - Variation of aggregate size
 - Temperatures of 350°F, 500°F, 650°F, and 800°F
 - Evaluate the effects of changing materials for temperature exposures

EPRI report number 3002022614

Twelve Mix Designs

Mix	Α	В	С	D	Е	F	G	н	I.	J	K	L
Cem	100%	65%	50%	65%	50%	65%	65%	65%	65%	65%	65%	24%
F.A.		35%		35%		35%	35%	35%	32%	32%	32%	24%
Slag			50%		50%							48%
S.F.									3%	3%	3%	4%
AGG	Gran	Gran	Gran	Gran	Gran	Gran+ Shale	TX- LS	FL-LS	Gran	FL-LS	FL-LS	FL-LS
	SCM effect		Smaller Agg.			LS-Modulus		S.F.	Smaller Agg.		Quat	
	Legenc F.A- Fly		Ce	em- Cen	nent	S.F – Silica Fume AGG- Aggregate						
	LS – Li	LS – Limestone Gran - Granite										

Testing Regime

Twelve different mixtures

- A- Standard 28-day curing
- B- Seven day Standard + 21 days accelerated (100 F)
- C- Fifty six (56) day moist

Test Regime

- 10°F/hr
- Instrumented cylinder for reference

Test Results

- 800 F is the highest exposure achieved
 Limestone had lower initial strength but
 higher f'c retention
- 56 day accelerated curing was the highest compressive strength for all categories
- Smaller aggregate generally performed better
- FL limestone had better compressive strength retention – E compatibility

Summary

- The code indicates operational thresholds and indicates that through testing the mixtures can be qualified
- Literature review cites poor performance after 800°F
- This research evaluated 12 mixtures for
 - Differences in SCMs and max aggregate size
 - Three curing regimes
 - F'c retention
- Limestone that matches the modulus of elasticity of the paste has the best f'c retention and potentially have higher f'c than mixtures that had higher initial strength
- Aggregate size has some effect on f'c when exposed at high temperatures

Gaps

- Non-standard test methodology
 - Heated sample vs unheated sample
 - Rate of heating
 - Curing regime
- What is the operating and accident temperature for ARs

Phase II will consist of Structural testing

BOND UNDER HIGH TEMPERATURE

Dr. Rémy Lequesne, PI

Bikash Giri

Dr. Akanshu Sharma, Co-PI M. Fasih Rehman

Project Aims

- Review literature and collect input from industry leaders to understand ANR design needs
- Experimentally/numerically investigate key variables related to high temperature effects on rebar-concrete bond to support ANR design
- Propose recommendations for design and modeling temperature effects on bond
- Report on temperature mitigation strategies to reduce exposure of concrete elements to high temperatures

Kansas: Small-Scale Lap Splice Tests

About 2/3 of tests (14 of 44) are complete

Variables of interest

- Maximum Temperature
 - 200°C, 400°C, and 600°C
- Number of cycles
 - 1, 3, 5
- Heating rate
 - 2°C/min
 - 5°C/min

Kansas: Small-Scale Lap Splice Tests

Before concrete placement

Inside kiln

Kansas: Plans for Large-Scale Tests

- Variables of interest
 - Heating under loading
 - Testing while specimen is at high temperature

Panel for heating specimen surface

Purdue: Experimental Program

Specimens-1 (S1)

Specimens-3 (S3)

Specimens-4 (S4)

	♥							
S1	C-C _{min}	0.75 in						
51	TR	0						
S2	C-C _{min}	1.50 in						
52	TR	0						
S3	C-C _{min}	1.50 in						
33	TR	1						
	C-C _{min}	2.25 in						
S4	TR	1						
TR: N	c-c _{min} : clear cover minimum TR: No. of transverse rebar in bonded region							
	↓							
5 Replica per specimens								
• Ameliant tamp anatuma: 2								

- Ambient temperature: 3 tests
 - 2 heating rates: 6 tests
 - 1 heating cycle: 3 tests
 - 3 heating cycle: 3 tests

Casted Specimens

Purdue: Numerical Analysis

Timeline

- Procurement largely complete
- Small-scale tests at Kansas and numerical modelling at Purdue continuing
- Spring/Summer 2024: Larger-scale testing at Kansas and Purdue
- Fall 2024/early 2025: analysis and reporting

TOGETHER...SHAPING THE FUTURE OF ENERGY®

in X f www.epri.com

© 2025 Electric Power Research Institute, Inc. All rights reserved