

Assessing Resiliency of NPPs Impact of a changing climate

Nuclear

Rob Choromokos, P.E. Senior Principal Tech Leader

Impact of Climate Change on the Operation of Nuclear Facilities March 18th - 20th, 2025

 in
 X
 f

 www.epri.com
 © 2025 Electric Power Research Institute, Inc. All rights reserved

Evaluating Changes to External Hazards in Nuclear Power

- Continuously evaluate new hazard information or our understanding of new hazard information
- Acknowledge that future events may no longer be bounded by historical events.
- Periodic forward-looking assessments can prepare for unexpected events and enhance resiliency
- Understanding potential future risk can drive a more strategic response and decision strategy

Climate Risk and Resiliency

- Future events may not be bounded by past events
- Requires situational awareness understanding of local conditions and plant design
- Prepare for the unexpected and uncertain
- Efficient response and recovery processes
- Continuously improve physical resilience of the plant through robustness and adaptive capacity

EPC

What operational risk does a changing climate pose to nuclear plants?

What does climate change mean for a company/system?

"Set of assessments needed to evaluate risk of physical climate change for a company of system"

Forward Looking Assessments – Natural Hazard

Site-Specific Climate Hazard Information and Projections (CHIP)

Date 🐙	Tmax - Model1 (SSP126)	Tmean - Model1 (SSP126)	Tmin - Model1 (SSP126)	Precip - Model1 (SSP126)	Snowfal Model1 (SSP126	Model1	Tmean - Model1 (SSP370)	Tmin - Model1 (SSP370)	Precip - Model1 (SSP370)	Snowfall - Model1 (SSP370)				
1/1/2050	38.05	29.00	Climate Hazard	Meti	ric	Historical	Historical	Projected Trend	Confidence in	Average	Worst Case	Average	Worst	1
1/2/2050	52.77	43.		Annual	Max	(1950 - 1990) 99'F	(1991 - 2020) 99°F	(2021 - 2050)	Projected Change	e (2021 - 2050) 103°F	(2021 - 2050) 118 ⁴ F	(2051 - 2080) 104°F	(2051 - 2080) 124°F	
1/3/2050	51.41	44.	Temperature	Annual		54°F	55°F	1	High	58°F	65°F	60°F	69°F	
1/4/2050 1/5/2050	43.23 48.32	36. 40.		Annual		-8°F	-3*F	↑	High	-1°F	-31°F	4°F	-23*F	
1/6/2050	48.32	40.		Hottest 30 E		78'F	78'F	↑	High	86°F	87°F	89°F	91°F	
1/7/2050	47.39	38.	Extreme Heat	95th Perc		97°F	97°F	↑	High	101°F	106°F	104°F	112°F	
1/8/2050	40.7	31.	Extreme Heat	Days >= Histe			4				60 106 P		54	
1/9/2050	27.69	20.		Percen	ntile	5		1	High	6	-	7		
1/10/2050	35.02	14.		5th Percentile Days <= Historical 5th		2°F	8°F	1	High	7°F	5°F	14°F	9°F	
1/11/2050	39.71	19.		Percer	ntile	5	5	\downarrow	High	4	26	5	25	
1/12/2050	44.89	38.	Annual	Max Annu	al Total	53 in	58 in	Ŷ	Medium	54 in	63 in	60 in	73 in	
1/13/2050	48.84	34.	Precipitation	Avg Annua	al Total	38 in	42 in	No change	Medium	41 in	44 in	43 in	46 in	
						-	n	\downarrow	Medium	28 in	34 in	28 in	34 in	
	21						in	1	Medium	5 in	6 in	5 in	6 in	
							in	1	Low	6 in	8 in	6 in	8 in	
								An	nual Preci	pitation (NPP)			
Site-Sp				rd	TECHNICA	AL REPORT		An		ipitation (2030	20		2070

- Identify site specific natural hazards and how they may change in the future
- Are local physical conditions changing?
- Not all hazards have projections
- All hazards have uncertainty
 - Natural Variability biggest component
 - Model Choice different physics
 - Climate Scenarios long term uncertainty
 - Downscaling locations specific / microclimates
- Provide engineers with usable information to assess operating/design envelop

Variables Included in Assessment

- Not all hazards have projections
- All projections have uncertainty, some hazards more than others
- It's not cost effective and potentially misleading to project changes in variables with high levels of uncertainty

For more info, check out the uncertainty chapter in the <u>READi Climate Data User Guide</u>

						Quality o	of Observation	al Record	Confidence in Projected Change			
Climate Hazard	1900	Data Av 1950	vailability 2023	2100	Level of Analysis	Length	Coverage	Accuracy	Quality of Observations	GCMs can Simulate	Driver of Change Known	
Temperature					Included	High	High	High	High	High	High	
Extreme Heat					Included	High	High	High	High	High	High	
Extreme Cold					Included	High	High	High	High	High	High	
Annual Precipitation					Included	High	Medium	High	High	Medium	Medium	
Extreme Precipitation					Included	High	Medium	Medium	Medium	Medium	Medium	
Annual Snowfall					Included	High	Medium	Medium	Medium	Medium	Medium	
Extreme Snowfall					Included	High	Medium	Medium	Medium	Medium	Medium	
Icing					Not Included	Medium	Medium	Medium	Medium	Medium	Low	
Drought					Included	High	Medium	High	High	Medium	Medium	
Streamflow/Lake Levels					Included	Low	Medium	High	Medium	Low	Low	
Flooding	<i>[[]]</i>		X N		Qualitative Only	Medium	Low	Medium	Medium	Low	Low	
Water Temperature					Included	Low	Medium	High	Medium	Low	Low	
Water Quality/Biofouling					Not Included	Low	Medium	High	Medium	Low	Low	
Tornadoes					Included, historical only	High	Medium	Low	Medium	Low	Low	
Hurricanes	[[]]]				Included, historical only	High	Medium	Low	Medium	Low	Low	
Lightning					Not Included	Low	Low	Medium	Low	Low	Low	
Storms/High Wind Events	[[]]]				Not Included	Low	Low	Medium	Low	Low	Low	
Compound Events					Not Included	Medium	High	Medium	Medium	Medium	Medium	
Wildfires					Not Included	Medium	High	Medium	Medium	Low	Medium	

Historical Limited Data

Secondary Model

Note: The above characterizations (low, med, high) are our initial attempt to add transparency to climate information. This was part of a larger effort and peer reviewed by the National Oceanic Administration, NASA, the National Center for Environmental Predication, multiple National Labs and universities, as well as numerous Climate READi technical advisor.

Projected

Forward Looking Assessments – Climate Vulnerability

- What *natural hazards* are relevant to the site?
- What systems, structures or components are exposed to these climate hazards that could impact plant safety or operations?
- Quantify the relationship between the hazard intensity and resulting *impact*
- Requires and understanding of how *sensitive* is the SSC to the hazard intensity (e.g., two pieces of equipment are exposed to the hazard but at different elevations)
- Are there any built-in *adaptation strategies* that may be challenged in the future?
- Resulting *vulnerability* assessment provides how operating/design margins may change in the future

Climate Vulnerability Assessment Guidance for NPPs (3002023814)

EPC

Wildfire Exposure and Vulnerability

How might a plant assess their vulnerability and risk due to a wildfire? Is there an increased risk at nuclear plants due to potential increase in wildfires?

• Research:

- How to assess the vulnerability and risk of a wildfire hazard on an NPP?
- What are the contributors to a wildfire hazard and how are these affected by future climate conditions?
- Suggested Process:
 - Evaluate available operating experience
 - Evaluate landscape surrounding operating nuclear power plants to assess vulnerability to wildfires and post-fire debris flows
 - Perform potential consequence scenarios of wildfires given change in climate conditions on loss of grid, loss of heat sink, access/egress, emergency planning, etc.
 - Develop guidance for NPPs to screen and evaluate the specific impact on their facilities

Courtesy: https://hazards.fema.gov

From vulnerability to climate risk assessment...

- Risk will require assessment on a likelihood criteria for the site-specific climate hazard / variable and vulnerability
- Realign vulnerabilities / consequences based on climate hazard /variable
 - Biological > Eel/lake grass increases/fouling
 - Excessive Heat > Reduced life and increased maintenance
- Use vulnerability assessment results as inputs to
 - Preliminary risk ranking by climate hazard
 - Systems most susceptible to least susceptible
 - Communicate "top 5"
 - Inform adaptation strategies

Risk analysis matrix approach for climate hazards impacting asset performance.

Forward Looking - Adaptive Strategies for NPPs

- We can reduce risk by increasing robustness (reducing sensitivity) and adaptive capacity – decreasing the vulnerability
- Components of Adaptive Capacity
 - Technical capacity
 - Organizational capability
 - Financial capacity (cost/benefit)
- Types of adaption plans
 - Ranges of options
 - Situational awareness
 - New technologies
 - Time to act
 - Pathway approach

Forthcoming publication on adaptation of operating nuclear plants to climate and environmental challenges

- Challenges include typical climate hazards witnessed over past decade
- Case studies from NPPs world-wide on technical adaptions to SSCs critical to reliable generation of power
- <u>Types of technical adaptions presented</u> <u>include</u>:
 - Analytical margin recovery
 - Changes to operation procedures
 - Installation of prediction and monitoring systems
 - Changes to maintenance programs
 - Plant modifications

EPC

Visualizing Forward-Looking Decision Making

- Forward-looking decision making involves anticipating various future outcomes.
- It utilizes adaptive pathways to create contingency plans.
- Break into manageable steps, adjust as needed and how the future unfolds
- What actions do we need to take now and what actions can we postpone until the future?
- Signposts for decision makers adaptation tipping points

Resiliency to Climate Impacts

Guidance Documents

Climate Risk Assessment

 Summary of asset vulnerabilities, preliminary risk rankings to inform adaptation strategies

Adaptation Strategies

 The organizational and technical capacity to adjust to new situations

Decision Making for Climate Change

 With a range of options available, which option to choose and when to implement

5

are here

Climate Vulnerability Assessment for NPPs

 \bigcirc

 Consider hazards, exposure, sensitivity and adaptive capacity to determine vulnerability

Climate Hazard Information and Projections (CHIP)

- Develop site specific climate hazards considering effects of
- future climate changes © 2025 Electric Power Research Institute, Inc. All rights reserved.

Responding to future changes in natural hazards

- Industry has a significant amount of experience in evaluating impacts of natural hazards
- Numerous guidance and tools available for assessing margins, risk and defense in depth to changing hazard information
- Plants maintain a robust design margin relating to nuclear safety
- Operating experience and high capacity factors show that plants also have operational resilience to extreme events
- Forward looking assessments can allow for strategic decision making to ensure continued safe and reliable performance

THE Climate READi: Power Framework

While there are many deliverables from Climate READi: Power, key **Framework** products are categorized and mapped as guidance, references, and tools.

The Final Countdown!

NOW - December

Socialize and write remaining *Climate READi: Power Framework* documents

- Guidance
- References
- Tools
- Focus on Case Study application to stress and stretch the Framework
- Continue Engagement

Final Regional Workshop – Aug.

- WS1 Workshop Sep.
- READi Annual Meeting Oct.

FINALIZATION...

- Climate READi: Power
 Framework
 - Member and CRAG Comment Period

2025 Q1

- Reconciliation of Feedback
- Online Resource Development
- Case Study Story Map Resource Center
- 'READi Research Roadmap'

2025 Q2 – Q4

- April Framework Launch
 - Soft launch at EU Week
 - Official Launch at Battelle Innovations in Climate Resilience Conference
 - Virtual Webcast Lunch
- Focused Framework elevation and application
- Transition READi into EPRI research portfolio

EPRI

Links to ERPI Climate READi Deliverables & Ongoing Projects

Workstream 1 - Physical Climate Data and Guidance

- <u>READi Insights: Extreme Heat Events and Impacts to the Electric System</u>
- <u>Climate Vulnerability Assessment Guidance for Nuclear Power Plants</u>
- <u>Grounding Climate Risk Decisions: Physical Climate Risk Assessment Scientific Foundation and</u> <u>Guidance for Companies – Initial Key Company-Level Insights, Technical Principles, and Technical</u> <u>Issues</u>
- <u>Climate 101: Physical Climate Data (Modules 1-3) | Physical Climate Data 101 Course Overview</u>
 - <u>READi Insights: Types of Climate Data and Potential Applications within the Electric Power</u> Sector
 - <u>READi Insights: Unpacking Climatological and Power System Operating Extremes</u>
- <u>READi Insights: Impacts of the El Niño-Southern Oscillation on Hurricanes and Summer</u> <u>Temperature</u>
- <u>READi Insights: The Fifth National Climate Assessment Key Insights and Connections to Climate READi</u>
- <u>Climate Hazard, Exposure, and Vulnerability Assessment 101 (Modules 4-6)</u> | <u>Course Overview</u>
- <u>READi Insights: Downscaling</u>
- <u>Climate Data Inventory v1.0.0</u>
- <u>Climate Data Users Guide v1.0.0</u> | <u>Climate Data Users Guide v1.0.0 Overview Brief</u>
- Story Map: Evaluating Local Climate Change Impacts
- <u>Assessment of Wildfire Hazard Risk Screening Tools</u>
- <u>Compound Hazards and the Power Sector in a Changing Climate</u>
- <u>Climate Data Gap Analysis</u>

In Progress

- Relational Database
- Climate Data 101 Part III
- Hazard and Exposure Assessment Guidance

Workstream 2 – Energy System and Asset Vulnerability Assessment

- <u>Operating Dynamics of Heating and Cooling Systems During Extreme Temperatures—Thermal</u> <u>and Power System Considerations</u>
- <u>Climate Vulnerability Assessment Guidance for Nuclear Power Plants</u>
- <u>Climate Vulnerability Considerations for the Power Sector: Nuclear Generation Assets</u>
- <u>Climate Vulnerability Considerations for the Power Sector: Non-Nuclear Generation Assets</u>
- <u>Climate Vulnerability Considerations for the Power Sector: Health and Safety, Environmental</u> Justice, and Ecological Patterns
- <u>Climate Vulnerability Considerations for the Power Sector: Transmission and Distribution</u>
 <u>Infrastructure</u>
- <u>Asset Vulnerability Assessments: Considerations and Resources</u>
- <u>Climate Vulnerability Considerations for the Power Sector: End Use Assets and DER</u>
- Extreme Cold Weather Temperature Calculation for EOP-012 Compliance

In Progress

Story Maps: Hydropower | WIRES | Nuclear | Fragility Curve Development

- Technical Report: Tree Management
- Fragility Curve Generation Guidance
- Inventory of Weather-Related Standards: Technical Brief
- Cold Weather Preparedness Planning for EOP-012 Compliance
- Ecological Change Workshop Proceedings
- Projecting Soil Conditions that Accelerate Corrosion Risk
- Emergency Management Framework for Climate Events
- Nature-Based Solutions as Climate Adaptations

Links to EPRI Climate READi Deliverables & Ongoing Projects

Workstream 3 – Resilience and Adaptation Planning and Prioritization

- <u>Costs and Benefits of Proactive Climate Adaptation in the Electric Sector</u>
- <u>Climate-Informed Planning and Adaptation for Power Sector Resilience</u>
- <u>READi Insights: Approaches to Future Hourly Time Series for Climate-Resilient Power System</u>
 <u>Planning</u>
- <u>READi Insights: Planning for Extreme Weather Events Across Time Scales</u>
- Story Map: Projected changes in hurricane-induced power outages in a future climate
- <u>Practices for Representing Climate Impacts in Bulk Electric System Models</u>
- <u>READi Insights: The Importance of Grid Asset Data in Support of Distribution Resilience Planning</u>

In Progress

- Story Maps: Texas | Midwest | Resilience Metrics Natural Gas Modeling
- Workstream 3 Guidance Document
- RiSc Screening Tool
- Cost Benefit Analysis Guidance Document

Programmatic and Onboarding Materials

Member Companies

- <u>Executive Summary</u>
- <u>2024 Member Engagement Calendar</u>
- <u>Technical Advisor Engagement Guide</u>
- <u>READi Oversight Committee (ROC) Summary</u>
- How to Find Past Webcast and Workshop Materials (log-in required):
 - Board-led Working Group (BWG)
 - <u>READi Oversight Committee (ROC)</u>
 - Workstream 1
 - Workstream 2
 - Workstream 3

Climate READi Affinity Group (CRAG)

- Executive Summary
- <u>Affinity Group Engagement Guide</u>
- <u>2024 Affinity Group Engagement Calendar</u>
- <u>Box Resource Folder</u>
- In Progress
- Climate READi: Power Framework and Overarching Guidance
- Climate READi Research Roadmap

TOGETHER...SHAPING THE FUTURE OF ENERGY®

in X f www.epri.com

© 2025 Electric Power Research Institute, Inc. All rights reserved