

P178 RESOURCE PLANNING FOR ELECTRIC POWER SYSTEMS

KEY INSIGHTS

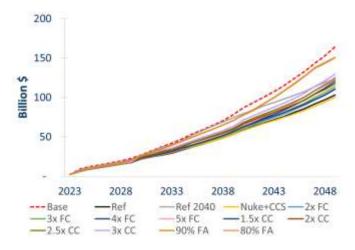
- Investment in hydrogen (H₂) generation capacity is driven primarily by fuel availability, a zero-CO₂ target, the source of fuel production, and the initial assignment of candidate technologies.
- Adding H₂-fired generation as a candidate resource may lower total system costs in a low-carbon resource plan when technology options are limited, and H₂ is produced exogenously.
- Hydrogen generation capacity investment decisions are highly sensitive to the availability of H₂ fuel-small interruptions of H₂ delivery significantly decreases the optimal investment in H₂-fired generation.
- Hydrogen technology capital and fuel cost uncertainty has limited impact on investment and operating decisions.

Impact of Uncertain Hydrogen Technology Futures on Long-Term Electric Company Investment Portfolios

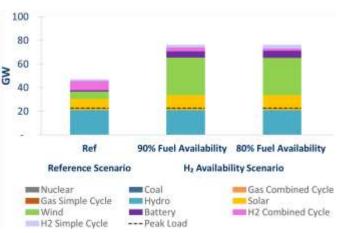
by Cody Hohl, Ph.D., Anna Lafoyiannis, and Nidhi Santen, Ph.D.

🔇 Research Overview

Recent advances in the development of hydrogen (H_2) for power generation have spurred interest in using this technology to support electric company resource portfolio decarbonization. However, uncertainty in the costs of fuel and capital, commercialization timelines of both H_2 enabled turbines and supporting infrastructure, and availability of delivered H_2 fuel impact the level of confidence electric companies have when incorporating H_2 into their resource plans.


This research uses a capacity expansion planning model to investigate incorporating H_2 -fired generation technology into an example long-term resource plan. Hydrogen generation is modeled similarly to a dispatchable gas turbine, and a sensitivity analysis explores the impact of uncertainties related to fuel costs, capital costs, commercialization timing of infrastructure and availability of delivered fuel. Findings provide insights about the conditions under which H_2 investment appears as part of a least-cost resource plan.

Summary of Findings


- Investment in H₂-fired generation capacity may lower total system costs in a system with a zero-CO₂ target in place. All modeled scenarios (i.e., alternative H₂ technology futures) in this study have lower total system costs than the base scenario with no H₂ investment option (Figure 1).
- This cost differential is driven by

 (1) H₂ units providing more firm,
 non-emitting capacity than the
 wind and solar units in the system,
 and (2) the related offset of
 otherwise significant capital
 investments in other zero-emitting
 technologies (i.e., wind and
 solar).

Figure 1: Cumulative System Cost by H₂ Technology Future Scenario

Figure 2: Total Generation Capacity by Technology and H₂ Fuel Availability Scenario (2050)

- Availability of H₂ fuel plays a crucial role in determining the optimal generation capacity for a system. When H₂ fuel is restricted, modeled results show a 43% decrease in H₂ investment and a 181% increase in wind and solar investment in the resource plan.
- Results are influenced by the modeling assumptions, including a zero-CO₂ target, external H₂ fuel production, and a requirement for the modeled system to meet its own load.
- Future research may explore more complex methods of modeling H₂ in long-term resource plans, including H₂ production through electrolysis and evaluating system operations using a production cost model.

This research highlight is based on EPRI Technical Report "<u>Impact of Uncertain</u> <u>Hydrogen Technology Futures on Long-Term Electric Company Investment Portfolios</u>" Product ID 3002030655

RESEARCH CONTACT Cody Hohl

Cody Hohl CHohl@epri.com FOR MORE INFORMATION Explore EPRI's Energy Systems and Climate Analysis Research at esca.epri.com