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2See also: Donti, P. L. & Kolter, J. Z. (2021). Machine learning for sustainable energy systems. Annual Review of Environment and Resources, 46, 719-747.

AI for energy systems: Recurring themes



Distilling raw data into insights (emissions, solar panels, grid infrastructure)
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Figure source: Yu, Wang, Majumdar, Rajagopal (2018)

See also: Donti, P. L. & Kolter, J. Z. (2021). Machine learning for sustainable energy systems. Annual Review of Environment and Resources, 46, 719-747.
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Distilling raw data into insights (emissions, solar panels, grid infrastructure)

Nowcasting (demand, renewable energy, marginal/average emissions, prices)
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Image source: OCF

See also: Donti, P. L. & Kolter, J. Z. (2021). Machine learning for sustainable energy systems. Annual Review of Environment and Resources, 46, 719-747.
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Distilling raw data into insights (emissions, solar panels, grid infrastructure)

Nowcasting (demand, renewable energy, marginal/average emissions, prices)

Approximating time-intensive simulations (power dispatch, climate/weather)
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Figure source: Harilal, Hodge, Monteleoni, Subramanian (2022)
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Figure source: Donti, Rolnick, Kolter (2021)



Distilling raw data into insights (emissions, solar panels, grid infrastructure)

Nowcasting (demand, renewable energy, marginal/average emissions, prices)

Approximating time-intensive simulations (power dispatch, climate/weather)

Fast and dynamic control (topology optimization, MPPT)
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Image source: L2RPN Challenge
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Distilling raw data into insights (emissions, solar panels, grid infrastructure)

Nowcasting (demand, renewable energy, marginal/average emissions, prices)

Approximating time-intensive simulations (power dispatch, climate/weather)

Fast and dynamic control (topology optimization, MPPT)

Predictive maintenance 
(resilient infrastructure, methane leaks)

7

Image source: EPRI Journal (2019)

See also: Donti, P. L. & Kolter, J. Z. (2021). Machine learning for sustainable energy systems. Annual Review of Environment and Resources, 46, 719-747.
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Fast and dynamic control (topology optimization, MPPT)

Predictive maintenance 
(resilient infrastructure, methane leaks)

Accelerated science 
(batteries, solar, electrofuels, fusion)
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Figure source: Attia et al. (2020)



Distilling raw data into insights (emissions, solar panels, grid infrastructure)

Nowcasting (demand, renewable energy, marginal/average emissions, prices)

Approximating time-intensive simulations (power dispatch, climate/weather)

Fast and dynamic control (topology optimization, MPPT)

Predictive maintenance 
(resilient infrastructure, methane leaks)

Accelerated science 
(batteries, solar, electrofuels, fusion)

Data management & scenario generation
(entity matching, time series generation)
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Image source: Chen, Wang, Kirschen, Zhang (2018) 

See also: Donti, P. L. & Kolter, J. Z. (2021). Machine learning for sustainable energy systems. Annual Review of Environment and Resources, 46, 719-747.
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Requirements for AI in energy systems

Safety, robustness, and physical feasibility, due to nature of safety-critical systems

Interpretability and auditability, given (e.g.) regulation and public accountability

Speed, given large & dynamic nature of systems

Privacy-preservation, esp. with consumer data

Hardware integration with sensors & control devices

Usability, accessibility, and data efficiency

Requires a diversity of 
methodological paradigms
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Figure adapted from: US Congressional Budget Office

Physics: Power 
flows along lines

Hard constraints: 
Equipment constraints

Decision-making: Given (uncertain) demand, 
how do we schedule supply?

Hard constraints: 
Stability constraints

Trad. optimization & control
• Satisfies (many) constraints
• Struggles with speed / scale

Machine learning (ML)
• Fast and scalable
• Struggles with constraints

Example: Bridging AI with optimization/control
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Optimization-in-the-loop ML

Framework for developing ML methods that incorporate knowledge of physics, hard 
constraints, or downstream decision-making procedures, via implicit layers
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See also: Donti, Priya. Bridging Deep Learning and Electric Power Systems. Diss. Carnegie Mellon University, 2022.
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Optimization-in-the-loop ML for power systems

Provably robust control via 
deep reinforcement learning

Decision-cognizant forecasting of 
supply & demand

Fast, feasible approximations to power 
systems optimization (ACOPF, SCOPF)
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Physics-informed ML & robust RL

Interpretable ML & uncertainty quantification

Generalization and causality

Energy efficient ML & TinyML

AutoML

….

Demands of different climate/energy domains 

must shape directions of AI innovation
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Many opportunities for 
innovation

Figure: Rolnick, D., Donti, P. L., Kaack, L. H., Kochanski, K., Lacoste, A., Sankaran, K., ... & Bengio, Y. (2022). 
Tackling climate change with machine learning.ACM Computing Surveys (CSUR), 55(2), 1-96.



More openness in data, beyond only bilateral agreements and limited access

- Can include sharing of synthetic data

Simulators and test beds, with realistic/diverse scenarios and easy-to-use interfaces 

- Includes digital twins, but also simpler frameworks (e.g., Grid2Op)

- Need for progression pathways from basic to advanced simulators/test beds

Evaluation metrics / benchmarks: What does it mean for a method to succeed (or fail)?

Modular, “open-source” software, enabling integration & evaluation of new methods

Translational research exchange: Enhanced collaboration between academia, 
national labs, and energy industry players (power system operators, utilities)

Note: None of these enablers are AI-specific!

Enablers for AI in energy systems
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AI applications for 
climate action

AI applications 
that increase 

emissions

AI and climate change
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AI’s system-level 
impacts

Impacts from AI 
computation & 

hardware
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