Advancing Al for Energy Applications
EPRI Energy & Climate Research Seminar

Priya L. Donti
Assistant Professor, MIT EECS & LIDS
May 8, 2025



Al for energy systems: Recurring themes

See also: Donti, P. L. & Kolter, J. Z. (2021). Machine learning for sustainable energy systems. Annual Review of Environment and Resources, 46, 719-T47.



Al for energy systems: Recurring themes

Distilling raw data into insights (emissions, solar panels, grid infrastructure)
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Figure source: Yu, Wang, Majumdar, Rajagopal (2018)

See also: Donti, P. L. & Kolter, J. Z. (2021). Machine learning for sustainable energy systems. Annual Review of Environment and Resources, 46, 719-T47.
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Distilling raw data into insights (emissions, solar panels, grid infrastructure)

Nowcasting (demand, renewable energy, marginal/average emissions, prices)
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See also: Donti, P. L. & Kolter, J. Z. (2021). Machine learning for sustainable energy systems. Annual Review of Environment and Resources, 46, 719-T47.



Al for energy systems: Recurring themes

Distilling raw data into insights (emissions, solar panels, grid infrastructure)

Nowcasting (demand, renewable energy, marginal/average emissions, prices)

Approximating time-intensive simulations (power dispatch, climate/weather)
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See also: Donti, P. L. & Kolter, J. Z. (2021). Machine learning for sustainable energy systems. Annual Review of Environment and Resources, 46, 719-T47.
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Approximating time-intensive simulations (power dispatch, climate/weather)

Fast and dynamic control (topology optimization, MPPT) ‘
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Learning to Run a Power Network
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See also: Donti, P. L. & Kolter, J. Z. (2021). Machine learning for sustainable energy systems. Annual Review of Environment and Resources, 46, 719-T47.
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Predictive maintenance
(resilient infrastructure, methane leaks)

Image source: EPRI Journal (2019)

See also: Donti, P. L. & Kolter, J. Z. (2021). Machine learning for sustainable energy systems. Annual Review of Environment and Resources, 46, 719-T47.


https://eprijournal.com/drones-and-ai-converge-for-power-delivery-inspections/
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See also: Donti, P. L. & Kolter, J. Z. (2021). Machine learning for sustainable energy systems. Annual Review of Environment and Resources, 46, 719-T47.
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See also: Donti, P. L. & Kolter, J. Z. (2021). Machine learning for sustainable energy systems. Annual Review of Environment and Resources, 46, 719-T47.



Requirements for Al in energy systems

Safety, robustness, and physical feasibility, due to nature of safety-critical systems
Interpretability and auditability, given (e.g.) regulation and public accountability

Speed, given large & dynamic nature of systems . . .
Requires a diversity of

Privacy-preservation, esp. with consumer data methodological paradigms

Hardware integration with sensors & control devices

Usability, accessibility, and data efficiency
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Example: Bridging Al with optimization/control
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Decision-making: Given (uncertain) demand,
how do we schedule supply?

Hard constraints:

Equipment constraints

M. &

=

—

1K |
Hi:

Physics: Power =,

flows along lines

|

Hard constraints:
Stability constraints

A

Trad. optimization & control
Satisfies (many) constraints
Struggles with speed / scale

Machine learning (ML)
Fast and scalable
Struggles with constraints

Figure adapted from: US Congressional Budget Office 11



Optimization-in-the-loop ML

Framework for developing ML methods that incorporate knowledge of physics, hard
constraints, or downstream decision-making procedures, via implicit layers
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See also: Donti, Priya. Bridging Deep Learning and Electric Power Systems. Diss. Carnegie Mellon University, 2022.
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Optimization-in-the-loop ML for power systems
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Many opportunities for
innovation

Physics-informed ML & robust RL
Interpretable ML & uncertainty quantification
Generalization and causality

Energy efficient ML & TinyML

AutoML

Demands of different climate/energy domains
must shape directions of Al innovation

Figure:Rolnick, D., Donti, P. L., Kaack, L. H., Kochanski, K., Lacoste, A., Sankaran, K., ... & Bengio, Y. (2022).

Tackling climate change with machine learning. ACM Computing Surveys (CSUR),55(2), 1-96.
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Mitigation

Electricity systems
Enabling low-carbon electricity
Reducing current-system impacts
Ensuring global impact

Transportation
Reducing transport activity
Improving vehicle efficiency
Alternative fuels & electrification
Modal shift

Buildings and cities
Optimizing buildings
Urban planning
The future of cities

Industry
Optimizing supply chains
Improving materials
Production & energy

Farms & forests
Remote sensing of emissions
Precision agriculture
Monitoring peatlands
Managing forests

Carbon dioxide removal
Direct air capture
Sequestering CO,

Adaptation

Climate prediction
Uniting data, ML & climate science
Forecasting extreme events
Societal impacts
Ecology
Infrastructure
Social systems
Crisis
Solar geoengineering
Understanding & improving aerosols
Engineering a control system
Modeling impacts

Tools for Action

Individual action
Understanding personal footprint
Facilitating behavior change
Collective decisions
Modeling social interactions
Informing policy
Designing markets
Education
Finance
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Enablers for Al in energy systems

More openness in data, beyond only bilateral agreements and limited access
- Caninclude sharing of synthetic data

Simulators and test beds, with realistic/diverse scenarios and easy-to-use interfaces
- Includes digital twins, but also simpler frameworks (e.g., Grid20p)
- Need for progression pathways from basic to advanced simulators/test beds

Evaluation metrics [ benchmarks: What does it mean for a method to succeed (or fail)?
Modular, “open-source’ software, enablingintegration & evaluation of new methods

Translational research exchange: Enhanced collaboration between academia,
national labs, and energy industry players (power system operators, utilities)

Note: None of these enablers are Al-specific!
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Al and climate change

Al applications for

climate action
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