Advancing AI for Energy Applications EPRI Energy & Climate Research Seminar

Priya L. Donti

Assistant Professor, MIT EECS & LIDS

May 8, 2025

Distilling raw data into insights (emissions, solar panels, grid infrastructure)

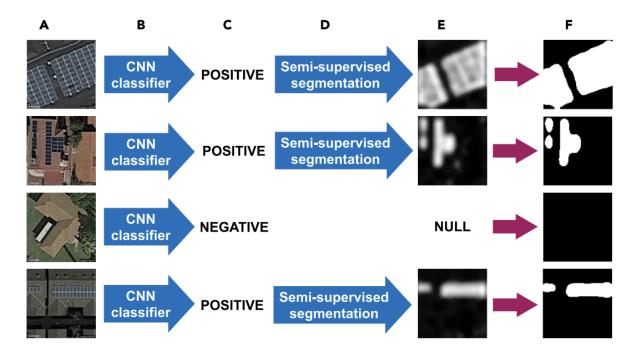


Figure source: Yu, Wang, Majumdar, Rajagopal (2018)

Distilling raw data into insights (emissions, solar panels, grid infrastructure) **Nowcasting** (demand, renewable energy, marginal/average emissions, prices)

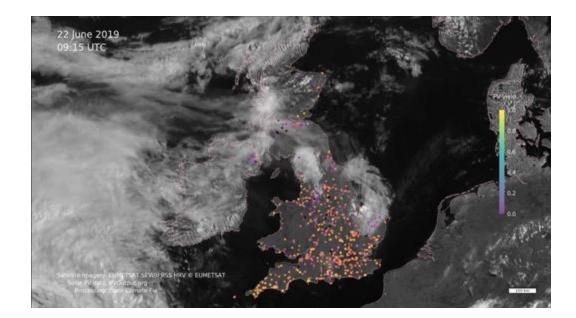


Image source: OCF

Distilling raw data into insights (emissions, solar panels, grid infrastructure) **Nowcasting** (demand, renewable energy, marginal/average emissions, prices) **Approximating time-intensive simulations** (power dispatch, climate/weather)

AC optimal power flow Residual Connection Block Block minimize costs Climate Model Projection (1° Reanalysis Projection (0.25° subject to **AC power flow** power dispatch demand device limits Coarse-resolution space **Fine-resolution space** Figure source: Donti, Rolnick, Kolter (2021) Figure source: Harilal, Hodge, Monteleoni, Subramanian (2022)

5

Distilling raw data into insights (emissions, solar panels, grid infrastructure)
Nowcasting (demand, renewable energy, marginal/average emissions, prices)
Approximating time-intensive simulations (power dispatch, climate/weather)
Fast and dynamic control (topology optimization, MPPT)

Image source: L2RPN Challenge

Distilling raw data into insights (emissions, solar panels, grid infrastructure)

Nowcasting (demand, renewable energy, marginal/average emissions, prices)

Approximating time-intensive simulations (power dispatch, climate/weather)

Fast and dynamic control (topology optimization, MPPT)

Predictive maintenance

(resilient infrastructure, methane leaks)

Image source: EPRI Journal (2019)

7

Distilling raw data into insights (emissions, solar panels, grid infrastructure)

Nowcasting (demand, renewable energy, marginal/average emissions, prices)

Approximating time-intensive simulations (power dispatch, climate/weather)

Fast and dynamic control (topology optimization, MPPT)

Predictive maintenance

(resilient infrastructure, methane leaks)

Accelerated science

(batteries, solar, electrofuels, fusion)

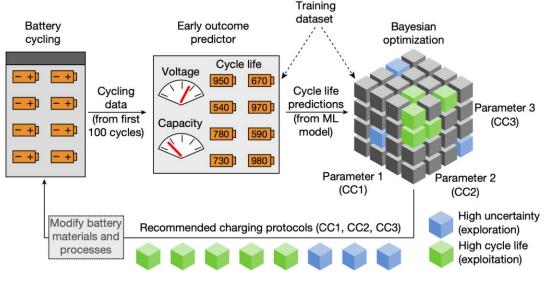


Figure source: Attia et al. (2020)

Distilling raw data into insights (emissions, solar panels, grid infrastructure)

Nowcasting (demand, renewable energy, marginal/average emissions, prices)

Approximating time-intensive simulations (power dispatch, climate/weather)

Fast and dynamic control (topology optimization, MPPT)

Predictive maintenance

(resilient infrastructure, methane leaks)

Accelerated science

(batteries, solar, electrofuels, fusion)

Data management & scenario generation

(entity matching, time series generation)

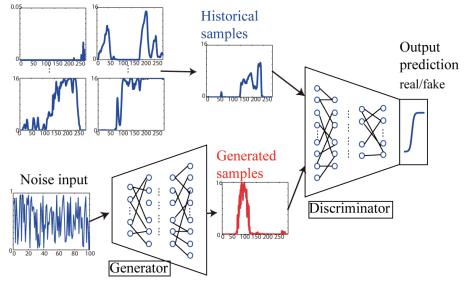


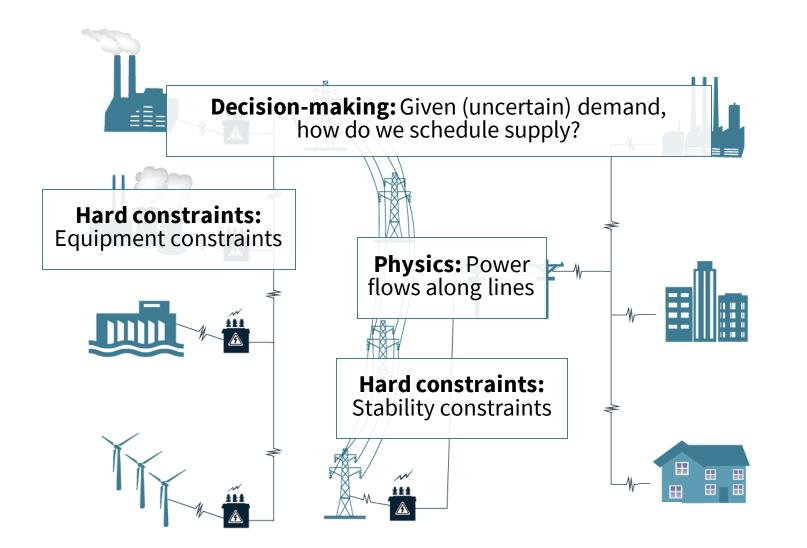
Image source: Chen, Wang, Kirschen, Zhang (2018)

Requirements for AI in energy systems

Safety, robustness, and physical feasibility, due to nature of safety-critical systems

Interpretability and auditability, given (e.g.) regulation and public accountability

Speed, given large & dynamic nature of systems


Privacy-preservation, esp. with consumer data

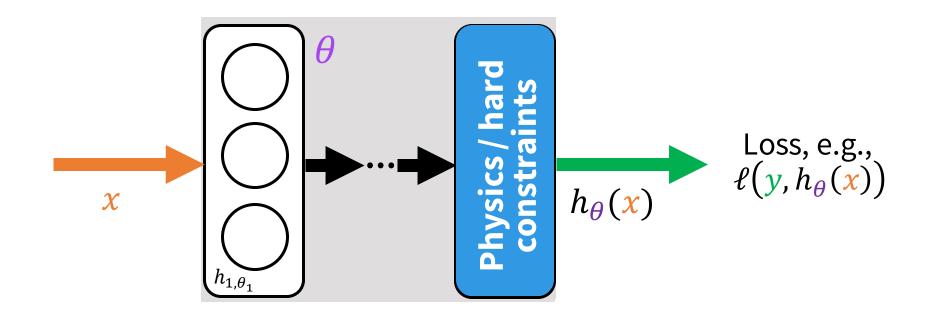
Hardware integration with sensors & control devices

Usability, accessibility, and data efficiency

Requires a diversity of methodological paradigms

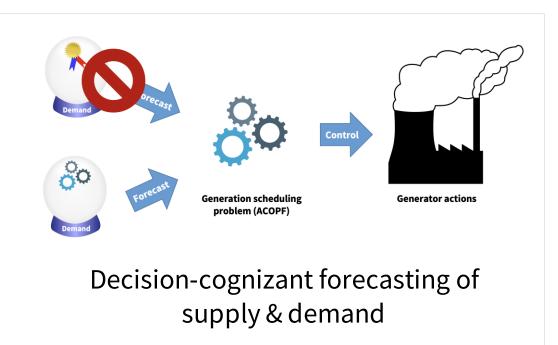
Example: Bridging AI with optimization/control

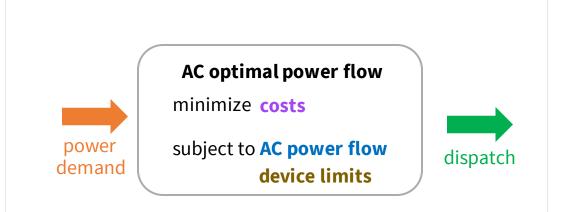
Trad. optimization & control

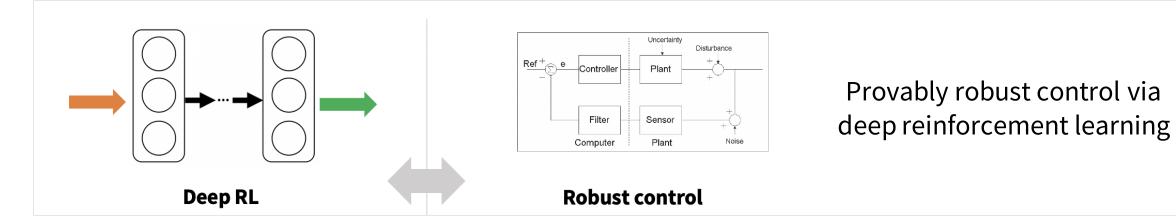

- Satisfies (many) constraints
- Struggles with speed / scale

Machine learning (ML)

- Fast and scalable
- Struggles with constraints


Optimization-in-the-loop ML


Framework for developing ML methods that incorporate knowledge of physics, hard constraints, or downstream decision-making procedures, via implicit layers


See also: Donti, Priya. Bridging Deep Learning and Electric Power Systems. Diss. Carnegie Mellon University, 2022.

Optimization-in-the-loop ML for power systems

Fast, feasible approximations to power systems optimization (ACOPF, SCOPF)

Many opportunities for innovation

Physics-informed ML & robust RL Interpretable ML & uncertainty quantification Generalization and causality Energy efficient ML & TinyML AutoML

• • ••

Demands of different climate/energy domains must shape directions of AI innovation

Figure: Rolnick, D., Donti, P. L., Kaack, L. H., Kochanski, K., Lacoste, A., Sankaran, K., ... & Bengio, Y. (2022). Tackling climate change with machine learning. *ACM Computing Surveys (CSUR)*, *55*(2), 1-96.

		Causal	inference	Computer vision	Interpretable models	NLP	RL & Control	Time-series analysis	Transfer learning	Uncertainty quantification	Unsupervised learning
Mitigation	Electricity systems Enabling low-carbon electricity Reducing current-system impacts Ensuring global impact Transportation			•	•		•	•		•	•
	Reducing transport activity Improving vehicle efficiency Alternative fuels & electrification Modal shift	•		•			:	•		•	•
	Buildings and cities Optimizing buildings Urban planning The future of cities	•		•		•	•	•	•	•	•
	Industry Optimizing supply chains Improving materials Production & energy			•	•		•	•			•
	Farms & forests Remote sensing of emissions Precision agriculture Monitoring peatlands Managing forests			•			•	•			
	Carbon dioxide removal Direct air capture Sequestering CO ₂			•						•	:
Adaptation	Climate prediction Uniting data, ML & climate science Forecasting extreme events Societal impacts			•	•			•		•	
	Ecology Infrastructure Social systems Crisis			•		•	•	•	•	•	•
	Solar geoengineering Understanding & improving aerosols Engineering a control system Modeling impacts						•	•		•	
Tools for Action	Individual action Understanding personal footprint Facilitating behavior change Collective decisions	•				•	•	•			
	Modeling social interactions Informing policy Designing markets	•		•	•	•	•	•		•	:
	Education Finance					•	•	•		•	

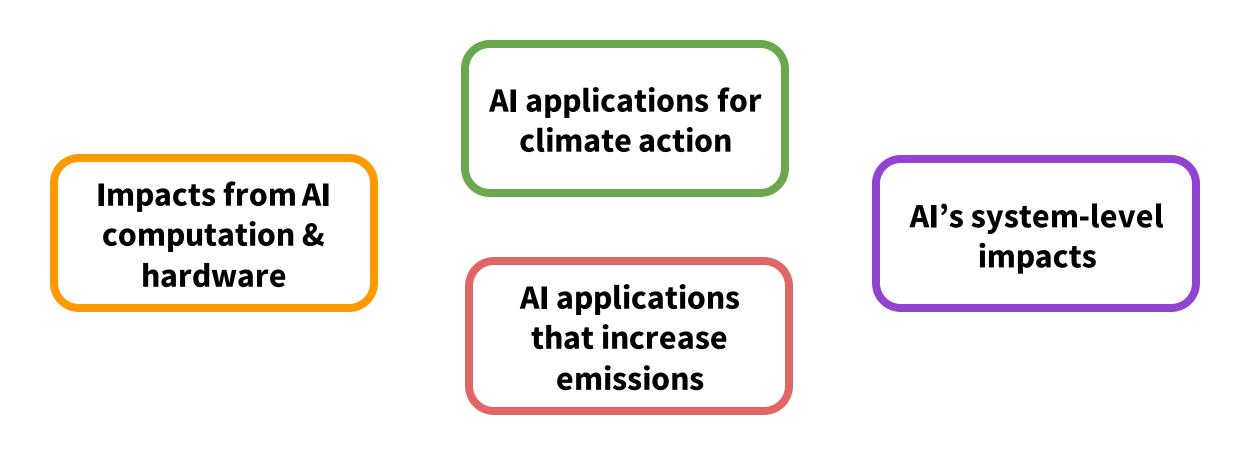
Enablers for AI in energy systems

More openness in data, beyond only bilateral agreements and limited access

- Can include sharing of synthetic data

Simulators and test beds, with realistic/diverse scenarios and easy-to-use interfaces

- Includes digital twins, but also simpler frameworks (e.g., Grid2Op)
- Need for *progression pathways* from basic to advanced simulators/test beds


Evaluation metrics / benchmarks: What does it mean for a method to succeed (or fail)?

Modular, "open-source" software, enabling integration & evaluation of new methods

Translational research exchange: Enhanced collaboration between academia, national labs, and energy industry players (power system operators, utilities)

Note: None of these enablers are AI-specific!

AI and climate change

Priya L. Donti • donti@mit.edu

Kaack, L. H., Donti, P. L., Strubell, E., Kamiya, G., Creutzig, F., & Rolnick, D. (2022). Aligning artificial intelligence with climate change mitigation. Nature Climate Change, 1-10.