

Construction Acceptance Tests

NUCLEAR

Hasan Charkas, PhD, PE. Program Manager – Advanced Reactors Engineering EPRI Advanced Nuclear Program June 10, 2025

 in
 X
 f

 www.epri.com
 © 2025 Electric Power Research Institute, Inc. All rights reserved.

Advanced Nuclear Technology (ANT) Program Focus

EPC

Project Development and Execution Guidance

Cost Drivers

Construction and Commissioning Priorities – AR Roadmap

Nuclear Construction Culture

- Right-sized approaches for nuclear construction activities
- Review processes to eliminate unnecessary or burdensome work that add little of no value to the project

Advanced Construction Technologies and Standardization

- Develop, enable and utilize new construction technologies
- Perform construction demonstrations and tests to accelerate their deployment

Nuclear Construction Experience

 Compile construction guidelines that contain information on adequate division of responsibilities

Industry's roadmap to the future fleet ARRoadmap.com

Construction Acceptance Tests (CATs)

- CATs: inspections, checks, and tests performed by the Construction team to confirm that structures, systems, and components (SSCs) meet design requirements before handing over to the Commissioning team.
 - They cover civil, electrical, mechanical, and instrumentation systems, ensuring the plant is built as designed.

Importance in Nuclear Projects

- CATs are a critical step in commissioning
- Bridge construction and preoperational testing ensuring compliance with design and regulatory standards.

Why It Matters for SMRs

- SMRs rely on modular, standardized designs, making efficient CATs critical for consistency across units.
- Proper CAT execution can reduce delays and lower costs of the SMR projects.

Today's Focus

 Explore key insights and recommendations from the EPRI report <u>3002021018</u> to help SMR vendors streamline CAT processes.

Key Insights from the EPRI report

CATs as Part of Commissioning

- CATs are a subset of the commissioning process, ensuring SSCs are constructed per design before turnover.
- They typically occur before handover, but some tests requiring system operation happen post-turnover, needing coordination with Commissioning.

> Importance of Early Planning

- Planning for CATs must start at project inception to define procedures, timing, and acceptance criteria.
- Without early planning, projects risk omitted tests, incorrect test acceptance, or costly rework.

Turnover Process Challenges

- System turnover boundaries must be defined early using engineering diagrams and commissioning schedules.
- Misaligned boundaries can delay CATs, impacting the overall project timeline.

Early planning of CATs is crucial to avoid delays and ensure SMR commissioning success

Key Insights from the EPRI report

Resource Allocation Issues

- Insufficient technical resources can create a backlog of CATs, delaying the project schedule.
- Backlogs also delay test results, hiding issues until construction advances, leading to rework.

Multi-Disciplinary Coordination

- CATs often require multiple disciplines (e.g., piping, electrical) to release or participate in tests.
- Miscommunication can cause delays, repeated tests, or non-conformances, such as missing a concrete pour card check.

OEM Data Gaps

- Incomplete or outdated manufacturer data can delay CATs, as requirements may change during equipment delivery.
- This risks rework or retesting, impacting project timelines and costs.

SMR vendors must address resource, coordination, and data challenges to ensure CATs support efficient project execution

Key Recommendations

Establish Teams Early

- Set up Construction and Commissioning teams at project start to align on CAT planning and requirements.
- Early involvement ensures all parties understand their roles, avoiding later conflicts.

Prioritize Rigorous Planning

- Develop detailed CAT plans at the project's outset, defining procedures, timing, and acceptance criteria.
- Use Inspection and Test Plans (ITPs) to outline responsibilities and expected results, reducing errors.

Define Turnover Boundaries

- Establish system turnover boundaries early using engineering diagrams and commissioning schedules.
- Clear boundaries align CATs with commissioning needs, preventing delays in SMR projects.

Early planning and clear roles are essential for SMR vendors to execute CATs

Key Recommendations

Ensure Resource Availability

Allocate sufficient technical resources to prevent CAT backlogs and delays.

 Adequate staffing ensures timely test completion, keeping SMR projects on schedule.

Enhance Multi-Disciplinary Coordination

- Coordinate across disciplines (e.g., piping, electrical) to ensure all parties are aligned for CATs.
- Use tools like concrete pour cards to verify readiness, avoiding errors and non-conformances.

Verify OEM Data Completeness

 Confirm that manufacturer data is complete and up-to-date before CATs to prevent rework.

 Regular updates with OEMs ensure SMR components meet testing requirements without delays.

SMR vendors can improve CAT success by focusing on resources, coordination, and data accuracy

Conclusion

Role of CATs

 CATs ensure SSCs are built to design specifications, forming a critical link between construction and commissioning.

Focus on Best Practices

- The report emphasizes early planning, clear roles and coordination as crucial to successful CAT programs.
- These practices help avoid delays, reduce costs, and ensure regulatory compliance.

Support for SMR Projects

 For SMRs, CATs enable standardized, modular construction by ensuring consistency across units

TOGETHER...SHAPING THE FUTURE OF ENERGY®

in X f www.epri.com

© 2025 Electric Power Research Institute, Inc. All rights reserved