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Figure 1. Forecast for peak power demand required to train the largest frontier models, with historic frontier AI power 
growth and historic training runs highlighted for context. Graph prepared by Epoch AI.

EXECUTIVE SUMMARY
The rapid advancement of artificial intelligence (AI)—particularly the training of large-scale “frontier models”—is driving 
renewed growth in electricity demand. This report analyzes the technical drivers of AI power consumption, projects future 
demand trajectories for individual training sites and broader AI needs, and highlights energy sector implications.

Key Findings
Power Growth for Frontier AI Training
Frontier AI training runs—the computationally intensive process of training large, advanced AI models—currently consume 
approximately 100–150 megawatts (MW) each and are projected to reach 1–2 gigawatts (GW) each by 2028, exceeding 4 GW per 
training run by 2030. Figure 1 displays estimated power usage of recent frontier models, projected growth through 2030, and data 
on select AI data centers under construction or in planning. In the figure:

• Historic baseline reflects a continuation through 2030 of the 
observed 2.2× annual growth in these models’ peak power 
demand from 2018 to 2025.

• Higher projections are derived from a model incorporat-
ing three key drivers of training power demand: training 
compute growth, hardware efficiency improvements, and 
training run duration. The model projects faster growth in 
peak power needs than the historical baseline, primarily 
due to expected limits on training duration increases that 
spread computations over time. 

 – Training compute has grown at 4.2× per year since 2018. 
This trend has persisted across architectures and modali-
ties, driven by consistent performance gains from scaling.

 – Hardware efficiency is assumed to improve by 33–52% 
annually, reflecting both historical trends and anticipated 
gains from lower precision numeric formats.

 – Training duration is assumed to grow 10–20% annually, 
down from recent growth rates of 25–50%. Increasing du-
ration spreads the same energy demand across a longer 
period of time resulting in less peak power. As durations 
now exceed 100 days, further increases may face diminish-
ing returns and competitive constraints.
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Figure 2. Forecasted capacity of U.S. AI data centers using various approaches. Graph prepared by Epoch AI.

Training data centers—facilities specifically designed to support 
the intensive computation needs of training machine learning 
(ML) models—cannot keep doubling in size forever. Geographi-
cally distributed training is a possible strategy to overcome local 
power delivery limits. Synchronization across data centers sepa-
rated by 15–50 miles has been demonstrated, with potential for 
broader geographic spread.

Projected Total Power Capacity of AI Data 
Centers in the United States
U.S. AI power capacity is estimated at 5 GW today and  
could reach more than 50 GW by 2030, as shown in Figure 2. If 
multiple companies were to each develop a 4-GW training clus-
ter, AI training could consume a significant fraction of that load.

• Despite uncertainty in both current data and projections, 
alternative growth estimates—based on chip deliveries, 
hyperscaler capital expenditures, and data center data—yield 
broadly similar results.

• Training versus inference split is uncertain and important. 
This split could affect the size, location, power demands, and 
potential flexibility of AI data centers.  

In recent years, OpenAI and Google have reported  
similar power allocations for training and inference— 
the process of using a trained AI model—but the landscape 
is changing rapidly. Reasoning models may shift demand 
toward inference, but training remains a major driver due to 
continued scaling.

 Implications for the Energy Sector
• AI is the dominant near-term driver of data center power 

growth, with hyperscaler capital expenditure (capex) exceed-
ing $370 billion in 2025. Planned data centers (e.g., OpenAI’s 
1.2-GW Stargate, Meta’s 2+-GW Louisiana campus) reflect this 
investment trajectory. Although materializing more slowly, 
power demands from electrification of the economy ultimately 
could be much larger; however, electrification creates different 
electric system development needs.

• Forecasts suggest AI could consume over 5% of U.S. genera-
tion capacity by 2030. Power demand from individual training 
runs may rival the output of major power plants, requiring new 
approaches to grid planning, permitting, and infrastructure 
investment.

• Planning should account for both concentrated and distrib-
uted data center loads as well as the potential for real-time 
flexibility in training and inference workloads and from on-site 
generation and storage assets.
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1 https://eta-publications.lbl.gov/sites/default/files/2024-12/lbnl-2024-united-states-data-center-energy-usage-report.pdf

INTRODUCTION
The AI industry has grown rapidly in recent years. Since ear-
ly 2023, applications like ChatGPT have scaled from niche 
adoption to hundreds of millions of users. In response, 
leading AI companies are collectively allocating hundreds 
of billions of dollars annually to AI infrastructure. This surge 
in investment is driving substantial increases in the power 
demands of data centers that train and deploy AI.

While AI makes up only a small fraction of data center pow-
er demand today, it is the largest driver of both recent and 
projected growth. U.S. data center power demand doubled 
between 2018 and 2023, reaching 4.4% of the nation’s total 
power consumption, and projections based on estimates of 
future chip sales indicate that data center power demand 
could more than double again over the next five years.1

Just as important from an electric systems perspective is data 
centers’ concentrated power demand to train the largest and 
most capable AI models, also known as frontier models. The 
training of frontier models has historically required large, lo-

calized power supply. AI training consists of feeding a model 
vast amounts of data so it can learn patterns and relation-
ships, and the largest training runs now exceed 100 MW. 
Power demand for frontier AI model training runs has been 
growing even faster than overall AI power demand, more 
than doubling every year, with some training clusters under 
development targeting capacities of 1 to 5 GW.

This report examines the trends driving AI power demand, 
with a focus on power demand for frontier AI model training.

Section 1 analyzes historical trends in power consumption 
of frontier AI models. It then assesses the factors—training 
compute growth, hardware efficiency, and training dura-
tion—that underpin their power demand and uses these fac-
tors to project possible future demands from individual sites.

Section 2 projects overall AI demands for power and appor-
tions demand from the training of frontier models, infer-
ence, and other demands. 

Section 3 presents key findings regarding overall AI demand.

https://eta-publications.lbl.gov/sites/default/files/2024-12/lbnl-2024-united-states-data-center-energy-usage-report.pdf
https://www.goldmansachs.com/insights/articles/AI-poised-to-drive-160-increase-in-power-demand
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primary driver of historic power demand increases. The 
evidence supporting the continued growth of training 
compute scaling is presented, and the relationship be-
tween growth in training compute and power demand 
is explained.

• In Section 1.3, other drivers of power demand are ana-
lyzed. These primarily include the efficiency of hard-
ware—including AI chips, servers, and data centers—
and training run durations.

• Section 1.4 brings together trends and projections for 
all the drivers to forecast growth in power demand for 
frontier AI training through 2030. 

1.1 Historic Power Demand Growth for 
Frontier Training Runs
Power demand2  for training frontier AI models has been 
increasing exponentially, growing by a factor of around 2.1x 
(90% confidence interval: 2.0x to 2.3x) annually over the 
past 15 years.3 (See Figure 3.)

1. GROWTH OF POWER DEMAND 
FOR FRONTIER AI MODEL  
TRAINING
Training large frontier AI models, like large language mod-
els, involves complex processes, massive datasets, and 
specialized hardware. These highly advanced, large-scale 
AI models often possess billions or even trillions of param-
eters and require immense computational capabilities. This 
section examines the requirements of frontier AI model 
training, explains the drivers behind the growth in power 
demand for training, and forecasts power demand for the 
training of individual frontier AI models through 2030.

• Section 1.1 reviews historic trends in power demand 
for training frontier AI models. 

• In Section 1.2, training compute scaling is examined. 
Increasing the capacity of computational resources 
(like computing power, memory, and data) used to train 
a model—known as training compute scaling—is the 

2 Power demand as discussed in this report refers to peak power demand of the data center, including IT hardware, cooling, and other infrastructure. 
For example, a data center may have a peak capacity of 100 MW but will likely not consume that much power 24/7.

3 Frontier models are defined as the models trained on the largest compute scales over time. The power demand is estimated from the peak power 
capacity of the AI servers and data centers used to train these models. Epoch AI’s full dataset of power draw for frontier models and the accompany-
ing methodology is found here.

Figure 3. Trend in the estimated power demand to train the Top 10 frontier models (at time of release) based on disclosed 
hardware information. This trend differs slightly from Figure 1 because it uses a more expansive definition of frontier model 
(Top 10 versus Top 5 in compute) and includes earlier years. Graph prepared by Epoch AI.

https://epoch.ai/data-insights/power-usage-trend
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capacity of around 150 MW.7 This power draw is at least 
seven times higher than a previous-generation frontier 
model, OpenAI’s GPT-4, which was trained in early 2023 
on a cluster drawing 22 MW. Although power demands for 
these clusters are expected to grow rapidly in the future, 
they are already significant at a local level. For example, 
xAI’s training cluster drew 5% of the peak power demand of 
the local utility in Memphis.

1.2 Compute Scaling
Training compute for frontier AI models has grown rapidly 
at a relatively consistent rate of 4x to 5x per year since 
2018, as shown in Figure 4. This growth rate is consistent 
across different model datasets. It holds for both a larger 
dataset of hundreds of groundbreaking or influential AI 
systems,8 and for a subset that includes just the leading 
frontier models in terms of training compute. 

This result is corroborated by examining the growth rate in 
power demand at AI supercomputers,4  or large clusters used 
for AI training, which has also doubled annually since 2019. 

The fundamental driver of the growth in power demand for 
AI training is compute scaling. This compute is performed 
by AI chips5 located in data centers and networked together 
in clusters. Training clusters have grown rapidly in comput-
ing performance and energy density over time to sup-
port the scale-up in frontier training runs. This scale-up of 
clusters has outpaced hardware and algorithmic efficiency 
gains, driving the growth in power demand for training.

To date, the most power-intensive training runs for released 
AI models were for xAI’s Grok 3 and Grok 4 in 2025.6 These 
models were trained using at least 100,000 Nvidia H100 
graphical processing units (GPUs) in xAI’s “Colossus” data 
center in Memphis, Tennessee, which had a peak power 

Figure 4. Trends in the growth rate of training compute of the Top 10 frontier models, which have grown at a rate of 4.2x/
year since 2018. Prior to 2018 these models grew at 6.7x/year. Graph prepared by Epoch AI.

4 Epoch AI maintains data on over 500 large AI training clusters located around the world. 
5 Chips perform the computations needed in AI. AI training requires specialized chips; these are also called “AI accelerators,” “Graphical Processing 

Units (GPUs),” or simply “AI chips” or “AI hardware.”
6 Not all models have enough disclosed training information to estimate power consumption, though it is unlikely that any model released to date 

required substantially more power to train than Grok 3 or 4.
7   Colossus has since doubled in size to 200,000 GPUs and is expected to draw 300 MW from the grid by Fall 2025, relying on supplemental gas generators 

in the meantime. It is not clear how many GPUs were online when Grok 4 was trained.
8 More information about this database can be found here.

https://finance.yahoo.com/news/elon-musk-xai-supercomputer-gets-212400909.html
https://wreg.com/news/local/xai-memphis/mlgw-planning-for-xai-supercomputers-demand-on-utilities/
https://epoch.ai/blog/training-compute-of-frontier-ai-models-grows-by-4-5x-per-year
https://epoch.ai/data-insights/compute-trend-post-2010
https://epoch.ai/data-insights/compute-trend-post-2010
https://epoch.ai/blog/training-compute-of-frontier-ai-models-grows-by-4-5x-per-year
https://epoch.ai/blog/training-compute-of-frontier-ai-models-grows-by-4-5x-per-year
https://epoch.ai/data/ai-supercomputers?view=map
https://www.tomshardware.com/tech-industry/artificial-intelligence/musks-colossus-is-fully-operational-with-200-000-gpus-backed-by-tesla-batteries-phase-2-to-consume-300-mw-enough-to-power-300-000-homes
https://techcrunch.com/2025/06/18/xai-is-facing-a-lawsuit-for-operating-over-400-mw-of-gas-turbines-without-permits/
https://epoch.ai/data/ai-models
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scaling at this pace would imply that individual training 
clusters could cost hundreds of billions by 2030. 

 – Total AI investment across the industry is now  
hundreds of billions per year, and there are mul-
tiple plans (Appendix A) for data centers that are 
much more powerful than xAI’s Memphis cluster, 
so rapid compute scaling is likely to continue in 
the short term. For example, OpenAI is planning to 
construct a 1.2-GW data center in Abilene, Texas 
by 2026 containing 400,000 of Nvidia’s next-gener-
ation Blackwell GPUs.

 – However, beyond a certain point, scaling might not 
continue to pay off in terms of performance gains 
and potential AI applications revenue to justify 
further cost increases.12 This is a key uncertainty 
about the future of AI, and fully resolving it is out-
side the scope of this report.

• Efficiency improvements could slow scaling if there is 
a more fundamental ceiling on AI capabilities or on the 
compute scales that enhance capabilities: if the benefits 
of compute scaling reach a plateau at some point, algo-
rithmic innovations could bring this point closer in time. 
However, there is little evidence of a plateau so far.

 – The AI developer DeepSeek gained attention in 
early 2025 for training models using around 10% 
as much compute as similarly capable LLMs from 
the United States,13 sparking debate on whether 
improved compute efficiency (meaning better per-
formance for the same amount of compute) might 
disrupt scaling.

This scaling, which is driving power 
demand, is motivated by the fact that 
researchers have discovered that AI 
models perform better as training 
compute increases, a phenomenon 
dubbed “scaling laws” due to a re-
markable stability over many orders 
of magnitude of scale. 

1.2.1. Historic compute scaling
Since 2020, training compute growth has been led by large 
language models (LLMs), which can generate text or code 
and now drive widely used applications such as ChatGPT. 
Today’s leading LLMs have continued the long-term growth 
trend in training compute. xAI’s Grok-3, released in Febru-
ary 2025, was trained using roughly 4*10E26 floating point 
operations (FLOP)—a 20x increase in compute compared to 
the record-breaking GPT-4 in March 2023, for a growth rate 
of just over 4x per year.9 OpenAI also recently released GPT-
4.5, representing a “new order of magnitude of compute” 
compared to previous models, suggesting a similar compute 
scale as Grok-3.10 

1.2.2 Future Compute Scaling
The rate of future compute scaling growth is difficult to 
predict. There are signs pointing to the continuance of such 
growth; but, at the same time, other factors could lead to a 
slowing of compute scaling.

The compute scaling trend may not hold—in other words, it 
may slow—for two broad reasons:

• Escalating costs may force scaling to slow or end. Main-
taining a growth rate of 4x/year in compute scaling 
has been accompanied by escalating costs. Cottier et 
al. (2024) found that the cost to train frontier models 
has been growing somewhat slower than compute, by 
2.4x/year.11 Still, the upfront cost of the largest training 
clusters is already in the billions, with xAI’s Memphis 
cluster costing an estimated $7 billion, so continued 

9 See Epoch AI’s database on AI models for more details on these training compute estimates.
10 This suggests a roughly 10x scale-up from GPT-4, or around 2*10^26 FLOP, but this is uncertain due to a lack of public training details on GPT-4.5.
11 This growth rate is similar for both the amortized cost of compute to do a training run and the upfront cost of the training cluster.
12 Besides monetary costs, compute scaling may run up against hard resource constraints. Sevilla et al. (2024) estimated bottlenecks in chip production, 

power supply, and training data, finding that it would be feasible to maintain a 4x compute scaling growth through 2030, though these constraints 
may be binding shortly afterwards.

13 DeepSeek-V3 matches or surpasses Meta’s Llama 3 405B on benchmarks but was trained on around 10% as much training compute, requiring around 
3 MW of power (more details here). 

“The available evidence suggests that training compute scaling 
will likely continue in the near term, and it would be premature 
to predict a major shift in the compute growth trend.”

https://www.cnbc.com/2025/02/08/tech-megacaps-to-spend-more-than-300-billion-in-2025-to-win-in-ai.html
https://www.bloomberg.com/news/articles/2025-03-18/openai-s-first-stargate-site-to-hold-up-to-400-000-nvidia-chips
https://epoch.ai/blog/how-predictable-is-language-model-benchmark-performance
https://arxiv.org/abs/2203.15556
https://x.com/EpochAIResearch/status/1892671695535677745
https://openai.com/index/introducing-gpt-4-5/
https://openai.com/index/introducing-gpt-4-5/
https://arxiv.org/abs/2405.21015
https://arxiv.org/abs/2405.21015
https://arxiv.org/abs/2504.16026
https://epoch.ai/data/ai-models?view=table
https://epoch.ai/blog/can-ai-scaling-continue-through-2030
https://github.com/deepseek-ai/DeepSeek-V3
https://epoch.ai/data/ai-models?view=table
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1.2.3. Potential Impact of Reasoning Models 
on Training Compute Scaling 
Until recently, most compute used to train language models 
involved training on vast amounts of human-written data, 
a process called “pretraining.” However, the emergence of 
reasoning models—models trained to “think”—has fueled 
speculation that the growth of training compute scaling 
may slow. This is because reasoning models benefit more 
from scaling up inference compute versus training compute, 
suggesting inference scaling could at least partially replace 
training scaling as the new paradigm of scaling. 

However, the available evidence suggests that training com-
pute scaling will likely continue in the near term despite the 
increase in reasoning models; therefore, predicting a major 
shift in the compute growth trend due to the emergence of 
reasoning models is premature. This holds true for several 
reasons:

• Despite recent discussion of pretraining “hitting a 
wall,”15 previous work has estimated that there is 
enough text data to sustain multiple years of scaling at 
the current trend (Villalobos 2024). There are also large 
quantities of data that might be used for pretraining in 
other modalities such as video, images, and audio.

• Reasoning models themselves require training, and this 
training improves with scale.16 So even if pretraining 
scaling slowed, overall training compute growth would 
continue due to the growth of reasoning model training. 

Factors that could lead to the continued growth of compute 
scaling include the following:

• Compute growth has been relatively stable historically, 
at 4x/year since 2018 despite shifts in model structures 
and rapid algorithmic improvements. Before 2018, 
compute grew even faster. 

• Model accuracy improves with increased training com-
pute as shown by scaling laws mentioned earlier. 

• Standardized benchmarks such as speed and reasoning 
ability tend to improve with scaling (Owen, 2023). 

• Dramatic advances have been seen with scaling. 
Qualitatively, scaling has occurred alongside dramatic 
advances, from crude early language models like GPT-2 
to today’s models that can handle a growing set of 
practically-useful tasks.

• Improved efficiency could actually motivate further 
scaling. Although mentioned above as a possible driver 
that could slow the growth rate, improved efficiency 
could conversely unlock higher capability levels, which 
could motivate further scaling.14

 – Compute efficiency gains have a long history 
of coexisting with total compute growth. Ho et 
al. (2024) estimated that over the past decade, 
algorithmic innovations have improved training 
efficiency for language models by approximately 
3x annually, meaning that similar results can be 
achieved with 1/3 as much compute as the previ-
ous year. 

 – DeepSeek may have achieved 
an acceleration in this trend, 
but efficiency gains have not 
slowed compute growth in 
the past. In terms of industry 
reaction, every U.S. hyper-
scaler announced substantial 
increases in AI investments 
for 2025 after DeepSeek’s 
well-received R1 launch in 
January. 

14 For more discussion on how compute efficiency affects scaling, see this commentary from Epoch AI researcher Matthew Barnett on why algorithmic 
progress may spur more spending on compute. 

15 See this link for a summary of these reports. Another report notes that Ilya Sustkever (a cofounder of OpenAI and founder of Safe Superintelligence), 
claimed that gains from scaling pretraining have plateaued.

16 Per OpenAI, reasoning performance “consistently improves with more reinforcement learning (train-time compute).”

“4x/year growth is very rapid and must slow down eventually, 
almost certainly by the 2030s. The key uncertainty is when, not if, 
this growth will slow down”

https://epoch.ai/blog/will-we-run-out-of-data-limits-of-llm-scaling-based-on-human-generated-data
https://epoch.ai/blog/can-ai-scaling-continue-through-2030#multimodality
https://epoch.ai/blog/how-predictable-is-language-model-benchmark-performance
https://epoch.ai/blog/algorithmic-progress-in-language-models
https://epoch.ai/blog/algorithmic-progress-in-language-models
https://www.cnbc.com/2025/02/08/tech-megacaps-to-spend-more-than-300-billion-in-2025-to-win-in-ai.html
https://epoch.ai/gradient-updates/algorithmic-progress-likely-spurs-more-spending-on-compute-not-less
https://www.deeplearning.ai/the-batch/ai-giants-rethink-model-training-strategy-as-scaling-laws-break-down/
https://www.reuters.com/technology/artificial-intelligence/openai-rivals-seek-new-path-smarter-ai-current-methods-hit-limitations-2024-11-11/
https://openai.com/index/learning-to-reason-with-llms/
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models since 2018, with a 90% confidence interval of 
between 3.6x and 4.9x per year. This forecast is increasingly 
uncertain over time, even when using the 90% confidence 
interval, since this confidence interval is based on historic 
data. As training compute scaling continues, the high 
monetary and resource costs of sustaining this growth will 
rapidly escalate, and there will be more time for technical 
factors like the returns to scaling to change the picture. 
Consequently, extrapolating the current growth rate to 
2030 should be viewed as a simplification that sets aside 
this uncertainty.

The 4x/year growth is very rapid and must slow eventu-
ally, almost certainly by the 2030s, absent a drastically 
transformed economy. The key uncertainty is when, not if, 
this growth will slow down.19 While it would be feasible to 
scale training compute through 2030, we cannot rule out 
a slowdown before then due to technical innovations, data 
constraints, or diminishing returns to scaling. 

For modeling trajectories for future power growth, the 
existing compute growth trend is a best-guess forecast, but 
this is a key uncertainty to watch.

1.3 Hardware Efficiency and Training 
Duration
While training compute has been quadrupling every year, 
power demand has grown slower than this, at a rate closer 
to 2x every year, because of increases in training duration 
and improvements in hardware efficiency (see Figure 5).

If training compute is held constant, increasing the duration 
of a training run reduces the computing throughput that a 
cluster must achieve to complete the training. This means 
a smaller cluster and less peak power because increasing 
duration spreads the same energy demand across a longer 
period of time. If cluster scaling becomes a key bottleneck, 
then allowing training runs to extend longer could be an im-
portant mitigation. Training run durations have been grow-
ing longer by around 26% per year. However, there may be 
limits to how long training runs will realistically last.

• Inference scaling resulting from the use of reasoning 
models would likely be accompanied by training scaling 
because training compute is an upfront investment in 
improving model performance and thus the efficiency 
of inference. The growth of inference costs for reason-
ing models should, therefore, motivate more invest-
ments into training. In a simplified model of training-in-
ference trade-offs, Epoch AI researchers estimated that 
spending on inference compute and training compute 
should be roughly equal. 

• Senior staff at leading AI companies have said that 
reasoning models are complementary with scaling up 
pretraining.17

• Compute growth has endured dramatic shifts in para-
digms before. The era of rapid scaling dates to the 
“deep learning” revolution of the early 2010s,18 which 
substantially predates modern LLMs. For example, 
many of the early models were image recognition mod-
els such as AlexNet, and language models only came to 
dominate the field starting around 2020. 

Nonetheless, the emergence of reasoning models does 
increase the uncertainty over the compute scaling trend 
going forward. 

1.2.4 Conclusion
The growth in training compute for frontier models will like-
ly continue, at least in the short term, for three key reasons: 

• Scaling has achieved relatively consistent returns to 
date. 

• AI investment levels are sufficient for continued scaling.  

• Technical innovations such as efficiency improvements 
and reasoning models appear unlikely to significantly 
slow compute scaling, though they could change the 
nature of that scaling (e.g. shifting from pretraining to 
reasoning training).

For the purpose of projecting future power growth, the 
analysis of Sevilla and Roldán (2024) appears most relevant 
for the largest scale training runs. They determined an an-
nual growth rate of 4.2x for the training compute of frontier  

17 This includes OpenAI’s Noam Brown and Anthropic’s CEO, Dario Amodei. Amodei claimed that companies are now rapidly scaling up training for rea-
soning models, potentially requiring millions of AI chips. As with inference compute, the compute infrastructure used for reasoning training may differ 
from pretraining clusters, and this could help enable distributed training. 

18 Before then, the compute growth trend for AI or machine learning models was much more modest, at around 1.4x per year. 
19 As mentioned, even with hardware efficiency improvements, the hardware costs and power demands needed to sustain this scaling are both roughly 

doubling each year, implying a 1000-fold increase in costs every ten years.

https://epoch.ai/blog/trading-off-compute-in-training-and-inference
https://en.wikipedia.org/wiki/AlexNet
https://epoch.ai/blog/training-compute-of-frontier-ai-models-grows-by-4-5x-per-year
https://x.com/polynoamial/status/1895207166799401178
https://www.youtube.com/watch?v=EvtPBaaykdo&t=5130s
https://www.darioamodei.com/post/on-deepseek-and-export-controls
https://epoch.ai/blog/compute-trends
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year, then we can calculate the resulting power growth 
trend as follows:

4x per year training compute growth / 1.26x per year 
training duration / 1.4x per year efficiency growth = 
2.27x per year power growth

This is similar to the estimated historic power growth trend, 
though the calculations don’t align exactly because the 
relevant datasets are not identical.

This simple model translates training compute growth into 
the growth rate of power demand for frontier training runs. 
In addition, it can be used to help inform forecasts of power 
demand. Instead of simply extrapolating the historical 
growth in power demand, the trend can be deconstructed 
into the three factors of training compute, training dura-
tion, and efficiency growth, and evidence for how these 
growth rates might evolve can be considered.

Improvements in hardware energy efficiency also reduce 
power demand, holding training compute constant. Energy 
efficiency is improving around 25–40% per year for lead-
ing AI chips. This is likely to continue, but the exact rate of 
improvement makes a significant difference to growth in 
training power demand.

Given these factors, we can build a simple model of power 
demand growth. The growth rate in electric power required 
to train frontier models is equal to the growth rate in over-
all training compute divided by the growth rates in training 
duration and energy efficiency: 

Power demand = Training compute growth /  
(Training duration growth x Energy efficiency growth)

For example, if training compute grows at 4x per year, and 
frontier training runs are increasing in duration by 26% per 
year, and AI hardware is becoming 40% more efficient per 

Figure 5. Historical effect of different trends on power demand growth for AI training. 4x/year compute growth is reduced to 
2x/year power growth due to increasing durations and improving chip efficiency. Graph prepared by Epoch AI.



12   |  EPRI White Paper   Scaling Intelligence: The Exponential Growth of AI’s Power Needs  August 2025

1.3.1 Hardware Energy Efficiency Growth
1.3.1.1 Chip Efficiency
AI chips have become increasingly efficient over time, mean-
ing that newer chips can produce more computational power 
per watt. However, these efficiency improvements have not 
been fast enough to keep up with 
compute growth, leading to increased 
power demand for AI training runs.

AI chip efficiency has historically 
improved around 26% to 40% per year, 
based on a variety of resources and 
examples: 

LIMITS TO THIS MODEL AS A FORECASTING METHOD
The model of power demand shown here has limits as a forecast method because these factors are not necessarily 
independent. Improved chip efficiency and increased training run duration will reduce power demand for AI training,  
if training compute is held constant. However, changes in the growth rates of training run duration and chip efficiency 
could also change the trend in overall compute growth. The actual causal relationship between changes in duration/
efficiency and changes in power demand is not necessarily straightforward.

For example, because duration is an input into total training compute, which is equal to the rate of computations 
performed multiplied by the duration of the run, a change in duration growth has a good chance of affecting compute 
growth as well. If duration growth slows, AI companies could compensate by scaling up their training clusters even 
faster, but they may instead accept a slower growth rate in total compute.

A similar concern could apply to hardware efficiency: a breakthrough in hardware energy efficiency could unlock faster 
compute growth instead of slowing down power demand growth. This would especially be true if AI training scale is 
limited by power availability, though the existing short-term plans for scaling up AI data centers provide some evidence 
against this.

Accordingly, the model may not accurately predict how changes in individual factors affect the overall rate of power 
growth due to these possible interactions. An alternative method, which is explored in the full forecast, would be to 
extrapolate the historic growth rate of power demand in training clusters, without considering the efficiency and 
duration factors that underlie it.

The case for this decomposition is that overall training compute growth has been quite stable over time despite many 
changes in the AI industry. There may also be technical factors that keep the growth rate at around 4x per year. Scaling up 
compute requires increasing the size of the model and training dataset, so even if a breakthrough in chip performance 
supports more rapid scaling, it could take time to prepare more training data and run preliminary experiments at scale. 

A final limitation is that extrapolations become increasingly uncertain over time. Increasing power demand by 2x or 
more per year, which would imply over 1000-fold growth every decade, is clearly not sustainable in the long term. It is 
unclear how many gigawatts can actually be supplied to AI training runs, even if they’re geographically distributed. This 
report does not model these constraints in detail.

• In a dataset of nine widely used AI chips since 2019, 
energy efficiency in compute power per watt has im-
proved by 40% per year (confidence interval: 30–60%). 
(See Figure 6.) 

“AI chip efficiency has historically improved around 26% to 40% 
per year… These efficiency improvements will likely continue in 
the coming years.”

https://epoch.ai/data/machine-learning-hardware#energy-efficient
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 – Google’s latest AI chip, the Tensor Processing  
Unit (TPU) v6, is 67% more energy efficient than 
the TPUv5e, consistent with a faster rate of im-
provement since they were separated by just  
over a year.23

• Computing has a long history of efficiency gains. Under 
Koomey’s law, computers have become 30–55% more 
energy efficient annually since 1950. The theoretical 
limits to microprocessor efficiency will not be binding 
for at least another decade (see Appendix B for more 
details). 

Therefore, it would be reasonable to assume that efficiency 
continues to improve at a rate of at least 26% annually, and 
possibly around 40% per year.

• Hobbhahn et al. (2023) found a slower growth trend of 
26% (23–29%) per year using a dataset of over 47 ML 
GPU chips used from 2010 to 2023. Hobbhahn’s 26% 
growth rate is based on a larger, less selective dataset 
than the 40% growth rate. This makes it more statisti-
cally robust—the 40% growth result has wide confi-
dence intervals due to the small amount of data—but it 
may be less representative of the most popular, leading 
chips used in AI, which may be improving at a faster 
rate than the rest of the industry.

• The efficiency gains from the most recent hardware are 
consistent with these trends, but don’t favor the higher 
or lower growth rate. 

 – Nvidia has recently started delivering its new  
B200 GPU, which is around 62% more efficient  
than the H100, the leading chip of the previous  
generation.20,21 This would be an annualized  
improvement of 27% per year.22

Figure 6. Trend in the energy efficiency of the most widely used AI hardware since 2016. This efficiency has improved at 40% 
per year, a faster rate than GPUs as a whole. Graph prepared by Epoch AI.

20   The B200 has a thermal design power of 1000 W, which is a 42% increase over the H100’s TDP of 700 W, but its performance in FLOP/second is 127% 
higher, leading to a 62% improvement in energy efficiency. Source: SemiAnalysis.

21   Nvidia has said that the B200 is 25x more efficient than the H100 for specific inference workloads. However, for large-scale training runs, which are 
heavily optimized for performance, one should compare using peak performance.

22   The B200 first shipped in late 2024, and H100 entered full production and began shipping in late 2022, and a 62% improvement over two years is 
equivalent to two consecutive 27% annual improvements. 

23   TPUv5e and TPUv6 were made generally available in November 2023 and December 2024, respectively, so the time gap is closer to one year than two.

https://cloud.google.com/blog/products/compute/trillium-sixth-generation-tpu-is-in-preview
https://cloud.google.com/blog/products/compute/trillium-sixth-generation-tpu-is-in-preview
https://epoch.ai/blog/trends-in-machine-learning-hardware#energy-efficiency
https://semianalysis.com/2024/04/10/nvidia-blackwell-perf-tco-analysis/
https://venturebeat.com/category/energy/
https://x.com/Azure/status/1843637745186484406
https://www.crn.com/news/components-peripherals/nvidia-h100-gpus-in-full-production-shipping-in-october
https://cloud.google.com/blog/products/compute/announcing-cloud-tpu-v5e-in-ga
https://cloud.google.com/tpu/docs/release-notes
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 – Switching to 8-bit training theoretically could 
double hardware energy efficiency based on AI 
chips’ specifications on paper. However, it is not 
clear that a full doubling will be achieved in prac-
tice because lower precision could lead to worse 
training performance or hardware utilization may 
be lower.

 – Note that lower precision training could simply in-
crease overall training compute instead of mitigat-
ing power demand, since it would boost compute 
output per chip in addition to output per watt. 

1.3.1.3 Estimating Hardware Efficiency Growth
As our baseline for forecasting power demand growth, 
we average the 26% and 40% annual growth estimates for 
efficiency based on historic trends to arrive at 33% growth 
per year. If we assume that a switch to 8-bit precision oc-
curs over the next five years and leads to a further doubling 
of efficiency on top of other hardware improvements, this 
change would improve overall hardware energy efficiency 
growth over the next five years to 52% per year.26

Our extrapolative model uses 33% as the low estimate of 
the rate of efficiency growth and 52% as the high estimate. 
These are two plausible reference scenarios, not lower or 
upper bounds on the efficiency trend. 

1.3.2 Training Run Duration Growth
AI training runs have grown longer over time. This growth 
allows a given training run to be completed with less hard-
ware, reducing power draw.

AI developers have scaled compute by both expanding 
their training clusters and by running them for longer. In a 
dataset of notable27 machine learning models, training run 
durations have been growing at a rate of 26% per year since 
2010 (see Figure 7). Among frontier models (those that 
were in the Top 10 of training compute at time of release), 
durations have been growing at a faster rate of around  
50% per year since 2018. 

1.3.1.2 Server and Data Center-Level Efficiency and 
Utilization
The results above estimate the energy efficiency of individ-
ual AI chips when they are fully utilized. However, there are 
several additional factors that could affect the efficiency of 
training clusters in practice. These factors are not modeled 
in the main forecast due to a lack of evidence that they will 
change over time, but they could merit further consider-
ation in future work. See Appendix B for more details.  
The following are further issues that impact efficiency:

• Servers: AI chips are configured in servers, and these 
servers have an overhead energy cost coming from 
cooling, networking, and other equipment. This over-
head is significant, roughly doubling power consump-
tion versus the power rating of the main AI chips inside 
the server. 

• Data centers: There is also a smaller amount of over-
head at the data center level. For large AI data centers, 
the non-IT loads contribute another 10–30% of power 
demand. The projections here simply assume that this 
additional load does not change.24

• Utilization: AI training runs typically achieve 30–40% 
compute utilization, so improved utilization could 
reduce the number of chips and consequently the 
amount of power required for training. 

 – Number formats: Training compute is measured 
in operations on floating-point numbers, which 
are computer representations of numerical values. 
A floating-point number can be represented in 
more- or less-precise formats, similar to how one 
can round a decimal number to a certain number 
of digits. Switching to lower-precision formats 
can lead to large jumps in compute output (more 
here). Most recent models were trained in 16-bit 
precision, but a switch to 8-bit training is likely to 
happen soon, with some companies, such as Deep-
Seek and Nvidia, having already trained models at 
least partially in 8-bit precision.25

24  PUE for modern AI data centers range from 1.1 to 1.3. Source: SemiAnalysis 
25 DeepSeek’s technical report and a subsequent paper documented their use of “mixed-precision” (using a mix of 8-bit and 16-bit precision,)in training 

DeepSeek-V3. Nvidia also recently trained a model in FP8 (8-bit) format.
26 Based on 33% annual growth due to chip improvements, plus an additional doubling over five years due to lower-precision training. 1.33 * 2^(1/5) = 1.52
27 Models that were state-of-the-art, highly cited, widely used, or historically significant. See here for more details.

https://epoch.ai/data-insights/training-length-trend
https://epoch.ai/data-insights/training-compute-decomposition
https://epoch.ai/blog/estimating-training-compute
https://epoch.ai/data/machine-learning-hardware#fp32-to-int8
https://semianalysis.com/2024/03/13/ai-datacenter-energy-dilemma-race/
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2505.09343
https://research.nvidia.com/labs/adlr/nemotronh/
https://epoch.ai/data/ai-models#training-time-growth
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However, this is just a theoretical upper limit, and there are 
strong incentives for even shorter training runs so develop-
ers stay ahead of their competitors. AI companies such as 
Meta and Google reportedly feel great urgency to not fall 
behind OpenAI, and have released new models every couple 
of months to keep up.29 The extrapolative model used here 
uses growth rates of 10% and 20% per year over the next 
five years as reference scenarios. A 15% growth rate over 
five years would lead to training runs of 200 days by 2030. 

As noted previously, training duration and training compute 
are not causally independent. At the high end of our power 
growth forecast, a reduction in training duration growth to 
10% fails to reduce overall training compute growth and 
causes an uptick in the annual rate of power growth. But it is 
debatable whether maintaining 4x/year compute growth in 
this scenario is a likely outcome. In the other scenario where 
durations grow at 20% per year, this slowdown in duration 
growth is less likely to put the 4x growth rate in doubt.30

Many recent frontier models were trained using training 
runs that lasted close to 100 days. For example, GPT-4 was 
reportedly trained for between 90 and 100 days, Meta 
trained Llama 405B over 90 days, and xAI may have trained 
Grok-3 for around 120 days.28 Among recent large-scale 
models, the longest disclosed training run was for Falcon-
180B, at 180 days.

However, training durations cannot grow forever, especially 
at a rate of 25–50% per year, due to the rapid pace of in-
novation and competitive pressures.

Sevilla et al. (2022) found that training runs should not last 
longer than 14–15 months, because the rate of AI hardware 
and algorithm improvements means that a training run that 
lasts longer than 15 months will be outcompeted by a train-
ing run that starts later but ends at the same time. Starting 
from a baseline of 100-day training run durations, a 26% 
annual growth rate will lead to 400-day training runs in six 
years, approaching 14 months.

Figure 7. Trend in the growth rate of training run durations for notable models. More information here. Graph prepared by 
Epoch AI.

28 xAI’s Memphis cluster was online by September 2, 2023 and Grok-3 finished pretraining in early January.
29 These include but are not limited to: Claude 3 (March ‘24), GPT-4o (May ‘24), Claude 3.5 (June ‘24), o1-preview (Sept. ‘24), o1 (Dec, ‘24), DeepSeek-

R1 (Jan. ‘25), and Grok-3 and GPT-4.5 (Feb. ‘25).
30 Among all of the notable models in the Epoch AI data, training compute has grown at 4.6x per year, slightly faster than the growth rate of the largest 

training runs, while training run durations have grown at 1.26x per year, as previously noted.

https://www.theverge.com/2025/1/14/24343692/meta-lawsuit-copyright-lawsuit-llama-libgen
https://www.nytimes.com/2023/12/05/technology/ai-chatgpt-google-meta.html
https://semianalysis.com/2023/07/10/gpt-4-architecture-infrastructure/
https://epoch.ai/blog/the-longest-training-run
https://x.com/elonmusk/status/1830650370336473253
https://x.com/elonmusk/status/1875357350393246114
https://epoch.ai/data/ai-models#training-time-growth
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Figure 8. Forecast for the peak power demand required to train the largest frontier models, with historic frontier AI power 
growth and historic training runs highlighted for context. Shaded interval represents the 10th and 90th percentiles of a 
Monte Carlo estimate of growth rates, given uncertainty over the hardware efficiency and training duration trends. Historic 
baseline represents a more conservative forecast if compute scaling continues but compute growth slows due to duration 
limits. Dashed red lines provide context for the projected power growth, showing plans for large-scale AI training 
infrastructure and other large power draws. Graph prepared by Epoch AI.

This figure highlights projections from two methods:

Training compute-based forecast: Forecasted power 
demand growth is based on the training compute of AI 
models, as explained in Section 1.3. The forecast assumes 
training compute growth continues at a rate of 4.2x/year, 
with a confidence interval of 3.6x to 4.9x, hardware effi-
ciency improves at a rate of between 33% and 52% per year 
(combining projected hardware improvements with gains 
from a shift to lower numeric precision), and training run 
durations increase by between 10% and 20% annually. Next, 
a Monte Carlo forecast is used to randomly sample from the 
uncertainty intervals of these three growth rates, convert-
ing them into an overall forecast. This produces a mainline 
estimate of 2.6x growth per year, and an uncertainty range 
(10th to 90th percentiles) of between 2.2x and 2.9x.32

1.4 Forecasting Growth in Frontier  
Model Training Power Demand 
Through 2030
Consolidating the analysis herein of training compute 
growth, hardware efficiency improvements, and training 
duration growth generates future scenarios for frontier 
model power demand. 

Figure 8 illustrates this forecast through 2030, projecting 
forward from the historic trend in the peak power draw of 
the largest training runs.31 The forecast shows that power 
demand for the largest training runs will likely grow at a 
rate between 2.2x and 2.9x per year from a baseline of 
around 100 MW in early 2025, which would imply 1–2 GW 
by 2028, and 4–16 GW by 2030 (though growth rates in the 
higher end of the range are less likely to be achievable). 

31 The trendline is a regression of the running Top 5 AI models by training compute for which there is sufficient data to estimate power draw but ad-
justed upwards to simulate the trend in the top training runs over time. See Appendix C for more details.  

32 See Appendix C for more details.
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has reportedly also built distributed training clusters spread 
across distances of 15 to 50 miles. The distances between 
data centers in a distributed cluster would affect which 
infrastructure bottlenecks can be bypassed (site-level grid 
connection, utility, grid region, etc.). There are also multiple 
efforts to train AI models using highly distributed comput-
ers located around the world, but at a much smaller scale 
than frontier models. 

Since distributed training appears to be possible, this raises 
the question of when it will become the norm and why 
there are any plans for very large individual data centers. 
This could be because the sites with adequate grid connec-
tions and infrastructure have not yet been fully exhausted. 
Distributed training also involves technical and engineering 
challenges: latency becomes more significant as distances 
between data centers grow, which reduces training ef-
ficiency, and the data centers need to be connected with 
extensive fiber optic buildouts.

Geographic distribution is a key uncertainty in understand-
ing AI’s local power impacts. It could also be necessary 
for continued scaling of very large training runs. Acquiring 
more than a few gigawatts in one site may be extremely dif-
ficult, but this is more feasible if spread across a larger area. 
But the high and growing cost of the AI chips themselves 
means that distributed training by itself is not enough to 
enable indefinite scaling.

1.4.2 Understanding Limitations of This 
Forecast 
There are several limitations of this forecast, including:

• The use of historic data on published AI models to 
establish the current trend. Because the start dates of 
training runs are generally not public information, the 
data lag the beginning of current training runs by at 
least several months. 

• Future uncertainty intervals based on uncertainty 
observed from historic data. The uncertainty interval 
shown in Figure 8 comes from the uncertainty on the 
overall growth rate among frontier training runs. It is 
possible that some training runs will lie outside the 

The main reason this forecast generally predicts higher 
growth than the historic trend is our assumption that 
growth in the durations of training runs will slow. One 
major uncertainty with this forecast is that changes in dura-
tion growth trends could have a knock-on effect of slowing 
down compute growth. 

Historic baseline: The lower line is a projection of the his-
toric baseline. This forecast abstracts away from questions 
about the trends that underpin training compute, instead 
predicting that the general motivation to pursue scaling will 
lead to a continuation of the trend observed since 2018 in 
the scaling of training clusters. This baseline forecast is also 
roughly consistent with estimates of power growth based 
on trends in AI supercomputers (See Appendix D).

To provide context, we also show in Figure 8 the scale of 
known plans for very large AI data centers. Appendix A 
provides a more extensive list of planned large-scale AI data 
centers. The prediction of multi-gigawatt-scale training runs 
by 2030 appears credible, given these plans. 

1.4.1 Geographically Distributed Training 
Could Mitigate Local Power Constraints
Historically, training runs have been located in individual 
data centers, and the plans of several companies to con-
struct very large individual data center campuses of 1 GW 
or more (see Appendix A) supports the projected compute 
growth. However, a shift to geographically distributed 
training could affect the growth of very large-scale localized 
power demands for training runs.

Training an AI model across large distances is technically 
complicated, but it appears to be feasible. An AI model 
needs to be updated frequently throughout training, so 
distributed training would require frequent communication 
between data centers to synchronize a shared set of model 
weights. In principle, network latencies are low enough that 
it is possible to synchronize between data centers that are 
thousands of miles apart. 

Large-scale multi-data center training is already practiced 
today. Google DeepMind trained its Gemini models across 
multiple data centers in separate metro areas. However, it 
is not clear how far apart these metro areas were.33 Google 

33 From the Gemini 1.5 technical report (Georgiev et al.): “Gemini 1.5 models are trained on multiple 4096-chip pods of Google’s TPUv4 accelerators, 
distributed across multiple datacenters.” In a recent podcast, Gemini lead Jeff Dean clarified that this training run was distributed across multiple 
metro areas.

https://semianalysis.com/2024/09/04/multi-datacenter-training-openais/#how-openai-and-microsoft-plan-to-beat-google
https://importai.substack.com/p/import-ai-413-40b-distributed-training
https://www.transformernews.ai/p/decentralized-training-policy-implications
https://epoch.ai/blog/can-ai-scaling-continue-through-2030#feasibility-of-geographically-distributed-training
https://epoch.ai/blog/can-ai-scaling-continue-through-2030#feasibility-of-geographically-distributed-training
https://arxiv.org/abs/2403.05530
https://www.youtube.com/watch?v=v0gjI__RyCY&t=3758s
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There is not a one-to-one relationship between AI data 
centers and AI training runs. Frontier training is already 
motivating large, dedicated AI data centers such as xAI’s 
Colossus. But a training run may not occupy the entire data 
center where it takes place, and companies may end up 
building oversized data centers due to the option value. 
For example, Amazon and Anthropic’s planned 2 GW data 
center campus will reportedly be able to support a single, 
massive, training run, but Amazon may use it for other 
workloads such as training smaller models or inference if 
training runs at this scale prove unnecessary or as hardware 
at the campus becomes dated.

In addition, while a given training run only lasts for a certain 
number of months, the power demand from large AI com-
pute clusters will be relatively continuous. Training clusters 
can be repurposed for other workloads, and they are not 
likely to sit idle due to their high capital costs. 

In terms of overall power demand from AI training, the 
analysis so far has focused on the power demand of the 
largest individual training runs. However,there may be 
multiple frontier training runs of a similar scale at different 
facilities in a given year, in addition to demand from smaller 
training runs. Section 2 broadens the analysis to consider 
overall demand from AI data centers.

uncertainty range shown on the figure. But if rapid 
exponential growth in power demand continues, the 
shape of the trendline will be more important than the 
variation in individual data points. 

• Not explicitly accounting for supply constraints on 
delivering power. Multiple AI supercomputers larger 
than 1 GW are planned for the coming years. It is not 
clear if 10 GW training runs are feasible by 2030 if AI 
companies wish to pursue them, even with geographi-
cally distributed training.

Forecasts based on extrapolating trends are inherently less 
certain over time, even given our analysis demonstrating 
their durability. All scenarios imply extreme high power 
demands by 2030; the highest end projection for a single 
training cluster is over half the average power consumption 
of all U.S. data centers in 2023, and over 1% of total U.S. 
power generation capacity.34 

1.4.3 Implications of this Forecast for  
Training Data Center Power Demand
The forecast above is for power demand for individual AI 
training runs. Here we review the implications from the 
perspective of the power demand for AI training data cen-
ters, which is of special interest to the energy sector due to 
their large, localized power requirements.

34 U.S. data centers consumed 176 terawatt-hours (TWh) in 2023, which is around 20 GW of average consumption over one year. Note that the projec-
tions of training power draw are of power capacity, not average consumption. Total U.S. generation capacity is around 1,300 GW.

http://www.nytimes.com/2025/06/24/technology/amazon-ai-data-centers.html
http://www.nytimes.com/2025/06/24/technology/amazon-ai-data-centers.html
http://www.nytimes.com/2025/06/24/technology/amazon-ai-data-centers.html
https://www.eei.org/en/resources-and-media/industry-data
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for the limited time frame of chip shipments tracked, 2022 
to mid-2024. The total installed AI computing power has 
doubled about every 10 months in recent years, so a simple 
extrapolation of the 6 GW figure to 2025 would suggest 
around 9 GW, fairly close to RAND’s 10.7 GW estimate.

Importantly, both of these estimates are based on global 
data. The exact proportion that is located in the United 
States is not clear, but there are several indicators that the 
United States contains the plurality of AI power capacity if 
not the majority:

• Pilz et al. collected a dataset on AI supercomputers 
(i.e., public information on large AI clusters and data 
centers) finding that the United States contained 75% 
of the total, weighted by compute performance.37 

• The IEA estimated that 45% of all data center energy 
consumption worldwide was in the United States.38  
The share of AI data centers in the United States is 
likely even higher, since most of the leading AI develop-
ers and hyperscalers are headquartered in the country, 

• The United States has enacted multiple rounds of export 
controls to restrict China’s access to leading AI chips. 

For the purposes of forecasting for this report, a global 
estimate of 10 GW of current AI computing capacity will be 
assumed for 2025 with 5 GW located in the U.S. 

2.2 How Quickly will Total AI Power 
Capacity Needs Grow?
AI power demand growth can be estimated via several ap-
proaches including, utilizing projections of AI chip produc-
tion, examining investment plans by leading AI companies, 
or relying on assessments by data center and power indus-
try specialists. Assuming 10 GW of global AI power demand 
today, several approaches yield annual growth rates of 
60–70% through 2030, resulting in over 100 GW in global AI 
power capacity by 2030. Assuming 50% of this capacity is 
located in the United States, that implies U.S. AI capacity of 
over 50 GW by 2030 (see Figure 9 for pathways and Table 1 
for the underlying assumptions). 

2. TRENDS IN TOTAL AI POWER 
DEMAND
Having looked at trends and projections in the power de-
mand of individual training runs, Section 2 turns to discuss-
ing power trends in the overall U.S. AI industry in order 
to examine AI’s overall power demand (which is a subset 
of overall data center power demand) and to put predic-
tions of large-scale individual training runs into context. In 
addition, in the event that AI training runs become highly 
decentralized geographically, the scale of individual train-
ing clusters will be less significant, leaving overall power 
demand as the key question.

2.1 Current Level of AI Power Demand
The current state and growth trend in overall AI power 
demand can be estimated by using data on operating and 
planned AI data centers or, alternatively, using historic pro-
jected future shipments of computing hardware.

Based on an analysis of industry data, RAND (2025) es-
timates that that the accelerated servers capable of AI 
workloads made up 15% of electricity consumed by data 
centers globally in 2024. The International Energy Agency, 
which used chip shipment data, arrived at a similar find-
ing—that AI data centers made up 15% of data center en-
ergy consumption globally. RAND went on to say that total 
data center consumption was 415 TWh, which represents 
an average hourly consumption of 47 GW; 15% of this—
which represents AI workloads—is therefore 7 GW, which 
implies and IT demand of around 10 GW (assuming 70% 
utilization). RAND separately estimates total power capacity, 
at 10.7 GW as of the beginning of 2025. 

Epoch AI also has made an estimate of AI capacity based 
on the total quantity of AI chips.35 As of mid-2024, the total 
stocks of Nvidia GPUs and Google TPUs, which make up the 
vast majority of all AI chips, were estimated to provide the 
equivalent of around 4 million H100ss in computing power, 
which draw about 1500 W of capacity each.36 This suggests a 
corresponding AI data center power capacity of around 6 GW 

35 Note that while “AI chips” are widely used for training or running LLMs and other forms of generative AI, some may also be used for other applications 
such as scientific computing or social media algorithms. Conversely, some AI inference runs on CPUs.

36 This data is based on sales dating back to 2022 and includes some older, less efficient chips, which would increase the power capacity estimate. How-
ever, the large majority are H100s or similarly efficient Google TPUs, so any such effect should be small.

37 Pilz et al. data is based on public information and includes only large AI clusters, so their coverage of overall AI compute may be limited, especially in 
China.

38 IEA (2025), Energy and AI, https://www.iea.org/reports/energy-and-ai, p.14.

https://arxiv.org/abs/2504.16026
https://www.bis.gov/press-release/biden-harris-administration-announces-regulatory-framework-responsible-diffusion
https://www.rand.org/pubs/research_reports/RRA3572-1.html
https://www.iea.org/reports/energy-and-ai/energy-demand-from-ai
https://epoch.ai/data-insights/computing-capacity
https://epoch.ai/data-insights/computing-capacity
https://www.cnbc.com/2024/06/02/nvidia-dominates-the-ai-chip-market-but-theres-rising-competition-.html
https://epoch.ai/data-insights/nvidia-chip-production
https://www.iea.org/reports/energy-and-ai


20   |  EPRI White Paper   Scaling Intelligence: The Exponential Growth of AI’s Power Needs  August 2025

Figure 9. Projections of growth in total U.S. AI data center capacity based on several estimates or extrapolations from 
current trends, assuming the United States maintains a 50% share of worldwide AI capacity. There is significant uncertainty 
in both the current baseline and estimated growth rates. Graph prepared by Epoch AI.
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Table 1. Assumptions underlying AI power demand growth rates 

Alternative strategies for projecting AI data center power demand

Approach Annual growth rate AI capacity projection for 2030 

Recent trend in installed AI compute
The total power requirements in installed Nvidia compute 
is growing at a rate of 2.3x per year. Adjusting by 1.4x/year 
efficiency improvements yields a power growth rate of 
around 1.64x per year.39 

64% 120 GW worldwide  
60 GW U.S. 

Estimates of aggressive AI chip production scale-up
Sevilla et al. 2024 estimate that annual AI chip production 
could grow by up to 70%/year.40 RAND used this growth 
rate to project the overall growth in AI power demand.

70% 140 GW worldwide  
70 GW U.S 

Hyperscaler capex, assuming 2025 growth rate persists 
Bloomberg reports that hyperscalers will invest up to $371 
billion in AI data centers in 2025, up 44% from 2024. This is 
corroborated by the four largest hyperscalers—Microsoft, 
Meta, Alphabet, and Amazon—planning over $320 billion 
in combined capex for 2025 (CNBC), up 40% vs. $230 billion 
in 2024, with most spending going towards AI.41 It is 
uncertain whether U.S. hyperscalers will maintain this level 
of growth. 
Note that power draw per dollar invested in AI should stay 
similar over time.42 Therefore, asf hyperscalers grow AI 
capex by 40%/year, total AI capacity will grow at 40%/
year.43 Actual growth may be lower due to the cost to 
replace retired AI chips.

40% 100 GW worldwide44 
50 GW U.S.

Hyperscaler capex, Bloomberg Intelligence projected 
growth rate
Bloomberg Intelligence forecasts that AI capex will grow 
from $371 billion in 2025 to $525 billion in 2032, or a 5% 
annual growth rate. This is based on proprietary estimates 
and is more modest than extrapolating recent growth.
Assuming power per dollar stays the same, this investment 
can support 10 GW of capacity per year (see previous row), 
ramping up to ~13 GW by 2030.

5% 60 GW worldwide
30 GW U.S.

 

39 In practice, efficiency gains happen with each generation, not every year. Recent GPU generations have occurred every two years, so the approximation 
should be close.

40 Specifically, GPU production could increase by 30% to 100% per year, with 70% as a medium case. This is a model of production capacity, and actual 
growth will also depend on demand.

41  Microsoft will invest $80 billion in AI data centers in fiscal year 2025 (through June), Meta is planning $60–65 billion in total capex which will mostly 
go to AI data centers, and Alphabet and Amazon will invest $75 billion and $100 billion in total capex, respectively. Microsoft has confirmed $80 billion 
in AI capex; the majority of the capex from the other three will be AI-related, but the exact proportion is unclear.

42   While AI chips are becoming more energy efficient in terms of compute power per watt, they are also becoming more efficient in compute power per 
dollar. These are growing at similar rates (40% and 30% respectively), so they roughly cancel out, and power draw per dollar will stay similar over time.

43   However, this underestimates short-run growth, because $371 billion could fund up to 10 GW of additional capacity, compared to 10 GW in exist-
ing capacity.$371 billion in AI capital investment could buy around 10 GW in AI capacity: 50% of AI capex goes to chips; B200 GPUs cost $30,000 to 
$40,000 each and draw close to 2000 W in power. So $371 billion in AI capital investment could mean ~$200 billion going to ~5 million B200s, requir-
ing 10 GW of power. However, total AI power capacity probably will not double in the next year: there is a time lag between 2025 investments and 
data centers coming online. Also, the existing 10 GW of operating capacity does not fully reflect the rapid increase in AI data center investments over 
the past couple of years that will soon be coming online. 

44   Calculated using a baseline of 10 GW, and an additional 10 * 1.4 = 14 GW in new capacity in 2025, and so on through the end of 2029.

https://epoch.ai/data-insights/nvidia-chip-production
https://epoch.ai/blog/can-ai-scaling-continue-through-2030#chip-manufacturing-capacity
https://www.rand.org/pubs/research_reports/RRA3572-1.html
https://www.bloomberg.com/news/articles/2025-03-17/tech-giants-expected-to-ramp-up-ai-spending-spree-after-deepseek?srnd=phx-ai
https://www.cnbc.com/2025/02/08/tech-megacaps-to-spend-more-than-300-billion-in-2025-to-win-in-ai.html
https://www.datacenterdynamics.com/en/news/microsoft-cancels-up-to-2gw-of-data-center-projects-says-td-cowen/
https://www.cnbc.com/2025/03/26/the-concern-with-coreweaves-250000-nvidia-chips-ahead-of-its-ipo.html
https://www.cnbc.com/2025/01/03/microsoft-expects-to-spend-80-billion-on-ai-data-centers-in-fy-2025.html
https://www.nytimes.com/2025/01/24/technology/meta-data-center.html
https://www.cnbc.com/2025/02/08/tech-megacaps-to-spend-more-than-300-billion-in-2025-to-win-in-ai.html
https://epoch.ai/data-insights/ml-hardware-energy-efficiency
https://epoch.ai/data-insights/price-performance-hardware
https://pytorchtoatoms.substack.com/p/metas-24k-h100-cluster-capextco-and
https://www.techpowerup.com/322498/nvidia-blackwell-gb200-superchip-to-cost-up-to-70-000-us-dollars
https://semianalysis.com/2024/04/10/nvidia-blackwell-perf-tco-analysis/#specifications-%e2%80%93-more-than-meets-the-eye
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It’s important to note that these individual projections 
are not robust evidence about future growth, especially 
towards the end of the decade, since they require high 
growth rates in AI investments. However, it appears that, 
if trends continue, AI will be a significant part of the U.S. 
energy sector by 2030. A more conservative assumption of 
linear power capacity increases, rather than compounding 
growth over time, still implies multiple gigawatts of addi-
tional AI capacity per year in the United States.

2.3 How Will AI Power Capacity be  
Allocated?
Given an estimate of current (10 GW) and future (50 GW) 
power demand for the U.S. AI industry, how might this 
power demand be distributed across various AI tasks? An-
swering this question puts earlier forecasts (see Section 1.4) 
of the largest individual training runs in context. It also has 
implications for how power demand will be concentrated 

Another approach would be to estimate broader data cen-
ter growth in the United States as a proxy for growth in AI 
data centers. One downside is that not all new data center 
capacity would go towards AI.

We review several selected estimates in Table 2. These 
projections, based on overall data center growth, lead to 
estimates of 45–90 GW of total data center capacity (AI and 
non-AI) in the United States by 2030. On the high end, this 
would more than double U.S. data center capacity, implying 
a roughly 50 GW increase. 

The AI-focused growth rates imply that data center power 
demand in the United States could increase by tens of 
gigawatts by 2030, perhaps by roughly 50 GW, which would 
be significant compared to the United States’ total genera-
tion capacity of 1300 GW. Projections of overall data center 
growth are not much higher, suggesting that AI data centers 
are likely the dominant drivers of overall growth.45

Table 2. Assumptions underlying total data center growth 

Projections of total data center growth (AI and non-AI)

Approach Annual growth Projection 

Recent power growth projections in U.S. data center hubs
Sevilla et al. start from a baseline of 40 GW total data 
center capacity in the United States. Using utility company 
and analyst projections of 15% as aggressive scenarios for 
annual growth, this leads to a 50 GW increase in total 
capacity. 

15% 90 GW total U.S. data centers, 
or an increase of 50 GW by 2030

Semiconductor shipment projections (December 2024)
Berkeley Lab estimated that all U.S. data centers (AI and 
non-AI) will consume around 6.7–12% of U.S. electricity in 
2028, compared to 4.4% in 2023. This corresponds to 
45–90 GW of installed power capacity. 

13–27% 74—132 GW in 2028

EPRI’s forecasts of data center growth (May 2024)
Starting from a baseline of current U.S. data centers, EPRI 
projected up to 15% annual growth. Data centers could 
consume up to 9.1% of total U.S. electricity by 2030, up 
from 4% today. Since this includes non-AI data centers, the 
growth coming from AI data centers will presumably 
consume under 5% of U.S. electricity. 

Up to 15% Up to ~70 GW of total  
U.S. data center capacity

Forecasts from the International Energy Agency (IEA)
The IEA forecasts that electricity from global data centers 
will double by 2030, implying a growth rate of around 15% 
per year. They additionally estimate that demand from 
AI-optimized data centers could quadruple over this time 
period. 

15% (global data centers) 60 GW worldwide
30 GW U.S.

45 With the rapid pace of change in data centers, it is important to recognize when projections were released. For example, the EPRI projections were 
released before 2024 and 2025 evidence on AI uptake by customers and investments in infrastructure.

https://www.eei.org/en/resources-and-media/industry-data
https://epoch.ai/blog/can-ai-scaling-continue-through-2030#modeling-energy-bottlenecks
https://newscenter.lbl.gov/2025/01/15/berkeley-lab-report-evaluates-increase-in-electricity-demand-from-data-centers/
https://www.epri.com/research/products/000000003002028905
https://www.iea.org/news/ai-is-set-to-drive-surging-electricity-demand-from-data-centres-while-offering-the-potential-to-transform-how-the-energy-sector-works
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book AI (Wu et al.) noted an AI power capacity breakdown of 
10/20/70 between experiments, training, and inference (that 
is, inference is over 3x training). Inference demand exceeded 
training demand for both companies, with a much higher 
ratio for Facebook. However, this may be before Facebook 
(now Meta) began pursuing very large-scale LLMs.46 

The bottom line is that the power demands for training and 
inference are unclear as the industry races towards 2030. 
The split will likely differ by company and how AI is integrat-
ed into their products. For some domain-specific AI systems, 
which are based upon relatively stable information sources, 
inference could dominate. For others, that reflect continu-
ally changing information, training will be an ongoing effort.

2.3.1 How Might the Training and Inference 
Split Evolve?
According to a theoretical analysis by Erdil (2024), the 
amount of compute allocated to training and inference 
should be roughly similar because investments in train-
ing compute can enhance inference, and vice versa. This 
doesn’t prove that training and inference demand should 
be split 50/50, but the broader argument cuts against a ma-
jor shift in the near term. Development and adoption of AI 
applications and inference-heavy innovations like reasoning 
models, introduced in Section 1.2.3, could cause a surge in 
demand for inference and shift the compute allocation to-
wards inference. However, this effect could be mitigated by 
the fact that higher AI demand will motivate more invest-
ment into training to develop even more capable models or 
to make inference more cost-efficient.

One important factor is whether training compute scaling 
hits limits while usage continues to grow. In the current 
regime of rapid growth, training runs for next-generation 
models tend to be much larger than for current-generation 
models. If training growth slows, then demand for training 
will presumably shrink relative to inference compute.

The scale of frontier training runs also has implications for 
how AI power capacity is allocated. Realistically, there will 
be multiple competing large training runs (at up to 5 GW 
each) at any given time in addition to training demand for 
many smaller models.47 Therefore, projections of individual 
multi-gigawatt training runs imply that training will retain a 
substantial share of overall AI power demand.

into specific locations because AI inference does not require 
large, networked clusters. If training becomes sufficiently 
geographically distributed, this would reduce the need for 
large, localized power demands, even if training retains a 
high share of overall capacity.

Moreover, a shift towards inference may have implications for 
how flexible AI data centers are in terms of real-time power 
draw. One Department of Energy report found that LLM 
inference could support more real-time flexibility than train-
ing, stating “LLM inference (i.e., creating responses to user 
requests) is amenable to real-time, geographic distribution of 
individual queries according to local grid load and renewables 
penetration, with limited negative impacts for user experi-
ence when response latency is not critical.” This flexibility 
could reduce the burden that data centers put on electric 
grids and potentially unlock more data center capacity.

There are three main use cases for compute within the AI 
industry: training AI models, inference to deploy models, 
and research experiments to improve future models. Com-
pute is split between multiple companies and use cases, 
so the largest individual training runs use a small fraction 
of total AI compute. The largest known training clusters, 
such as xAI’s, contain around 100,000 to 200,000 leading AI 
chips, compared to the millions of AI chips in existence. Un-
less the structure of the AI industry changes dramatically, 
this means that if individual frontier training runs reach a 
multi-gigawatt scale, the AI industry will require at least 
tens of gigawatts in total capacity.

There is some public evidence suggesting that training and 
inference use similar amounts of compute at leading AI 
developers. Per one report, OpenAI’s projected compute 
spending in 2024 consisted of $3 billion to train models,  
$2 billion for inference, and $1 billion on “research com-
pute amortization.” Excluding research, OpenAI’s compute 
was split 60/40 between training and inference. Research 
compute is significant, but the amortization makes the 
actual amount unclear. 

Google and Facebook also disclosed how they allocate power 
or energy for AI, but these reports are relatively outdated. In 
2022, Patterson et al. noted that at Google, energy used for 
machine learning over the past three years was split 60/40 
between inference and training. A 2022 paper from Face-

46 A visualization of large-scale AI models grouped by company is available at https://epoch.ai/data/large-scale-ai-models
47 For example, Cottier et al. forecast that total training compute for all models could be around 5x greater than training compute for the largest single 

training run in 2030.

https://arxiv.org/abs/2111.00364
https://epoch.ai/blog/optimally-allocating-compute-between-inference-and-training
https://docs.google.com/document/d/1oRKmAKy1pyh0requ4fQ33z7Q6LoDk0MDRJp1dQNlZFI/edit?tab=t.0#heading=h.50vanr6ff4zw
https://www.energy.gov/sites/default/files/2024-08/Powering%20AI%20and%20Data%20Center%20Infrastructure%20Recommendations%20July%202024.pdf
https://www.canarymedia.com/articles/utilities/one-way-data-centers-can-help-the-grid-by-being-flexible
https://www.theinformation.com/articles/openai-projections-imply-losses-tripling-to-14-billion-in-2026
https://arxiv.org/abs/2204.05149
https://epoch.ai/data/large-scale-ai-models
https://epoch.ai/blog/model-counts-compute-thresholds
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There are also broader societal implications. If AI demand 
hits supply constraints for power, policies to unlock energy 
growth may be needed to enable continued growth, which 
may disrupt traditional planning processes and have envi-
ronmental consequences. Power growth also poses chal-
lenges for tech companies that have already committed to 
using clean energy.

The analysis suggests that power demand will continue its 
rapid growth in the near term, likely reaching gigawatt-scale 
training runs by 2028. Beyond this, continued scaling is less 
certain. Further growth will depend on investment trends 
and available power capacity, with important consequences 
for both the U.S. energy sector, economy, and society.

3. CONCLUSION
The power required for the largest frontier AI training runs 
will likely grow 2.2x to 2.9x annually, potentially reaching 
1–2 GW by 2028 and 4–16 GW by 2030. This demand would 
be highly significant, with the high end for a single model 
approaching 1% of total U.S. power capacity. Total power de-
mand for AI in the United States, including training for mul-
tiple companies as well as inference, could exceed 50 GW.

It is unclear whether this demand can actually be met. 
While hyperscaler investments suggest rapid growth in 
power demand will continue in the near term, constraints 
in building generation capacity and transmission lines 
could limit this growth. Advancements in multi-data center 
training may help distribute power usage geographically, 
potentially easing these constraints.

https://ifp.org/future-of-ai-compute/
https://ifp.org/future-of-ai-compute/
https://www.bloomberg.com/news/articles/2024-07-02/google-s-emissions-shot-up-48-over-five-years-due-to-ai
https://www.eei.org/en/resources-and-media/industry-data
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by 2030. This would be consistent with a short-term ac-
celeration from the historic trend of training power demand 
doubling every year with a possible slowdown after 2027. 
Early phases of some of these sites are operational or under 
construction; other sites are still in early planning.

Note that there is not a one-to-one relationship between 
data centers and training runs; training can be geographi-
cally distributed across multiple data centers, and a single 
data center can be used for multiple workloads. There is 
also a delay between the data center becoming active and 
the public release of the first model trained there.

This appendix reviews hyperscalers’ and AI developers’ 
plans to scale up their data centers and training clusters, 
providing independent evidence of power scaling that sup-
ports the trends-based forecast in Sections 1 and 2 above. 

Table 3 provides a select, non-comprehensive list of 
planned AI data centers highlighting the largest-scale con-
crete plans today. For more comprehensive information on 
both planned and existing large-scale AI data centers and 
clusters, see the AI supercomputers hub from Epoch AI. 

These company plans suggest that AI data centers could 
reach or exceed 1 GW in 2026–2027 and grow to 2–5 GW 

Appendix A: Planned Large-Scale Data Centers and Training Clusters

RESOURCES

“frontier models” are sometimes provisionally defined as 
those that were in the Top 10 in training compute when 
they were released, but this is not a universal definition.

Hyperscaler: Informal term for the small number of com-
panies that own and operate compute at very large scales, 
such as Microsoft, Meta, Amazon, and Google. Most AI de-
velopers access compute through a hyperscaler, but some 
such as xAI are acquiring large-scale compute of their own.

Large language model (LLM): Large AI models that are 
trained on massive amounts of language data and capable 
of generating natural language text or computer code, 
though many LLMs have vision and audio capabilities 
(known as “multimodality”). There is no universal threshold 
for “large,” but most modern language models used for 
chatbots or other generative tasks are considered LLMs. 
Within the AI industry, LLMs have received the most  
compute investment beginning around 2020.

Thermal design power (TDP): A computer processor’s 
power rating and technically, the amount of heat that a 
chip’s cooling system is designed to manage. TDP is not 
necessarily equal to peak power consumption, which can 
be higher, but it is a proxy for a chip’s maximum sustainable 
power consumption when run at high capacity (e.g. when 
training an AI model). 

Compute: Shorthand for computation. Note that in common 
usage “compute” can sometimes mean either a quantity (i.e. 
a total number of computations) or a rate (how many com-
putations can be performed per second). This report gener-
ally uses compute to refer to compute quantities.

Floating point operation (FLOP): Compute is often measured 
in terms of floating-point operations (FLOP), which are basic 
math operations performed by computers. Floating-point 
is a way to represent decimal numbers in a computer. The 
acronym “FLOPS” is sometimes used to refer to floating-point 
operations per second, which can be a source of confu-
sion because FLOPS can easily be misread to simply mean 
“floating-point operations” (in the plural). To prevent this 
ambiguity, this report uses “FLOP” to mean “floating-point 
operations,, and “FLOP/s” to mean floating-point operations 
per second.

AI model: The key components of AI systems; in modern 
AI systems, AI models are usually composed of very large 
neural networks. AI models are trained using large datasets 
to accomplish tasks such as generating text and describing 
or generating images, video, and audio.

Frontier model: A term commonly used to describe in-
dustry-leading AI models in terms of amount of training 
compute or in terms of capabilities. In Epoch AI’s research, 

Glossary

https://epoch.ai/data/ai-supercomputers?view=map
https://epoch.ai/blog/training-compute-of-frontier-ai-models-grows-by-4-5x-per-year#language-models-caught-up-to-the-frontier-around-2020
https://epoch.ai/blog/trends-in-machine-learning-hardware#thermal-design-power-tdp
https://epoch.ai/blog/training-compute-of-frontier-ai-models-grows-by-4-5x-per-year#appendix-2-top-n-frontier-sensitivity-analysis
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Table 3. Examples of Large AI Datacenters in Operation, Construction or Planning

Frontier 
Model 

Company Data Center
Peak Power 
Capacity Timeline 

xAI Colossus Memphis Phase 2 
xAI expanded their Memphis data center to 200,000 Hopper GPUs, 
up from the 100,000 used to train their Grok-3 model. Phase 2 was 
reportedly operational with a capacity of 300 MW as of May 2025. 

300 MW Operational as of May 
2025

xAI GW-scale Memphis data center
xAI is planning a separate gigawatt-scale data center, containing 
one million Nvidia chips. 

>1 GW Unknown

Anthropic Project Rainier
Amazon–Anthropic collaboration on an Indiana data center 
campus, initially with 400,000 Amazon Trainium 2 chips. This will 
eventually expand to 2.2 GW, with an unspecified timeline.

450 MW (initial 
phase) to 2.2 
GW

2025 for initial 450 MW 
phase

5 GW distributed cluster
Anthropic recently predicted that by 2027, frontier training runs 
would require networked (distributed) training clusters drawing 5 
GW, but did not provide a concrete plan for building such a cluster. 
This would be much faster than the historical trend. 

5 GW 
(distributed)

2027

Meta Hyperion
Meta is planning a $10 billion, 2+ GW data center in Louisiana to 
be supported by three new gas plants. Construction is planned 
through 2030.

2+ GW  
(up to 5 GW)

1.5 GW by the end of 
2027

2 GW by 2030, with 
unclear timeline for 5 GW

OpenAI Stargate Abilene (w/ Oracle)
Planned 1.2-GW data center campus in Abilene, Texas that will be 
part of OpenAI’s broader “Stargate” project. 

1.2 GW 2025: initial 200 MW 
phase

2026: 1.2 GW.
UAE Stargate
OpenAI announced a 1-GW cluster in the United Arab Emirates 
with 200 MW expected to come online by 2026. This may 
eventually expand to a 5 GW campus. (Note: this is the only 
non-US project on this list) 

1-5 GW Initial 200 MW by 2026.

Unknown timeline for full 
1-5 GW.

Wisconsin (w/ Microsoft)
Microsoft is planning a Wisconsin data center campus for OpenAI 
with a capacity of 1.5 GW by 2027, according to an industry 
analyst. This project will tentatively open in 2026. [In January 
2025, Microsoft paused construction on the later phases of this 
project, perhaps temporarily.] 

1.5 GW Expansion to full scale in 
2027, possibly canceled or 
delayed

Stargate (w/ Oracle, SoftBank)
This was a planned $100 billion OpenAI-Microsoft collaboration for 
a data center campus that would open in 2028 and scale up to 5 
GW by 2030. Microsoft may have since pulled out of this project, 
and the “Stargate” name has been adopted by a $500 billion 
collaboration between OpenAI, Oracle, and SoftBank involving 
numerous data centers. 

5 GW (tentative, possibly 
canceled)

2028: initial phase

2030: scaled up to 5 GW

https://www.tomshardware.com/tech-industry/artificial-intelligence/musks-colossus-is-fully-operational-with-200-000-gpus-backed-by-tesla-batteries-phase-2-to-consume-300-mw-enough-to-power-300-000-homes
https://www.nytimes.com/2025/06/24/technology/amazon-ai-data-centers.html
https://semianalysis.com/2024/12/03/amazons-ai-self-sufficiency-trainium2-architecture-networking/#project-rainier-%e2%80%93-400k-trainium2-cluster
https://www.wsj.com/articles/amazon-announces-supercomputer-new-server-powered-by-homegrown-ai-chips-18c196fc
https://www.anthropic.com/news/anthropic-s-recommendations-ostp-u-s-ai-action-plan
https://assets.anthropic.com/m/4e20a4ab6512e217/original/Anthropic-Response-to-OSTP-RFI-March-2025-Final-Submission-v3.pdf
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48 This is consistent with the fact that xAI’s data center in Memphis draws 150 MW of power for 100,000 H100 GPUs.
49 This analysis found a not-statistically-significant upward trend over time.

Data Center Overhead 
Meanwhile, there is a smaller amount of overhead cost 
at the data center level. This is measured by power usage 
effectiveness (PUE), which is the ratio between a data cen-
ter’s total energy consumption and the energy consumption 
of the IT equipment within the data center. PUE has fallen 
over time. According to SemiAnalysis, industrywide data 
center PUEs fell from 2.2 to 1.55 between 2010 and 2022. 
Hyperscale AI data centers are even more efficient, with 
PUEs typically under 1.3, and Google claims an industry-
leading average PUE of 1.1 for its data centers.

PUE could continue to fall, but because PUE has a floor of 
1 by definition, these efficiency gains have almost been ex-
hausted. Reduced PUE cannot reduce power consumption by 
more than around 9% for Google, and by more than around 
20% for the less efficient hyperscalers. As such, gains from re-
duced PUE are not modeled in the projections in this report. 

Compute Utilization
In addition to hardware’s inherent efficiency at peak per-
formance, another factor to consider is compute utilization, 
which refers to the percentage of AI hardware’s theoreti-
cal computing power that is actually achieved. In practice, 
most large training runs tend to have 30–40% utilization 
rates. Improving utilization would effectively improve en-
ergy efficiency by reducing the number of chips to complete 
a training run. While increased compute utilization could 
also increase power consumption, the effect would likely be 
minor: one source estimates that average power consump-
tion for AI servers is already around 70% of rated capacity. 
And increasing average compute utilization would likely 
have little or no effect on peak power consumption. 

However, there is no clear trend of compute utilization dur-
ing training changing over time.49 For this reason, any effect 
from changes in utilization rates are not modeled in this 
report. In principle, continued innovation to optimize GPU 
clusters could improve utilization over time. This is counter-
balanced by the growing engineering challenges required 
to scale up training runs: larger clusters and distributed 
clusters may make memory and communication bottlenecks 
more significant. Utilization is capped at 100%, so it can 
improve by at most a factor of around 2.5. 

Long-Term Limits to Energy Efficiency
The energy efficiency of computer chips has been improving 
exponentially over many decades. This trend is described 
by Koomey’s Law, which found that the energy efficiency 
of computing hardware consistently doubled every 1.57 
years (equal to an annual growth rate of 55%) between 
1950 and 2000 in a trend that closely resembles the more 
famous Moore’s law. However, this trend has slowed to 
doubling every 2.6 years since 2000 (or an annual growth 
rate of 30%). The latter is similar to the 26% growth rate 
that Hobbhahn et al. found using a more expansive dataset. 
The length and durability of this trend means that it is very 
likely that computer chips will continue improving in effi-
ciency at a similar rate over the next few years, though it is 
possible that these improvements will slow in the long run.

In 2023, Ho et al., investigated theoretical upper bounds for 
the current paradigm of microprocessors, estimating that 
processors could become more efficient by a factor of 50 to 
1000, with a median estimate of 200. Taking the lower end 
of this range, a 50% annual growth rate in efficiency would 
take 10 years to reach this limit, and a 30% growth rate 
would take 15 years. So, this upper limit is not relevant for 
the next five years, but efficiency improvements could slow 
before stopping, as has happened before with the slowing 
of the growth rate described by Koomey’s law.

Server-Level Overhead
AI chips in training clusters are configured in systems called 
servers, which include multiple AI chips (such as GPUs or 
TPUs), additional computer processors such as CPUs to coor-
dinate the system, and cooling and networking equipment.

The server-level power overhead is significant, roughly 
doubling power consumption versus the power rating of in-
dividual chips. For example, while a single H100 GPU has a 
thermal design power of 700 W, a common server configu-
ration with 8 H100s draws up to 10.2 kW in total, or 1275 
W per GPU. Larger clusters have additional overheads, re-
quiring around 1500 W of power per H100.48 Whether this 
server-level overhead will improve with future generations 
of chips is not clear and would be a useful area for further 
research. The potential efficiency gains from reducing this 
overhead are bounded by a factor of 2, so even eliminating 
this overhead would be equivalent to two to three years of 
normal chip-level efficiency growth.

Appendix B: Hardware Efficiency
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the leading five models. This results in a trendline with a 
growth rate of 2.2x per year, and that reaches ~80 MW by 
the beginning of 2025, which is somewhat below the actual 
largest training run to date (150 MW for Grok-3).

Forecasting Power Demand Growth
The main forecast for the growth rate in power demand in 
Sections 1 and 2 above is based on the training compute-
based decomposition explained here: growth in power 
demand is equal to the growth rate in training compute, 
divided by the growth rates in hardware efficiency and 
training run duration.

These growth factors are estimated and forecast separately 
and combined into an overall power demand forecast using 
a Monte Carlo simulation. This entails randomly sampling 
three values from our uncertainty intervals for the growth 
rates in training compute, hardware efficiency, and duration 
growth, and multiplying the results together. The median 
result of these samples was a growth rate of 2.6x per year, 
with the 10th and 90th percentiles of 2.2x and 2.9x growth 
per year. The Monte Carlo simulation assumes that uncer-
tainty for all three factors is distributed log-normally, which 
is a standard assumption for estimating the multiplicative 
product of several variables. 

The historic trendline is highlighted separately as a more 
conservative forecast that does not assume that the trends 
in training compute, training run duration, and hardware 
efficiency can vary independently over time.

The code used for the analysis below can be found here.

The forecast of power demand for training frontier models 
here has two components:. First an estimate of the historic 
trend in power demand for training frontier models to es-
tablish a baseline for 2025, then an estimate of the growth 
rate in this power demand moving forward.

Historic Baseline
To estimate the historic trend, data on AI models collected by 
Epoch AI  were used. This presents a choice in terms of which 
models to include. For example, the single largest training 
run over time will tend to run ahead of the average trend 
among large-scale models in general, especially because 
there is limited data on the power demands of many recent 
frontier models. However, simply measuring the trend in the 
largest training runs over time (e.g. GPT-4 or Grok-3) would 
use far fewer datapoints and yield a less robust result. 

To balance these considerations, we run a regression on 
power demand of running top five AI models by train-
ing compute for which there is sufficient data to estimate 
power draw. These models date back to 2012, though the 
trendline is truncated to 2018 in our main visualization.

We then adjust the resulting trend upwards to simulate the 
trend in the most power-intensive training run over time. 
This was done by multiplying the trendline by the standard 
deviation of the regression’s residuals, multiplied by the z-
score for the 80th percentile (0.84). This approach uses the 
variation in the trend to simulate the trend in the largest 
individual training run over time rather than the average of 

Appendix C: Frontier Power Demand Forecast Methodology
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In terms of projecting this growth rate forward, the same 
arguments for why the industry will continue scaling model 
training runs apply to AI supercomputers: scaling requires 
continued growth in the size and computing power of  
training clusters. However, the model-based extrapolation 
differs by including the possibility that AI labs may target 
compute scaling that is faster than they have historically 
expanded their AI training clusters due to constraints on 
training run durations.

One advantage of estimating frontier model power growth 
using the AI supercomputers dataset is that it measures 
the growth rate of supercomputer power capacity directly 
rather than inferring the growth rate of AI training clusters 
using a more complex method of dividing training compute 
growth by training run duration growth rates. 

However, a downside is that this dataset is less focused on 
the specific trend—the scaling of frontier AI models—that 
will be an important driver of AI power demand going 
forward. For example, some supercomputers in this dataset 
were primarily used for scientific computing for research 
rather than to develop commercial AI models. 

An alternative method for estimating the power growth of 
frontier training runs is to directly measure the growth of 
large-scale AI computing clusters, also known as AI super-
computers. Pilz et al. compiled a dataset of large-scale AI 
supercomputers after a comprehensive review of public 
information. 

There are two ways to measure power growth based on  
this data:

• The power capacity of leading AI supercomputers, mea-
sured directly using hardware specifications, has been 
growing at a rate of 1.95x per year.

• Computing power of the largest AI supercomputers, 
measured in 16-bit floating point operations per sec-
ond, has improved at a rate of 2.5x per year (90% con-
fidence interval of 2.4x to 2.7x). Projecting this trend 
forward while dividing it by the growth rate of ML hard-
ware efficiency improvements of 1.33x (not including 
efficiency gains from changing number formats) yields 
a growth rate of 1.88x per year.

These growth rates are somewhat lower than the low end 
of the forecast based on frontier model training runs, which 
was around 2.2x per year. 

Appendix D: Power Demand Trend in AI Supercomputers
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