

Operational Data Analysis

Operational Experience Review and Application

Jason Castro – Principal Technical Leader

Cris Corrales – Principal Technical Leader

MOTIVATION - Why Operational Data Analysis?

ISSUE: Ineffective OpEx Reviews

- Not adequately scoped
- No effective process in place
- No incentive to improve process, or correct the scope

Feels like looking for a needle in the haystack

OBJECTIVE: build Operational Data Knowledge model to

Facilitate the extraction of validated insights that:

- Effectively inform I&C lifecycle activities
- Allow us to identify emergent issues
- Facilitate adoption of Risk-Informed, Performance-Based methods

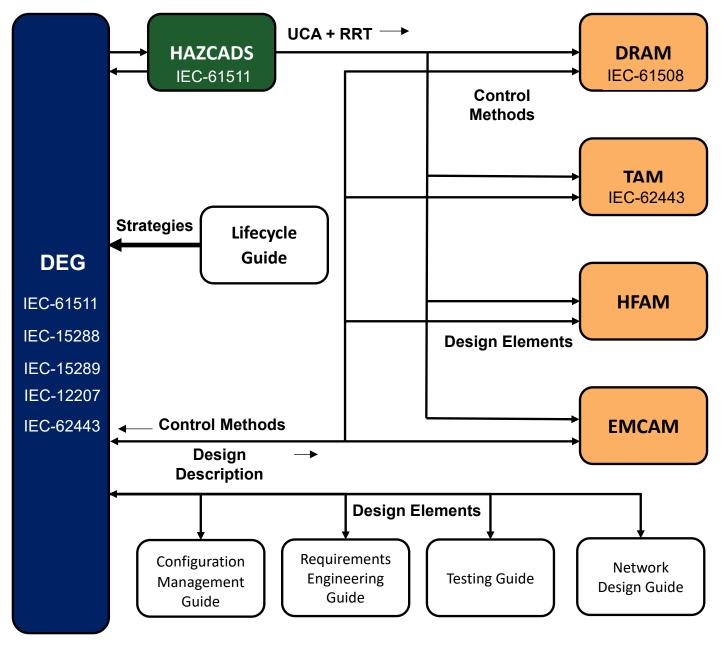
How does this research inform the DEG activities and other DSE processes?

Capable Workforce

EPRI's Digital Framework Elements

EPRI's *high-quality engineering process* uses the same modern methods and international standards used in other safety related industries to improved efficiency and reduce implementation cost

Utilize Industry
Standards


Use the same proven design and supply chain structures that non-nuclear safety related industries use (IEC-61508/61511/62443). This leverages the economies-of-scale achieved in other industries.

Use of Systems Engineering Use of a modern, high performance, <u>single</u> engineering process that leverages systems engineering in the transition to team-based engineering for conception, design, and implementation.

Risk Informed Engineering

Making effective engineering decisions via hazards and risk analysis to integrate all engineering topics (such as cyber security and SCCF) into a <u>single</u> engineering process.

DEG — Synthesizes the Systems Engineering framework from IEC-15288. Includes all relevant Lifecycle topics. Takes strategic input from the Lifecycle guide and formulates design description.

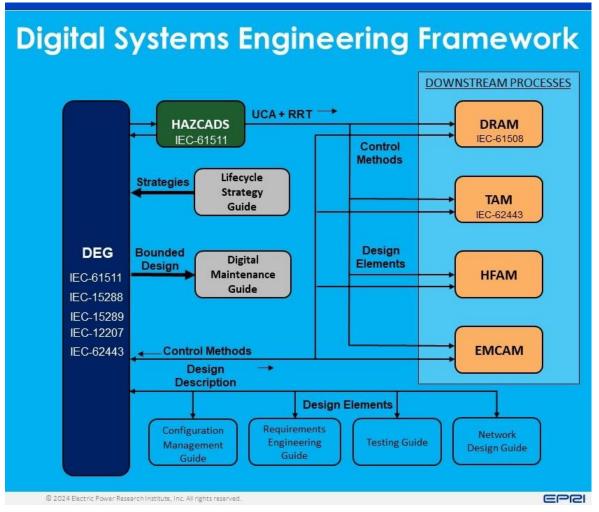
HAZCADS — Uses STPA/FTA to identify hazards and associated UCA. FTA and Risk Matrices develop a Risk Reduction Target (RRT) which informs the downstream processes. Implements a PHA/LOPA from IEC-61511.

DRAM — Identifies Hardware and Software reliability vulnerabilities and develops Loss Scenarios. Formulates and scores Control Methods to protect, detect, and respond/recover from UCA to meet the RRT.

TAM — Identifies cyber security vulnerability classes and develops Exploit Sequences. Develops and scores control methods to protect, detect and respond/recover from UCA to meet the RRT.

HFAM — Identifies important human actions and develops Loss Scenarios. Identifies and scores control methods to "design out" Human Error until meeting the RRT.

EMCAM — Identifies EMC vulnerability classes.


Develops and scores protect, detect, and respond/
recover control methods using the RRT

RRT= Risk Reduction Target STPA=System Theoretic Process Analysis UCA= Unsafe Control Action FTA= Fault Tree Analysis

LOPA= Layers of Protection Analysis EMC= Electromagnetic Compatibility

PHA=Process Hazards Analysis

How Operational Data informs the DSE framework elements?

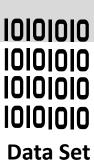
- The Operational Data Research conducted is being used to inform several of the guides. Most relevant:
 - Digital maintenance needs to be addressed (DMG)
 - Development and characterization of unsafe control actions (HAZCADS)
 - Software failures library and characterization (DRAM)
 - Human loss scenarios (HFAM)
 - EMI loss scenarios (EMCAM)
 - Supplementing OE reviews conducted by DEG practitioners.

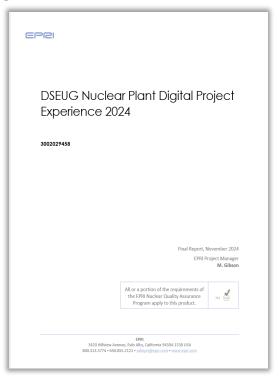
For details, see public wiki https://icwiki.epri.com, Digital Systems Engineering Framework subpage

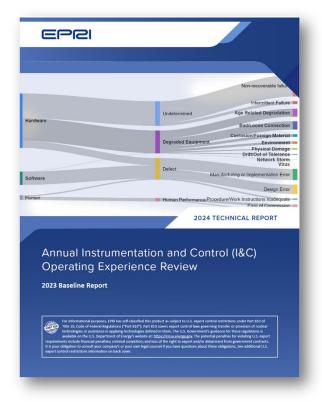
DI&C Operational Data Analysis Process and Results

Process carried by SMEs

SOURCES
INPO
WANO
NRC
MEMBERS

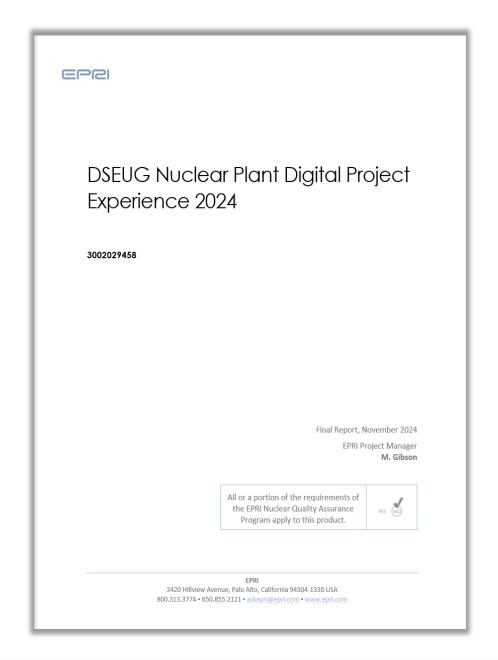




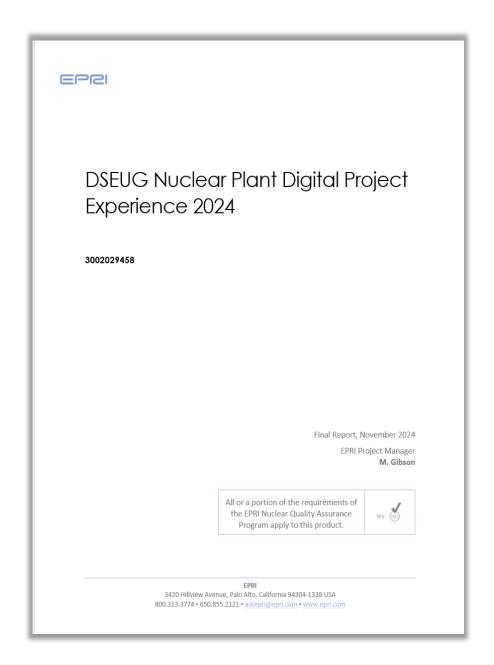


Two approaches to learning from experience

 The Digital Project Experience Report was developed to gather digital project related experience to facilitate information sharing amongst DSEUG members


 The Annual I&C Operating Experience Review was developed to aid in the review and of application of nuclear digital-related OpEx.

Digital Project Experience Report


- The Digital Project Experience Report was commissioned by the DSEUG to gather digital project related information for common DSEUG member use
- This project is solely funded by the DSEUG
- Access limited to only DSEUG members
- The primary purpose of the report is to facilitate information sharing amongst DSEUG members
- Specific licensees or vendors are not identified in the report – in other words, all information provided is confidential

Digital Project Experience Report

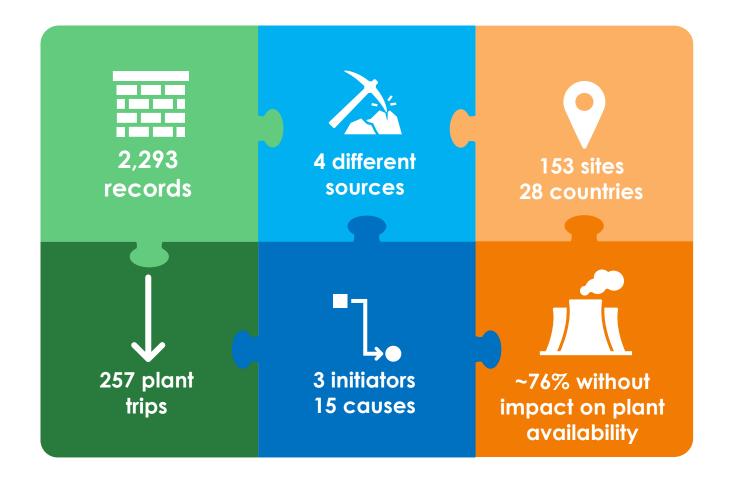
- DSEUG now covers 49 plants with a combined 91 units (56 PWR units, 27 BWR units, 8 CANDU units)
- 97% of US units / 42% of Canada's units
- The goal is to collect data from all DSEUG member licensees for report input
- New DSEUG members are asked to complete the Digital Project Experience Report survey
- Ultimately, this report is for the benefit of DSEUG members to aid in the implementation of digital modifications through the application of industry OpEx.


DSEUG Digital Project Experience Report Overview

- The Current State of Digitization
- Plans for Future Digital Upgrades
- Long Term Modernization Plans and Strategies
- Digital Equipment Selection Methods and Criteria
- Digital Project Division of Responsibilities
- Digital Projects Lessons Learned
- Digital Projects Good Practices

The Digital Project Experience Report is an Exclusive Member Benefit

Researching I&C Operational Data TODAY - 3002030408

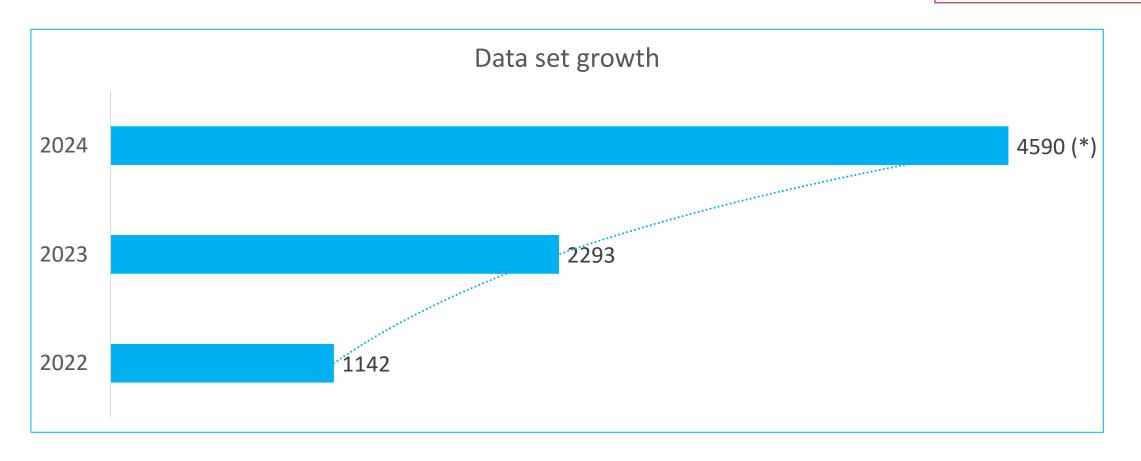

Targets Digital I&C events from multiple sources

Produces a curated categorized Data Set of I&C events

Provides analysis insights: Reasons, Impacts, Lessons

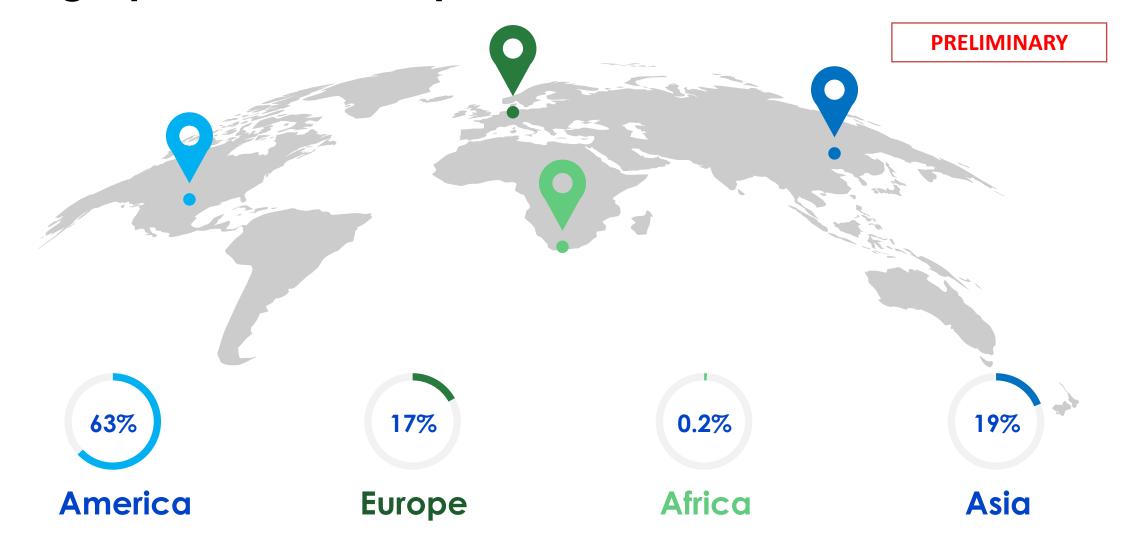
What does our 2024 data set Rev. B contain?

Our goal is to grow and give access to the data set to the industry


Topical learning areas

- Design and Requirements Management
 - Covers project scope development, system requirements traceability, and design considerations.
 - Emphasizes accurate requirements identification and configuration management.
- Testing and Validation
 - Includes software development and testing, failure modes and effects analyses (FMEA), and use of simulators or maintenance test systems.
 - Focuses on validating system behavior before deployment.
- Lifecycle and Maintenance
 - Addresses lifecycle management, digital recovery, software version control, and environmental considerations.
 - Managing aging components and system updates.
- Human and Organizational Factors
 - Encompasses human factors, training, division of responsibilities, and vendor reliance.
 - Stresses the role of clear procedures and cross-functional understanding.
- Operational Reliability and Risk Management
 - Involves operation, input sensors, broadcast storms, and handling of miscellaneous faults.
 - Supports proactive risk assessment and mitigation strategies.

Data set growth over the years


PRELIMINARY

(*) 2024 records review still in progress

Geographical Data Representation

2025 data brings an increase on global experience

What have we learned so far – A data perspective

Each source of OE offers a particular perspective that might bias analyses. Reporting trends have been reducing every year.

Additional sources of Operational Data supplement and enable new use cases, increasing value allowing for statistical significance. This is required to inform risk-informed, performance-based methods.

All Operational Data sources need processing prior to analysis so that insights avoid anecdotal evidences produced by raw data feeds and data context and taxonomy are clear for the analyst.

Member access to curated, categorized data set will deliver a higher collective value

Why can we succeed with Generative-Al now?

Method	Available Materials
RAG : connect the language model to a knowledge base.	Relevant EPRI I&C research and current data set attributes and definitions (taxonomy). To generate vector database.
Fine tuning : train an existing LLM on a domain-specific dataset, to better understand and generate text within that domain.	Available domain-specific SME validated data set for training and testing purposes. To fine tune a domain specific model.
Prompt Engineering: crafting specific questions or prompts that guide the generic LLM to generate outputs tailored to the desired domain.	Utilization of report insights for effective prompting, workshops with members and SMEs to test and refine curated queries.

Facilitate users' analysis of anonymous, curated and categorized data

ROADMAP - What have we done so far?

A path to data and tools, while delivering value from day 1 with yearly report updates

Current report 300203048

Updated report October 31st, 2025

New report coming up. Completes Baseline Data Set!

2025

10101010 10101010 10101010

2026

2027

Digital I&C specific data collection

1,400 events

Data Model

Annual Instrumentation and Control (I&C)
Operating Experience Review

Digital I&C specific data collection

2,300 events

Baseline Data Complete

Digital I&C specific data collection

~5,000 events

GenAl

Development of data mining tools and anonymized data set access

Future

Consolidate and grow with other focusses

Expanding categorization (2025 and future)

- Systematic versus random causal factors
- Equipment Under Control (EUC) and plant function impacted
- Failures on demand
- Human errors: expand search, applying a critical eye, errors of cognition vs execution (HFE toolkit), data needed for HRA
- Single Point Vulnerabilities
- Plant condition, activity and events associated to plant evolutions
- Preventable OE
- Types of software faults
- Intervention types: can the fault be
 - DETECTED if it occurs and corrected before the undesired behavior develops
 - MITIGATED should the causal factor occur
 - PREVENTED by a design feature or administrative control
 - ELIMINATED by a design change

Here is a long list of additional insights that we want to work on

