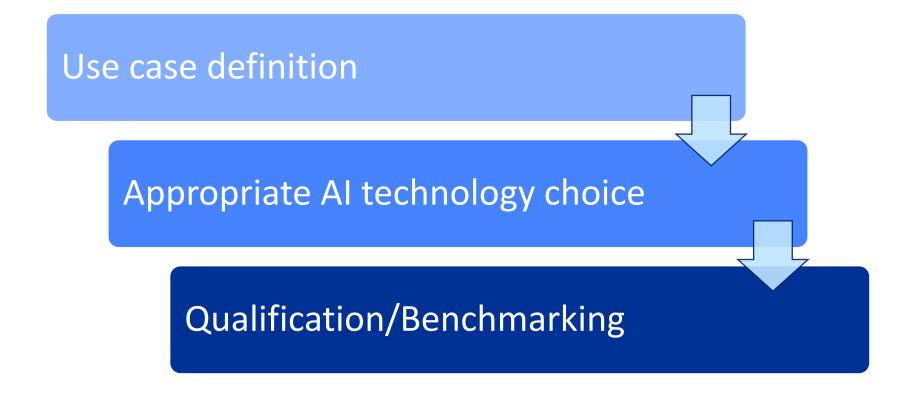


Applying AI in the Nuclear Industry

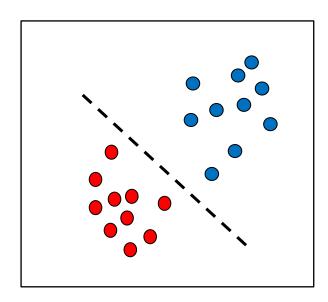
Perspective of the Electric Power Research Institute (EPRI)



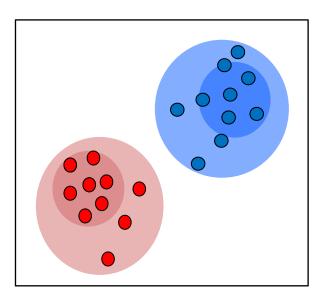
Agnieszka Czeszumska, PhD Senior Technical Leader EPRI Europe DAC

IAEA General Conference September 18th, 2025

If Al is the answer, what is the question?



Possibly an iterative process


Discriminative vs. Generative Al

Discriminative Al

- Discrete boundaries
- Learn conditional probabilities to distinguish between classes effectively
- Examples:
 - Linear regression
 - Decision trees
 - Statistical NLP
 - Object detection

Generative AI

- Probabilities in space; learn data distribution to create new, contextually relevant content similar to training data
- Versatile but computationally intensive and harder to pinpoint accuracy
- Examples:
 - Diffusion models
 - Large Language Models

Select use cases applicable in nuclear safety

Discriminative AI

- Concrete Defect Detection Tool for aerial drones
- Acoustic Emission sensor for steel cracking background reduction
- Ultrasonic Testing

Automation in monitoring

Analog Gauge Reader

Generative Al

Large Language Model-powered expert systems

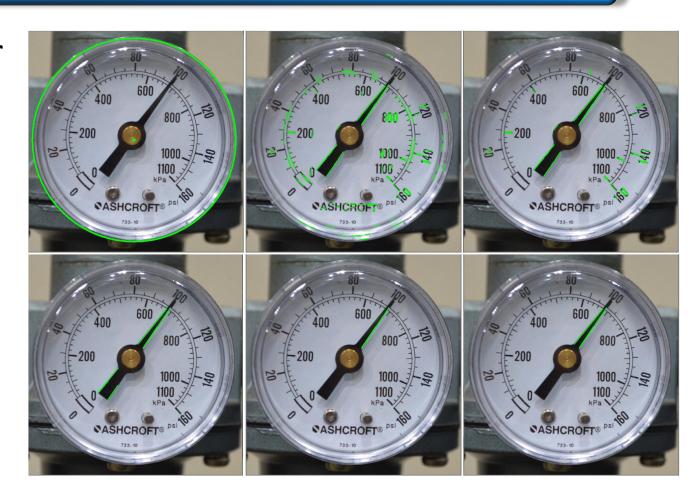
- Troubleshooting Chatbot
- Decommissioning Knowledge Management

NILLM: Nuclear Industry Large Language Model

 In collaboration with INPO and NEI

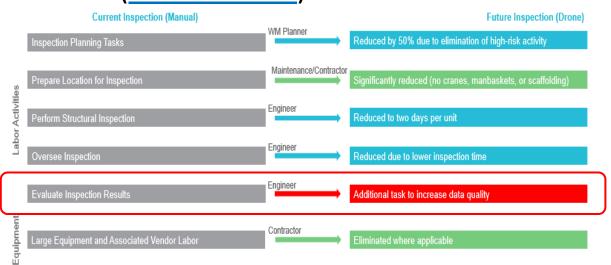
LLM used in data extraction

Part 21 reports data extraction



Automated Analog Gauge Reader

Automated Analog Gauge Reader: Benchmarking and Python Source Code (3002021055)


- Provides a methodology to infer readings of analog gauges from images
 - Multiple gauges with same hardware
 - Does not obscure gauge
- It can be deployed to automate monitoring and replace walkdowns

Contact Christine Lee if interested in field implementation

Remote Visual Inspections with Unmanned Aerial Systems

- Benefits during data collection
 - Saves time, reduces costs, increases safety
 - Provides better inspection data record
- Increased burden on analysis
 - Large quantity of monotonous images or videos
- From BCAM (3002021027) & UAS User's Guide for NPPs (3002020913):

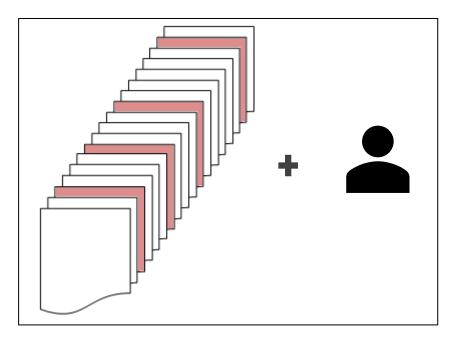
Leverage Machine Vision to assist in analysis

Concrete Defect Detection

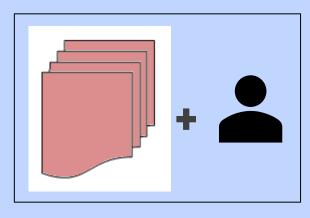
Upload Images

Set Thresholds

View Results


Al-Assisted Analysis of UT Inspections

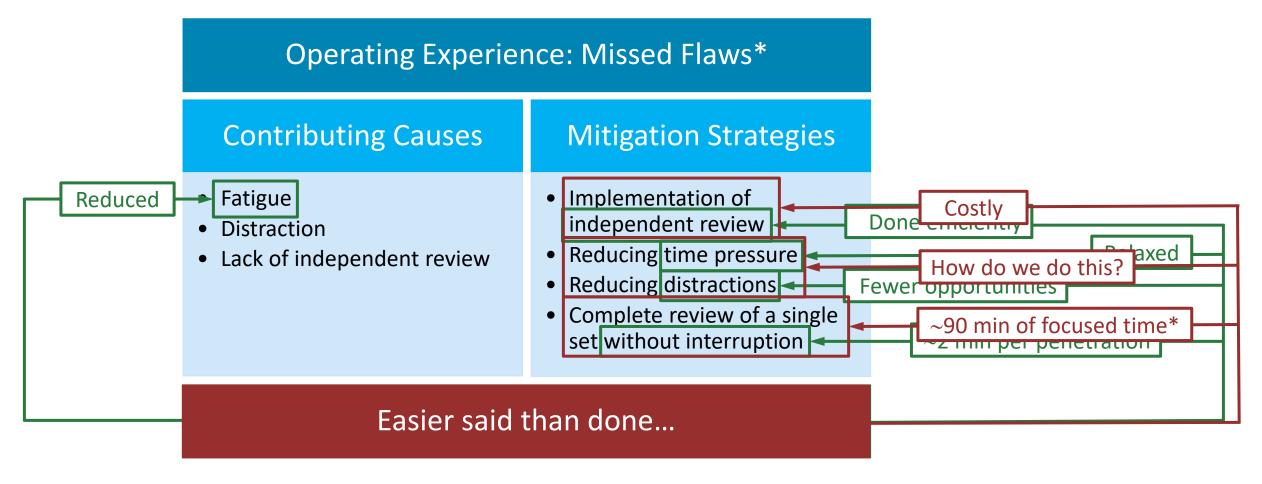
- UT inspections are an important part of the scope of an NDE program
- Some inspections are challenging or have large volumes of data
- Machine learning tools can potentially <u>assist</u> in the analysis of the data
 - Increase reliability
 - Decrease analysis time
- Assist means AI flags regions for review: final decisions still rest with the qualified inspector.


Goal: Develop auto-analysis tools to assist in UT inspections

How Would AI Assist in UT Inspections?

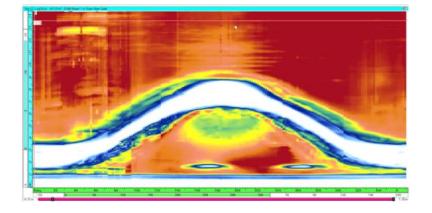
- Current Inspection
 - Examiners distribute their energy across a high volume of (mostly benign) data

- Al Assisted Inspection
 - Examiners focus their energy on the regions that require more careful review



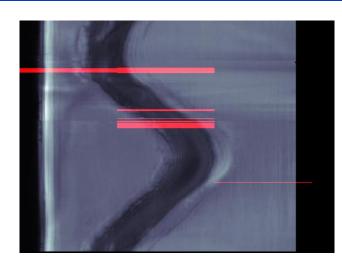
Value in Perspective: Faster, Focused Data Analysis

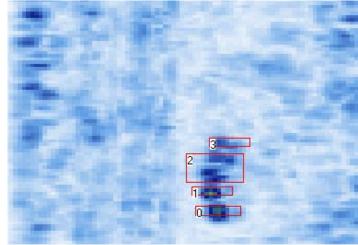
Case in Point: Human Factors



^{*} T. Sanquist, S. Morrow, J. Harrison, C. Nove. Human Factors in Nondestructive Evaluation. NUREG/CR-7295 PNNL-32505 (ML22083A071)

Al-Assistance enables implementation of identified error mitigation strategies


Deployment



1

UT data is saved in ML Box through local connection

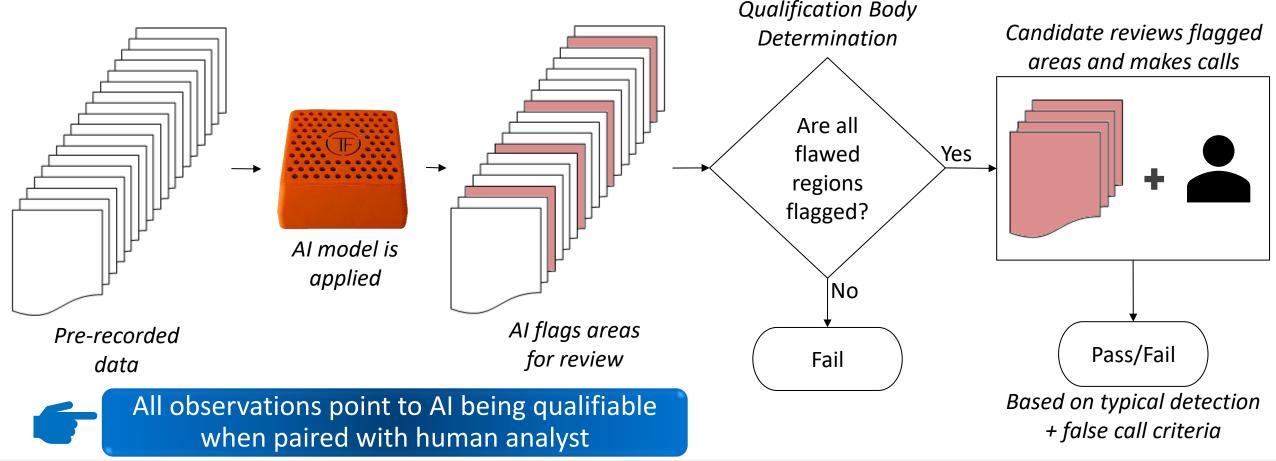
2

Box automatically detects and processes UT data...

... and generates output for review

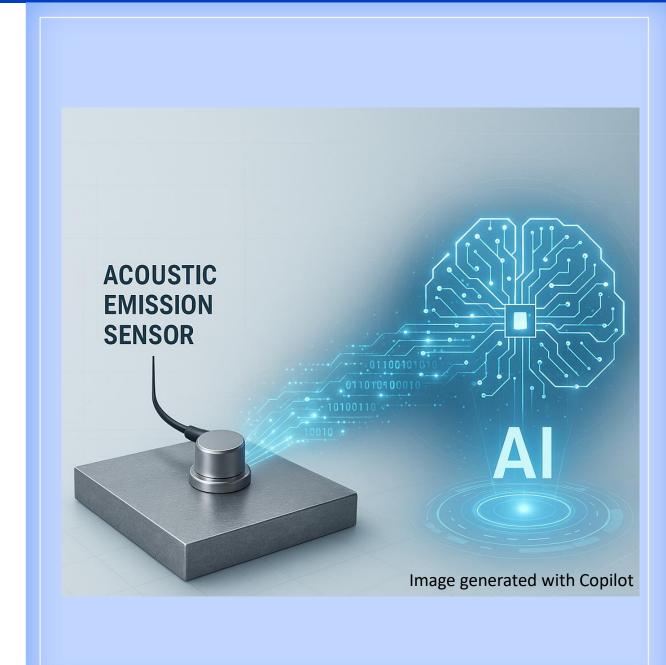
All data remains local; no SW needed

Qualification Prospects


- Looking at this as a "procedure" type:
 - Model should flag all flawed regions for review by inspector in "personnel" qual
 - Inspector has opportunity to detect all flaws
- Model was exposed to more than 5x the amount of PDI data required for a traditional procedure qualification
 - Model accurately flagged flawed regions
 - Craze cracking
 - Axial, circ and off-axis oriented flaws
 - Small and large thru wall flaws
 - ID and OD surface connected

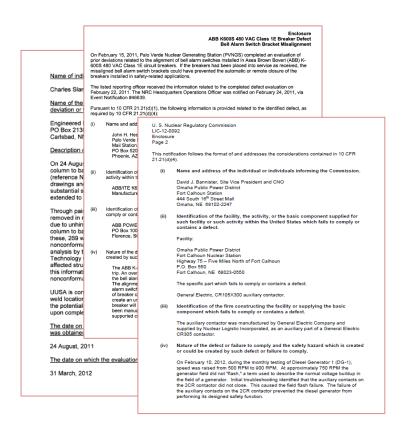
All observations point to AI being qualifiable when paired with human analyst

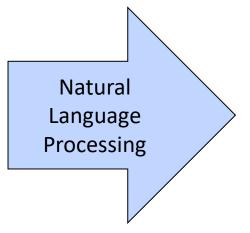
What initial qualification may look like


- Procedure would be updated to include a defined process for the AI evaluation
- All algorithms for qualification would be developed and provided to the qualification body: model is frozen at this stage

Al for Acoustic Emission NDE

- Current AE sensors are not robust against environmental noise.
- Could AE crack detection be improved with AI?
- As part of the project, data will be collected at the Charlotte Labs on various types of environmental noise, Pencil Lead Break tests, and real cracking.





LLM Projects

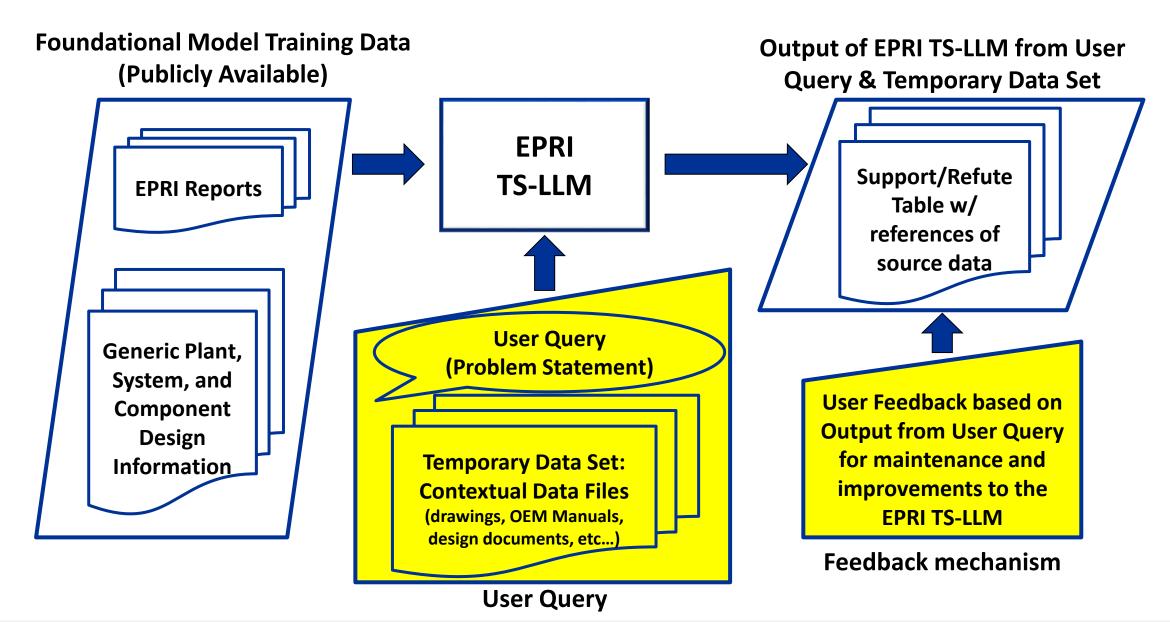
Part 21 Reporting of Defects and Noncompliance

- Part 21 reports are submitted to the NRC. These reports are required when a licensed facility, activity, or basic component contains defects or failures to comply with NRC regulations that could create a substantial safety hazard.
- 1000's of reports from NRC website in pdf format are difficult to parse through and search for relevant information quickly



-	A	В	C	D	E		F	G	Н	1	J	K	
1	Appl Id	Type	Actv	Project	Pl Name(FY		IC	Title	Abstract	SA Text	Awd Tot \$	
2	7987780	- 1	R01	HL075353	MESSINA.		2010	HL	Mesenchy	DESCR	1 LSpe	\$411.250	
3	8435690	1	R21	HL113777-	LIBONATI,		2013	HL	Exercise a	DESCR	A. Spec	\$200,000	
4	8245505	1	R01	AR061460	FISHER, JC		2011	AR	Application	DESCR	II. SPEC	\$355,245	
5	8159876	1	R01	EY021768-	KAO, WIN		2011	EY	Cell Thero	DESCR	P.I. Kao	\$530,406	
6	8400215	1	R01	DK095001	MIETHKE.		2012	DK	The role o	DESCR	SPECIFIC	\$333.825	
7	8415397	1	U18	TR000536-	LYNCH, JO		2012	TR	Modeling	DESCR	SPECIFIC	\$375,600	
8	7672945	1	R43	DK083832	POO, RAN	8	2009	DK	A perfluor	DESCR	1. SPECI	\$100,000	
9	8108873	1	R01	HL103709-	TZANAKAK		2011	HL	Bioproces	DESCR	1. SPECI	\$379,711	
10	8504313		R01	DK098787	BUCHWAL		2012	DK	Culturally	DESCR	2. SPECI	\$211,602	
11	8508395		R21	AA021225	CALLACI,		2013	AA	Alcohol E	DESCR	2. SPECI	\$217,063	
12	7581820	- 1	R01	AJ053193-	(RIDDELL,		2009	Al	CD8+TC	DESCR	2. SPECI	\$502,469	
13	7731198		R01	CA136551	RIDDELL,		2009	CA	Targeted	DESCR	2. SPECI	\$551,563	
14	8371082	- 1	R01	DK079713	ARRIOLA.		2012	DK	Project Al	DESCR	2. Specif	\$240,878	
15	7735633	6 5	R01	AJ052079-	(KEARNS-J		2009	Al	Non-Hum	DESCR	2. Specif	\$400,000	
16	8591825	1	R41	OD018403	MARSH, H		2013	OD	CDX-301 (DESCR	2.2 SPEC	\$100,000	
17	7785204	1	R01	NS065109	BELLAMKO		2009	NS	A Rationa	DESCR	A Ration	\$338,926	
18	7741820	1	R01	DK083411	LIN, FANG		2009	DK	STEM CELL	DESCR	a. Speci	\$376.800	
19	7811914		R01	DE014190	XU, HUAKI		2009	DE	Injectable	DESCR	A. SPECI	\$416,624	
20	7581433	1	R01	DK081118	SIMINOFF.		2009	DK	A Randor	DESCR	A. Speci	\$546,293	
21	8039687	1	R01	CA140242	PAN. PING		2011	CA	HSC Deriv	DESCR	A. Speci	\$351,713	

Part 21 Reports


- The goal is to extract each section (i)-(ix) and information from them into a structured database
 - Not all reports follow the same structure

Accession Number	(i)	(ii)	(ii)		
ML101820 160	GE Hitachi Nuclear Energy	The basic component that failed is a High Pressure Coolant Injection System	The diaphragms are manufactured by Chicago-Allis as commercial grade. They are dedicated and sold as safety-related by GE Hitachi Nuclear Energy		

Extracting data with NLP and LLM techniques

"EPRI LLM-for-Troubleshooting (TS-LLM)" at a glance

Troubleshooting App

Upload file(s)

Drag and drop files here Limit 200MB per file

Browse files

troubleshooting_doc1.pdf

troubleshooting_doc2.pdf

×

Semantic Search LLM Chatbot

0n 11/17/24, Centrifugal Compressor 1A was started and placed into the Lead position, with 1B in the Lag position. After 1A compressor loaded, it began surging. 1A was stopped and 1B is functioning as the Lead air compressor. No adjustments to the operating parameters of the compressor were made. 1C is now serving as the lagging air compressor.

Understood. The 1A centrifugal air compressor began surging after it was placed in the lead position and loaded.

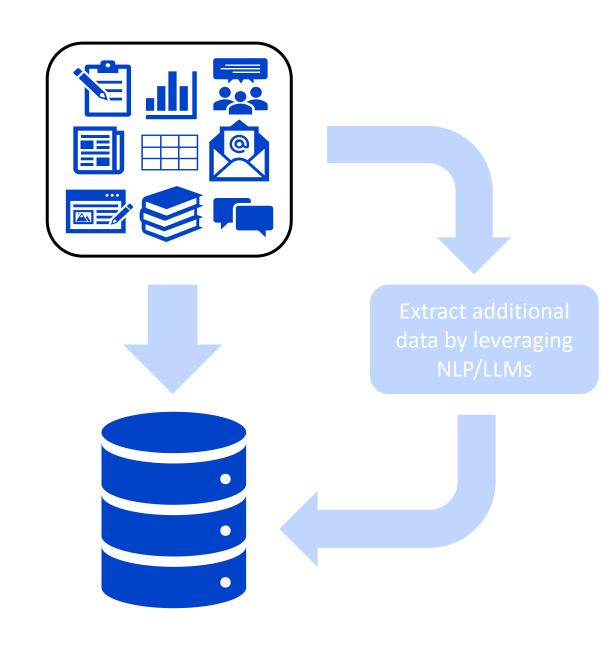
Download support/refute table to .csv

Here is the primer for your support/refute table. The format is provided in accordance with EPRI Report 3002018211, but can be adapted to your station's or fleet's standard.

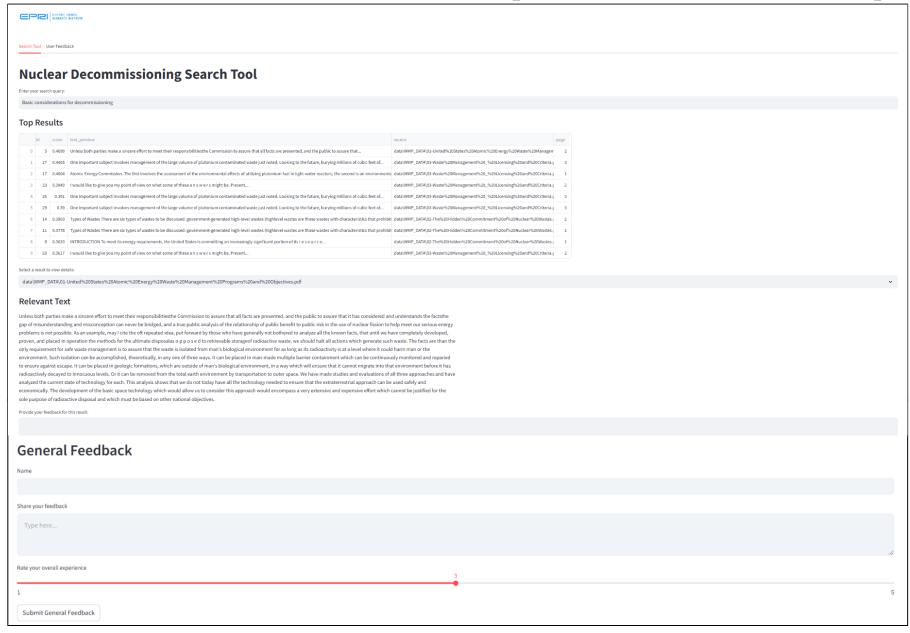
* C []

Item	Failure Mode	Validation Task	References	Sources
1	The inlet air filters are dirty, clogged, or obstructed.	Inspect, clean and or replace the inlet air filter	troubleshooting_doc1.pdf, page 155 of 866troubleshooting_doc2.pdf, page 128 of 198	• source2.pdf, page 7 • source4.pdf, page 15
2		a. Verify cooling water valves are completely open	troubleshooting_doc1.pdf, page 155 of 866troubleshooting_doc2.pdf, page 128 of 198	• source2.pdf, page 7
	High interstage air temperature temperatures.	b. Water temperature abnormally high	troubleshooting_doc1.pdf, page 155 of 866troubleshooting_doc2.pdf, page 128 of 198	• source2.pdf, page 7 • source4.pdf, page 15
		c. Intercoolers are plugged or fouled in the air and/or water side.	• troubleshooting_doc1.pdf, page 155 of 866	• source4.pdf, page 15

Download table to Word


Ask a question

Download support/refute table to .docx



Decom KM

- The goal is to help subject matter experts in the Decommissioning program find relevant information fast
- Challenges:
 - Information spread over various formats
 - Evaluation of search results and optimization of database parameters

Streamlit User Interface (restricted access)

- Simple Top Results tabled to display relevant document matches with relevance score.
- Preview of source snippets prior to opening full file.
- User Feedback

 (work in progress)
 per respective
 document hit for
 model finetuning
 based on
 preliminary
 vectorstore.

Nuclear Industry LLM Pilot **Project**

Visionary Update Advancing Secure, Federated AI for the Nuclear Sector

July 2025

Project Vision & Objectives

Secure Platform

Develop a secure, federated AI platform tailored for the nuclear industry

Enhanced Operations

Enhance knowledge retrieval, decision support, and safety compliance

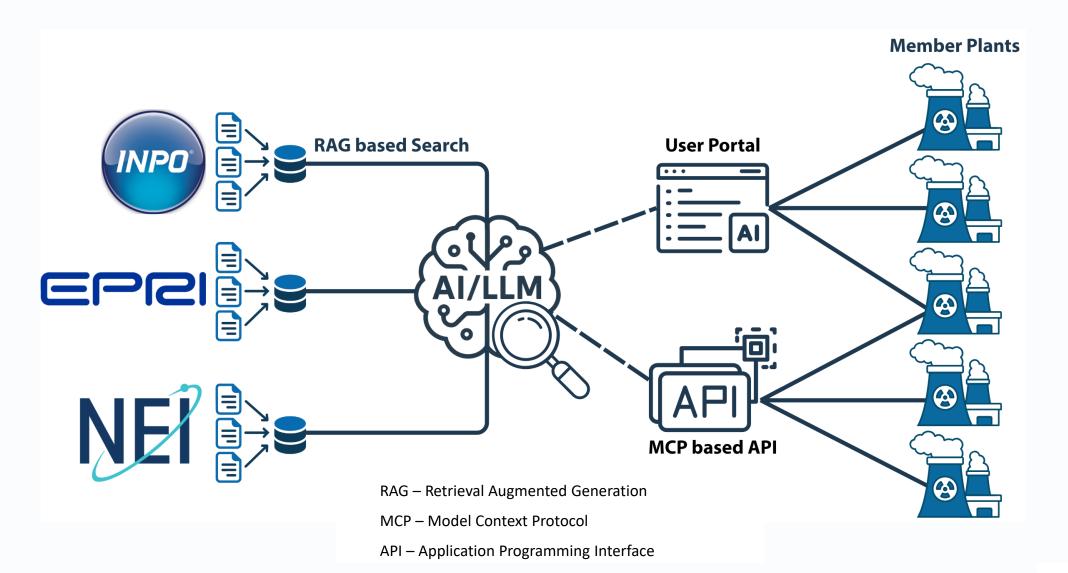
ISI

Collaboration

protection and regulatory Foster collaboration across utilities, members, and vendors

IP Protection

Demonstrate data sharing with IP protection and regulatory compliance



Initial Use Cases & Scope

- Knowledge
 Transfer (led by NEI)
- Supports knowledge
 management and transfer
 by enabling overview and
 detailed understanding of
 key topics in the nuclear
 industry

- Operational Experience Search (led by INPO)
- Smart search across IRIS, INPO, EPRI, and NEI documents
- Supports plant reliability and safety initiatives
- Troubleshooting (led by EPRI)
- Al-assisted plans for degraded components or system conditions

Proposed Architecture Diagram

Governance & Collaboration

Organizational Structure:

Sponsor: INPO

2 Project Management: EPRI

Technical
Contributors: NEI,
Constellation, EPRI,
INPO

4 Developer: TBA

Oversight Committee:

•INPO •EPRI •Constellation •NEI

•PG&E •Southern •OPG •NextEra

Project Management Approach:

- Weekly technical syncs
- Agile project management via Monday.com
- Partner organizations maintain data sovereignty and infrastructure

Questions & Contact Information

We welcome your questions and look forward to discussing the future of AI in the nuclear industry. Please reach out to the following points of contact for more information:

Points of Contact:

• EPRI: Rob Austin, raustin@epri.com

NEI: Jim Slider, jes@nei.org

INPO: Ramon Martinez, <u>martinezr@inpo.org</u>

Al Benchmarking Activities

LLM Benchmarking at EPRI

- Started with 5 areas within Nuclear: Future Nuclear, BWR I&E,
 Fuel and Chemistry, Scrams, Equipment Qualification
- ~300 curated Q&A, based on publicly available sources
- Documenting best practices on how to approach benchmarking and develop quality Q&A datasets

IAEA ISOP Taskforce 3: Benchmarking

Mission and Scope

Mission: Improve confidence in AI solutions for nuclear applications through comprehensive benchmarking of data, methods, and use cases

Scope: Nuclear-specific focus covering three critical areas:

Data benchmarking: Text (LLM), images, numerical (time series)

Methods evaluation: Al and supporting technologies

Use cases: CAP, CM/OLM, NDE, Computer Vision

Potential Deliverables:

Compilation of existing benchmarking datasets, databases, and efforts (i.e. NEA, IAEA, EPRI)

Guidelines on best practices (e.g. data synthesis)

Webinars and consultancy meetings

Data Availability Challenge

Engage startups (Bluewave Labs, Atomic Canyon, Nuclearn), utilities, national labs (e.g. PNNL, ORNL), and regulators

Structure existing public data for AI training

Kaggle competitions: Crowdsource dataset creation and benchmarking

Member state survey: Identify specific use cases and data sharing opportunities

Data synthesis best practices

Actions

Identify current public highquality datasets/use cases

Compile list of use cases we want to focus on Identify gaps in data availability

Identify potential sources of benchmarking data

Send out survey to ISOP members
Engage with externals on available data
Find potential resources for cleaning/improving quality of existing public data

Set up events/webinars, provide guidance on benchmarking

