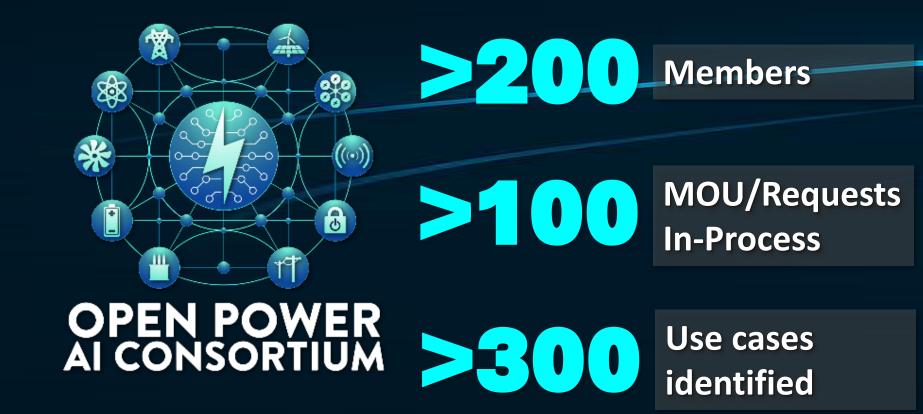


Open Power Al Consortium Member Representative Committee Meeting

October 2025

Agenda

Thursday, August 21, 2025								
Time (EST)	Topic	Lead						
11:00 am	Welcome & Key Updates							
	Meeting OverviewWork GroupsWhat's Coming?	Jeremy Renshaw, EPRI						
11:05 am	AI for Automating Rate Cases	Khalid Behairy, Deloitte						
11:25 am	Al Activities at SHI	Ganesh Tyagali, SHI						
11:45 am	IP Framework Update	Jacqueline Rosati, EPRI						
11:50 am	AI in PCM Challenge	Alvaro Porras, EPRI						
11:55 am	Al Sustainability White Papers	Brenda Brickhouse, EPRI						
12:00 pm	Adjourn	All						


Open Power Al Consortium

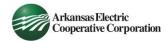
Creating an ecosystem for stakeholders to identify, develop, validate, and deploy AI solutions to transform the electric sector


Develop AI Models, Data & Roadmaps

Create an Al Sandbox

Implementation and Lessons Learned

OPAI Participants



entergy

Silicon

جامعــة خليفــة Khalifa University

Centre for Net Zero

GALVANIZE

JLFENERGY

Scottish & Southern

Innovate

OPAI Work Status - Initial Priorities for the Three Work Groups

Electric DSM WG

Lead: Ben Sooter

Al Use Case WG

Lead: Adrian Kelly

Deployment WG

Lead: Jason Hollern

What Do We Need from You?

- Fill out the MRC Survey
 - https://www.surveymonkey.com/r/partcipantsurvey
 - Assign staff to Work Groups (if not done)
- Share public examples of relevant use cases
 - Proposed
 - Ongoing
 - Completed

 Reach out to <u>irenshaw@epri.com</u> to speak in future meetings

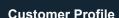
Participant
Survey QR Code

Data Readiness White Paper

How can we properly leverage data to support Al initiatives?

Al Readiness in Utilities: Turning Data into Strategic Advantage

The first in a series of guidance documents to accelerate AI implementation


SHI AI& CYBER LABS

Imagine. Experiment. Adopt.

Work Order Scheduling and Operations
10/21/25

How organizations solve what's next with SHI

Global Telecommunications Company

Customer Outcome

Enabling 30% faster project delivery. Automated dispatch and task sequencing for 12,000 technicians nationwide. Improved efficiency and reduced delays. Seamless integration with existing tools.

Why SHI

Deep Telco expertise.
Proven Al capabilities and expertise.
Strategic NVIDIA partnership for advanced solutions.
Ability to integrate with existing systems, saving time and cost.
Consultative approach tailored to customer's needs.

Partners NVIDIA

Why SHI: Transforming Field Operations: Enabling 30% faster project delivery and increased user experience through Al-driven automation for Telco giant.

Problem

The customer faced lengthy and complex project planning cycles due to inefficient, out-of-sequence dispatching across multiple systems for 12,000 field technicians nationwide.

Critical field projects were slowed by manual scheduling, fragmented workflows, and no real-time integration with essential data - such as permits, weather, or safety requirements.

Existing workflows were difficult to optimize without costly system overhauls, impacting both operational efficiency and customer satisfaction.

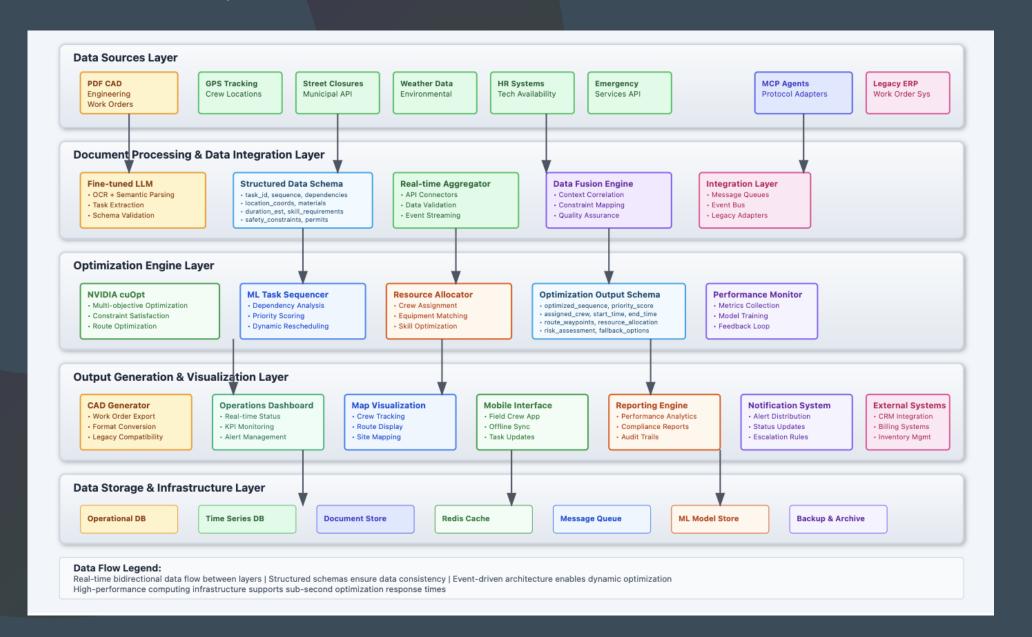
Solution

To deliver a cutting-edge, Al-powered solution to transform field operations.

Leveraging deep telecommunications expertise and a strategic partnership with NVIDIA, SHI seamlessly integrated the NVIDIA cuOpt system into existing tools - without disrupting workflows.

SHI's AI Lab and data scientists collaborated closely with the customer to automate and optimize task sequencing, enabling real-time data integration and streamlined dispatch for 12.000 field technicians nationwide.

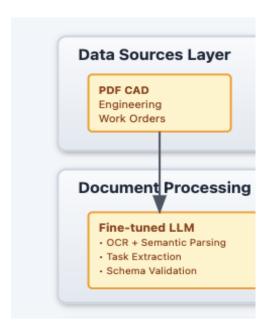
This innovative approach empowered the organization to achieve new levels of speed, accuracy, and efficiency.

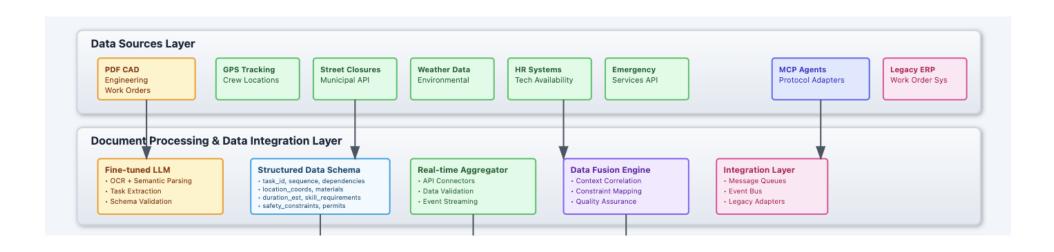

Impact

By deploying an advanced Al-driven solution, the customer is positioned to dramatically accelerate project planning and execution, enabling field operations to move from concept to completion with greater efficiency.

Seamless integration with existing tools eliminated the need for costly rebuilds and minimized operational disruption, ensuring uninterrupted business continuity.

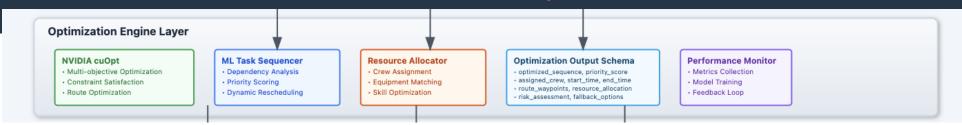
The scalable solution has established a five-year value trajectory, empowering ongoing process improvements, accelerating innovation, and positioning the customer to confidently pursue new strategic initiatives - all while significantly enhancing the customer's end-user experience.


System Architecture of the Solution


Document Processing Layer

- The document ingestion component utilizes a fine-tuned large language model specifically trained on Engineering Work Order (EWO) documentation. This component extracts structured data from PDF engineering work orders, identifying task sequences, material requirements, location specifications, and technical parameters. The system employs optical character recognition combined with semantic parsing to handle both text and diagram elements within the CAD drawings.
- The extracted data undergoes validation against predefined schemas that represent standard telecommunications work order formats. This ensures consistency and enables downstream processing components to operate reliably with the structured information.

Real-Time Data Integration Layer



- Multiple data streams feed into the system through dedicated API connectors and MCP (Model Context Protocol) agents. These include GPS tracking systems for crew locations, municipal databases for street closure information, human resources systems for technician availability and skill mapping, weather service APIs for environmental conditions, and emergency services coordination systems for safety considerations.
- Each data source maintains its own connector service with built-in retry logic, data validation, and caching mechanisms to ensure reliable data flow even during network interruptions or service outages.

Optimization Engine

NVIDIA cuOpt

- The core optimization component leverages NVIDIA cuOpt libraries/engine combined with custom machine learning algorithms, as needed for task sequencing and resource allocation. The system considers multiple constraint types including temporal dependencies between tasks, resource availability, geographical proximity, weather conditions, and regulatory requirements.
- The optimization engine processes these constraints through a multi-objective optimization framework that balances efficiency, safety, customer impact, and resource utilization. Advanced scheduling algorithms account for dynamic changes in conditions and can trigger re-optimization when significant disruptions occur.

Optimization Engine Output

Work Order: EWO-2025-001

Title: Fiber Cable Installation - Bayview Ave Location: Bayview Ave, Beverly, MA Date: June 30, 2025

Generated: 10:45 AM EDT

Original Work Order Analysis

Extracted Tasks from CAD Document

The AI Document Intelligence Engine processed the CAD drawing and identified the following key tasks:

- 1. Site Survey & Safety Setup 30 minutes
- 2. Permit Verification 15 minutes
- 3. Traffic Control Setup 45 minutes
- 4. Excavation Planning 15 minutes
- 5. Trench Digging (120ft) 2.5 hours
- 6. Utility Locating Verification 30 minutes
- 7. Conduit Installation 1 hour
- 8. Fiber Cable Placement 1.5 hours
- 9. Splice Enclosure Installation 45 minutes
- 10. Fiber Splicing 2 hours
- 11. Signal Testing 30 minutes
- 12. Site Restoration 1 hour
- 13. **Documentation & Cleanup** 30 minutes

Original Estimated Duration: 11.5 hours Original Resource Requirement: 4 technicians

Real-Time Data Integration Impact

Current Conditions (10:45 AM)

- Weather: Light rain expected 2:00-4:00 PM (40% chance)
- Traffic: Mission St experiencing moderate delays (+15 min travel time)
- Street Permits: Active until 6:00 PM
- Emergency Services: Fire station drill 12:00-1:00 PM (affects response times)

Resource Availability

- Mike Chen (Senior Tech): Available 8:00 AM 5:00 PM
- Sarah Johnson (Splice Specialist): Available 9:00 AM 4:00 PM
- David Rodriguez (Excavation): Available 7:30 AM 3:30 PM
- Alex Thompson (Fiber Tech): Available 10:00 AM 6:00 PM
- Equipment: All required equipment available at depot (15 min transport)

Municipal Data

- Street Closure: Pre-approved for Mission St (one lane)
- Utility Conflicts: Gas line clearance required (already obtained)
- Parking Restrictions: Temporary no-parking 8:00 AM 6:00 PM

NVIDIA cuOpt Optimization Results

Optimization Objectives

- 1. Minimize Total Duration (Priority: High)
- 2. Avoid Weather Conflicts (Priority: High)
- 3. Optimize Resource Utilization (Priority: Medium)
- 4. Minimize Travel Time (Priority: Medium)

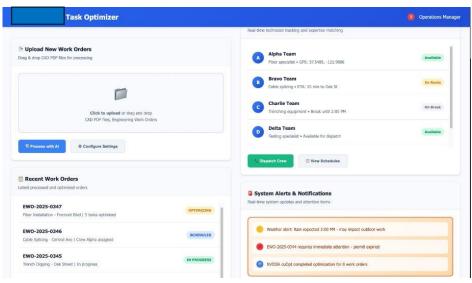
Optimization Score: 96.2%

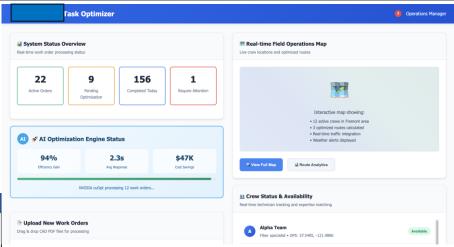
Key Improvements:

- **Duration Reduced:** 11.5 hours → 8.5 hours (26% improvement)
- Resource Efficiency: 4 technicians → 3 technicians + 1 specialist
- Weather Risk Mitigation: Outdoor tasks scheduled before rain
- Dependency Optimization: Parallel task execution where possible

Optimized Task Sequence

Phase 1: Site Preparation (8:00 AM - 9:15 AM)


Task ID	Task Name	Technician	Start Time	Duration	Dependencies	Equipment
T001	Site Survey & Safety Setup	Mike Chen	8:00 AM	30 min	None	Safety equipment, Survey tools
T002	Permit Verification	Sarah Johnson	8:15 AM	15 min	None	Permit documents
T003	Traffic Control Setup	David Rodriguez	8:30 AM	45 min	T001	Traffic barriers, Signage


Optimization Notes:

Output Generation and Visualization

 The system generates Interactive dashboards provide real-time visibility into work progress, resource allocation, and performance metrics. The visualization component includes mapping interfaces that display crew locations, work sites, and optimized routing information.

Al Applications in Sustainability

Al Application in Sustainability

Prompt evolution provided

Reporting and Disclosure Impact

- Expanded metrics on grid reliability (e.g., SAIDL SAIFI).
- Enhanced climate risk disclosures aligned with TCFD.
- Inclusion of equitable access and resilience planning in ESG reports.

2. Accelerated Deployment of Clean Energy Technologies

- Trend Overview
- Federal and state incentives are driving rapid deployment of renewables, storage, and emerging technologies like hydrogen and carbon capture.
- Implications for Sustainability Teams
- Evaluate lifecycle emissions and supply chain sustainability.
- Guide investment decisions based on technology readiness.
- Reporting and Disclosure Impact
- Detailed disclosures on emissions reductions by technology.
- Lifecycle and supply chain transparency in ESG reports.
- Alignment with Science-Based Targets (SBTI) and net-zero pathways.

Industrial Decarbonization and Scope 3 Emissions Accountability

- Trend Overview

Utilities are expected to support industrial decarbonization and account for Scope 3 emissions from supply chains and downstream energy use.

- Implications for Sustainability Teams
 - Engage industrial customers in electrification and efficiency programs.
 - Expand emissions tracking beyond internal operations.
- Reporting and Disclosure Impact
- Quantification and disclosure of Scope 3 emissions per GHG Protocol.
- Metrics on customer engagement and supplier sustainability.
- Emphasis on value chain collaboration in ESG narratives.

Key Supporting Resources

- IEA Global Energy Review 2025 [1]
- U.S. Department of Energy: Clean Energy Initiatives [2]
- Utility Dive 2025 US Power Sector Outlook [3]
- EPRI Energy Sustainability Interest Group (ESIG)
- Task Force on Climate-Related Financial Disclosures (TCFD)
- Science Based Targets initiative (SBTi)
- GHG Protocol Scope 3 Standard

Notes and Prompt Evolutions

Framework: CRAFT

2 | Al Challenge: May 2025

Prompt #1

 Context: The Electric Power Research Institute (EPRI) is conducting research to identify the top three sustainability trends related to energy utilities in North America in 2025.

PROMPT NOTES AND EVOLUTIONS

- Role: As the researcher, you are responsible for creating a report
- Action: Write a report on the top three sustainability trends in 2025, including a description of why they are relevant to the energy utility sector.
- · Format: Write a one-page report on the trends.
- · Target Audience: Energy utility sustainability personnel.

- Ran the same prompt multiple times. While the general content themes were similar, each response differed in the titles and support test for the top three trends, and each query cited different sources.
- Researchers noted that in each instance, a maximum of two sources were cited. A decision was made to attempt to force Copilot to reference more sources and provide more examples of citations to support the identification of trends across an entire industry.

Prompt #2

(Changes from first prompt highlighted in yellow.)

Framework: CRAFT

 Context: The Electric Power Research Institute (EPRI) is conducting research to identify the top three sustainability trends that may impact energy utilities in North America in 2025.

May 2025

le for checkif the claims

stainability why they are le a compreprovided.

ends. ty personnel.

n two re two new This begs the information minority, or a small numes not have

s provided, ons, do not ty profesy target rchers added as impacts to

r.)

tute (EPRI) is ee sustain-

ability trends that may impact energy utility sustainability teams and/or functions in North America in 2025.

- Role: As the researcher, you are responsible for checking multiple sources to verify the validity of the claims while creating a report.
- Action: Write a report on the top three sustainability trends that may impact energy utility sustainability teams and/or functions in North America in 2025. Provide a comprehensive list of sources for the information provided.
- . Format: Write a one-page report on the trends.
- . Target Audience: Energy utility sustainability personnel.

Notes and Prompt Evolutions

- While the general format and themes of the response was similar to previous prompts, this iteration provided a clear call-out to the "Implication" for sustainability teams.
- The overall format of the response was deemed to be sufficient. Researchers appreciated that this response provided both an short introduction and conclusion as well as clear sections and implications for each trend. Therefore, potential follow-up questions were evaluated to test further capabilities.
- Aside from one mention of emissions accounting frameworks, the researchers were surprised to see no other mention of sustainability reporting and disclosures, as that is often a primary responsibility of the sustainability function. A follow-up question was asked to this prompt: "How will these trends influence or impact sustainability reporting and disclosure?"

PROMPT #3/FOLLOW-UP #2: TEGRATE THE LATEST RESPONSE ON ORTING AND DISCLOSURE INTO THE TIAL RESPONSE ON THE TOP THREE SUSTAINABILITY TRENDS.

follow-up merged the segmented onses into one response, roughly page in length, maintaining the hat that researchers had deemed opriate from Prompt #3.

archers noted that this response onger included references or sions. A follow-up question asked model to produce a list of relevant urces that support its response.

PROMPT #3/FOLLOW-UP #3: ADD A LIST OF RELEVANT RESOURCES THAT SUPPORT YOUR RESPONSE.

This follow-up question provides an additional copy of the full "report" generated in the last follow-up question, while also providing a list of "Key Supporting Resources."

Researchers made the professional decision to end further questioning of the AI model and evaluate the content of the final response.

.

3 | Al Challenge: May 2025

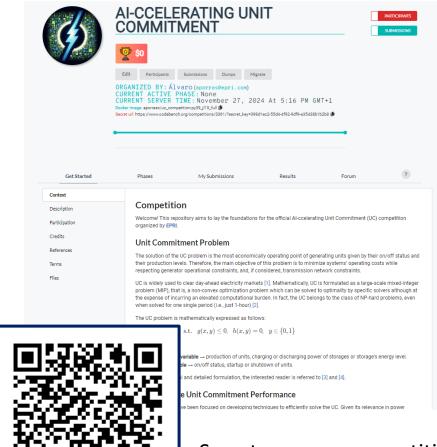
May 202

Coming Soon

- Identification of challenges faced
- Final summary of lessons learned

Monthly Challenges

Recent Queries


- Report changes to decarbonization targets and goals over the last 2 years
- Provide metrics to track progress on an energy utility company's biodiversity
- Explain the concept of double materiality and why it is relevant to the energy utility industry
- EPRI member company scores for CDP, MSCI, and Sustainalytics

The Disclaimer

 EPRI researchers have not modified the content, citations, or grammar, but have formatted the response to fit this document. DO NOT leverage the information presented in the following Al-generated response without appropriate verification and do not attribute to EPRI.

Al-ccelerating Production Cost Modeling Competition

Why it Matters:

Production cost modeling is vital for power system planning, but it's computationally demanding.

The Al Advantage:

Al can dramatically speed up production cost modeling by reducing computational load potentially without sacrificing accuracy, especially in long-term planning.

Competition Goal:

- Develop AI models that accelerate production cost modeling
- Real-world scenarios from the Irish Power System
- Submit Al agents for evaluation
- In-depth analysis of results post-launch

Scan to access competition website

