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REPORT SUMMARY

This report describes an empirical study of the prediction of human performance and energy
facility performance based on analysis of historical data relating to worker-, workplace-,
management-, and organization-centered factors. Findings verify the relationship between such
antecedent conditions and subsequent human performance and facility productivity, reliability,
and safety.

Background

The most frequently used approach to study human performance and reduce the impacts of
human error is retrospective, i.e., the review of an accident, intended to identify its cause(s),
leads to identification of corrective action(s) intended to prevent repetition of the accident.
Although the retrospective approach has yielded significant benefits, the ability to predict human
performance could support more efficient allocation of resources toward error prevention and
human performance optimization. A literature and experience review (EPRI report 1004668) led
to the concept of organizational epidemiology, in which data relating to human error, human
performance, and facility performance are combined with contextual information that could
reveal antecedent conditions for performance changes.

Objective

To explore the feasibility and practicality of applying organizational epidemiology in energy
industry contexts by collecting historical data from energy facilities and assessing the use of
various analytical methods to predict human and facility performance.

Approach

Previous EPRI strategic work (1004668) revealed that exploration of organizational
epidemiology should involve the collection of historical data relating to measures of potential
antecedent conditions (predictors) and of human and facility performance (outcomes). In this
study, a preliminary list of measures of interest potentially available from energy facilities was
developed in conjunction with management and personnel from two nuclear plants. Through
collaborative work with two fossil plants, investigators obtained suitable data for various
measures of interest. They next applied statistical methods based primarily on regression
techniques to find reliable relationships between possible predictor variables and four outcome
measures.

Results

Statistically significant predictive models emerged for each outcome measure, despite limitations
imposed by the restricted data sets ultimately obtained. These data sets were restricted in the
number of years of data archived, in the usability of some data, and, even more, by the lack of
other measures that would more directly tap training, safety efforts, and other factors that had



been deemed of interest. Based on analyses of these data sets, predictor measures related to
injuries, sickness, absenteeism, corrective and preventive maintenance activity, and, possibly,
seasonality hold particular promise for reflecting the antecedent conditions associated with
changes in human performance and consequent facility performance. Several of the models
accounted for more than 50% of the variance in the outcome measures.

Predictive models could have real value for energy facilities that take advantage of their existing
data resources. Of perhaps equal importance is the conclusion that it will not be possible to
specify the models (particularly model coefficients and optimum lags) in advance. Although
some connections identified in this study between predictors and outcomes were not surprising,
the details were discovered only through statistical analysis. This finding supports the long-held
suspicion that performance may be shaped by many factors operating at multiple organizational
levels and interacting over varied time scales. It also shows that analytical tools are needed to
quantify such relationships and optimize predictive models.

Organizational epidemiology appears promising for energy industry facilities and additional
industrial and organizational settings, but several lessons learned and important caveats should
be considered. Practical recommendations are provided to help energy company analysts and
researchers apply lessons regarding the acquisition of data on potential measures of interest.
Major caveats are as follows: 1) the models developed in this study are predictive only after the
fact, describing relationships found in historical data; and 2) statistically predictive models do
not necessarily help analysts understand the bases for performance changes. Follow-on studies
could help determine whether truly predictive models can be developed as well as examine
causal relations between predictors and important performance outcomes.

EPRI Perspective

This report was prepared as part of the “Human Performance Management: Database and
Analysis” project under the Strategic Human Performance Program. The project sought to
improve understanding of how varied factors affect human and facility performance. Such
knowledge would enable development of methods and tools for predicting performance and
informing design of prospective or proactive interventions. The study described in this report—
the first major attempt to explore the use of organizational epidemiology in energy industry
settings—provides proof of concept for this type of approach. Compatible findings were
produced in a complementary strategic study (1004670), which investigated a predictive
approach based on work by EPRI’s Nuclear Sector to develop leading indicators of organizational
health (reports TR-107315, 1000647, 1003033). Further work is needed to develop predictive
methodologies, test their applicability in real-world environments, and employ their findings for
guiding efforts to optimize human performance and improve the reliability, safety, security,
productivity, and environmental performance of the energy infrastructure.
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1

INTRODUCTION

Human performance is fundamental to the planning, design, procurement, installation,
management, analysis, operation, and repair of energy infrastructure, as well as to the
introduction and acceptance of new technology. Managing and improving human performance
are critical to optimize the performance of the energy infrastructure and achieve economic,
environmental, and social goals.

Human performance is also a critical determinant of safety in the energy and other industries. It
is often estimated that a majority of significant events (accidents or mishaps) in commercial
nuclear power plants and other industrial facilities—perhaps as high as 70-80%—involves
human error or inappropriate action as a critical element (e.g., Ayres et al., 1993; Muschara,
1997). In addition to contributing to significant events, human error also plays a frequent role in
exacerbating the severity of consequences (Fujimoto, 1994; Heyes, 1995). Successful reduction
of human error problems yields clear benefits with respect to both safety and cost (e.g., Lanoie &
Trottier, 1998; Smith & Larson, 1991).

In regulated, high-risk industries such as electricity production and delivery, the potential
economic, environmental, and social costs of events—including the remote but real possibility of
a catastrophic outcome—motivate prospective efforts to identify antecedent conditions
associated with human errors and performance deficiencies. Ideally, selection of corrective
actions and planning and implementation of preventive measures could be implemented based on
the appearance of antecedent conditions of problems; similarly, detection of antecedent
conditions that foreshadow good performance could guide the allocation of resources for human
performance optimization. Methods and tools that enable prospective or proactive human
performance intervention thus could prove extremely valuable in the energy industry and other
sectors.

Numerous tools based on the management of organizational factors have been proposed and
applied in industry settings for human performance improvement (see review in EPRI, 2001a);
selection of site- or situation-specific tools would benefit from identification of antecedent
conditions. This report describes a methodology for developing predictive models of human and
facility performance based on statistical analysis of historical (archived) data from energy
facilities. Application of this method could be expected to improve the effectiveness of human
performance management efforts.

Research Context

The “Human Performance Management: Database and Analysis” (HPM) project, a major
element of EPRI’s Strategic Human Performance Program (1999-2001), sought to improve
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Introduction

understanding of how aspects of worker-, workplace-, management-, and organization-centered
factors affect human and facility performance. The overall strategic program is providing tools,
capabilities, and services to optimize human productivity and reliability in specific workplace
environments, as well as to anticipate and address factors with adverse impacts on human
performance and on the productivity, reliability, and safety of energy and other facilities.

An extensive literature and background review, conducted as a lead-in to the HPM project, was
published in 2002, with a substantial annotated bibliography incorporated in the appendices
(EPRI, 2002a). It surveyed relevant technical human performance literature and state-of-the-art
human performance data collection, handling, and analysis practices developed for and applied
in industry and government contexts. The literature and experience review was intended in large
measure as support for empirical research.

Two empirical studies were initiated as the most substantial part of the effort carried out under
the strategic HPM project. The central study, described in this report, sought to apply what may
be called organizational epidemiology (Rosenthal, in Hale et al., 1997). The second, the
“Predictive Validity of Leading Indicators of Human Performance” (PV) study, took an initial
look at a related approach (EPRI, 2001b).

The organizational epidemiology concept involves linkage of data regarding human and facility
performance with information on workplace conditions in order to explore possible relationships
between corporate performance measures, such as events or accidents, and organizational
attributes. The study that is the central topic of this report took a broad perspective on the types
of antecedent conditions that could influence both human and facility performance.

Preliminary findings from the study were described in an interim report, Organizational
Epidemiology: Analytical Approaches for Predicting Human and Energy Facility Performance
(EPRI, 2002b). Interim findings from the literature/background review and the two empirical
studies were briefly summarized in several conference presentations (Murray et al., 1999; Gross
et al., 2000; Ayres et al., 2001; Gross et al., 2001).

Report Organization

Section 2 of this report reviews the background for this research study, based primarily on the
review conducted earlier (EPRI, 2002a). It discusses characteristics of human error and describes
how discovery of the factors contributing to human error, i.e., the antecedent conditions, may
enable development of proactive human performance improvement measures.

Section 3 details the methods used to identify data for the study. This includes discussion of the
empirical approach chosen for this work, as well as description of the types of data considered
most likely to be useful. Section 4 describes the actual data collection process and the final data
set. Section 5 identifies analytical tools considered for trial use in the project, as well as methods
that were actually applied. Section 6 details the analyses and findings. Section 7 covers the
practical lessons learned for conducting this type of research, both from this study and from the
previous PV study. Finally, Section 8 provides conclusions and recommendations, and references
are listed in Section 9. Appendix A details results from trial use of a multivariate visualization
technique.
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2

HUMAN ERROR—CAUSES AND ANTECEDENTS

Much has been written about human error. Numerous reviews are available (e.g., Moray, 1992;
Park, 1997; Reason, 1990, 1997), and a variety of cognitive models have been developed for
error generation. The literature and background review conducted for the strategic HPM project
guided the research directions pursued in this empirical study of human performance prediction
in energy facilities. Conclusions and recommendations from that review are summarized in this
section; more details, including an annotated bibliography, can be found in the full literature and
background review report (EPRI, 2002a).

Human Error

The term human error is itself controversial. It implies fault and invites blame even though, in
many instances, the person(s) who acted improperly did not do so intentionally. The general term
human error is used in this report for the sake of convenience (since it is the most common term
in the field), but public pronouncements and workplace safety programs might do well to adopt
more neutral language for referring to situations in which human action or inaction is judged to
be less than adequate.

Human error is sometimes distinguished from deliberate inappropriate action or inaction. For this
project, human error is understood to include both unintentional and intentional errors of
commission or omission, while it is recognized that categorizing errors by type or circumstance
can be useful for understanding, prediction, and prevention. For example, one common error
typology distinguishes between skill-based, rule-based, and knowledge-based errors (Rasmussen,
1986), and several researchers add a fourth category for judgment- or attitude-based errors
(Lehto, 1991; Ayres et al., 1993). Intentional errors, including deliberate sabotage, could be
regarded as extreme cases of judgment/attitude errors.

The preponderance of judgment/attitude errors in many contexts—and their resistance to training
programs (Ayres et al., 1993)—creates a quandary for human performance improvement efforts.
Problems with traditional enforcement solutions for such errors in one area of human behavior in
an industrial context are discussed in a report produced under the EPRI Strategic Human
Performance Program (EPRI, 2001c), as are suggested directions for human error reduction
through implementation of behavioral safety programs. Error types that are more difficult to
eliminate, however, are not necessarily more difficult to predict. Indeed, the very difficulty of
improving certain aspects of human performance by traditional solutions, such as training and
enforcement, increases the need for tools that can help predict such problems in advance.
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Human Error—Causes and Antecedents

Antecedent Conditions

In order to find ways to reduce error frequency (or the frequency of nonoptimal performance) in
the workplace and to mitigate the associated consequences, it is important to identify antecedent
conditions for human errors. Strictly speaking, it is not necessary to identify causes of human
error, nor even the facilitating factors that allow errors to occur (although knowledge of both
causes and facilitators would be very helpful, and this approach receives considerable research
attention). Rather, considerable safety gains should be possible if antecedent conditions can be
discovered, allowing managers and supervisors to predict general error trends and to spot trouble
in advance—even if the causal links are not understood. In this project, the search for antecedent
conditions concentrates on antecedent conditions for human error (ACHEs). It is just as
reasonable, however, to try to find antecedents for human performance improvements or, more
generally, antecedents for human performance changes.

For antecedent conditions to be useful for predicting future performance, they need to be
causally related in some direct or indirect way to the performance; otherwise there would be no
reason to believe that the antecedent conditions would have predictive value. It is important to
note that the causal relation can take several forms. An antecedent condition can cause a human
performance change, either directly (e.g., hot weather could cause people to have mishaps) or
indirectly (e.g., hot weather could cause high absenteeism, in turn leading to mishaps). Another
possibility is that an antecedent condition can reflect or be affected by some factor that also
causes a human performance change, either directly (e.g., a rise in minor injuries could reflect
hot weather, which might lead to mishaps) or indirectly (e.g., a rise in minor injuries could
reflect hot weather, which might lead to maintenance errors that would show up later as facility
performance problems). Thus, the search for ACHEs includes but is not limited to the search for
causes of human performance problems. For practical purposes, it would be useful to find
measures that are correlated with future performance, even if the causes of the correlations are
not understood.

Deductive and Inductive Approaches

Two general approaches may be used to find antecedent conditions of human performance
changes or human error: deductive and inductive. Deduction involves reasoning from principles
to specific conclusions; induction involves generalization from data to general rules. The contrast
between these approaches may be used to distinguish much of the previous work on error
prevention from the study described in this report.

Deduction makes use of human intuition and insight to develop models of human error and
organizational behavior. As a prime example, the search for leading indicators of human
performance has involved review of both research literature and accident data. Work for the U.S.
Nuclear Regulatory Commission (NRC) has produced proposed leading indicators for nuclear
power plant safety based on experience in other industries; the NRC’s proposed indicators
include significant incidents, reportable incidents, precursor incidents, equipment-forced
downtime, safety system unavailability, and unrelated contained releases (Connelly et al., 1990;
Van Hemel et al., 1991; see also American Society for Quality, 1999).
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Recently, in work funded by the EPRI Nuclear Sector’s Human Performance Technology (HPT)
Program, review of available models of human performance led to the identification of seven
“recurrent themes” that could form the basis for proposing leading indicators of human
performance (EPRI, 1999a, 2000, 2001d; Wreathall & Jones, 2000). The seven themes represent
a high-level or very general synthesis of cultural or organizational factors. Through a process of
deduction and discussion, the themes could be tied to industry-specific issues and eventually to
potential indicators that would reflect conditions at a site or facility relevant to the corresponding
themes. Since the themes were intended to represent factors that are widely believed to affect
human performance in work settings, it was hoped that related indicators could serve as leading
indicators, giving advance notice of human performance changes.

In a study performed under the strategic HPM project, based on the prior work performed by the
Nuclear Sector’s HPT Program, the predictive validity of the leading indicators methodology
was explored (EPRI, 2001b). Results provided support for the premise that such indicators
ultimately might help predict facility performance outcomes and guide human performance
interventions. In the present report, the practical lessons regarding research methodology issues
(Section 7) and the conclusions regarding performance prediction (Section 8) draw in part on the
findings of the predictive validity study.

At the opposite end of the spectrum, a purely inductive approach would start with data on human
performance and the workplace context, and atheoretical analyses would be used to look for
patterns or relationships. In principle, given enough data about the background or context in a
workplace—along with information about observed human errors—it should be possible to
discover predictive relationships (if any exist) between background antecedents and the errors.

In practice, a purely inductive approach does not make sense; some initial decisions need to be
made about the data to be collected, based in part on intuition, convenience, and similarity of
possible predictors to factors that appear relevant based on prior research. The models and
findings of the deductive approach can be used here to suggest potentially interesting measures.
Alternating the complementary processes of induction and deduction—observations lead to
generalizations that lead to hypotheses or research questions to be tested or examined with
further observations—is a normal feature of the experimental sciences.

Most attempts to identify potential ACHEs involve (or begin with) deduction. For example, if
accidents seem to have occurred when complicated tasks were performed across a shift change, it
makes sense to suggest that the scheduling of such tasks across shift changes might be a
predictor or antecedent condition for human performance problems (logical deduction); a
hypothetical causal mechanism would be inadequate information transfer between personnel at a
shift change. Thus, a combined approach—reasoning from observations to hypothesized
principles (induction) and then back to potential specific indicators (deduction)—is useful for
suggesting potential antecedent conditions.

The distinguishing feature of a strongly inductive approach to human error precursors (or an
inductive phase of investigation) is the effort to collect a wide range of measures about context
or background (and thus about possible antecedent conditions) without second-guessing the
nature of any relationships that may show up. Rosenthal (in Hale et al., 1997) proposed the
pursuit of organizational epidemiology, linking databases to explore possible relationships
between accidents and the attributes of organizations and regulatory systems in the chemical
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industry. The hope of such an approach is to find emergent and perhaps unanticipated patterns of
relationships. Instead of starting from a proposed causal relation and then seeking confirmation,
the inductive approach would discover a consistent relationship between conditions and
performance and, thus, invite speculation, analytical consideration, or research to understand the
causal basis.

Organizational Epidemiology in the Energy Industry

Conducting organizational epidemiology in the energy industry involves three components. First,
detailed data on errors (or other outcomes to be predicted) need to be collected and organized.
Second, extensive related data reflecting background conditions must be identified and gathered.
Finally, analytical tools for discovering patterns and predictive relationships need to be applied.
Issues related to data are discussed below and in Section 3; analytical tools are discussed in
Section 5.

The most useful error data are likely to involve reports of incidents. The term incident is used
here to cover a wide spectrum, from major accidents and events at one end, through minor
mishaps to near misses, to inconsequential errors at the other extreme. Catastrophic accidents
need to be studied in great detail because of their severe consequences, but (fortunately) they are
too rare to permit systematic, quantitative (statistical) study of the causes and likelihood of
human error. Accident frequency, of course, is at least partly a function of exposure, or how
often a given activity takes place; it is not surprising that there are more fatal accidents in the
trucking industry than in the power industry, given that far more annual person-hours are spent
working in the former than in the latter.

Review of incident reports can provide insights into commonly attributed causes and into the
apparent success of various safety interventions, such as with regard to errors involving selection
of the wrong unit or train in a nuclear power plant (EPRI, 1994). Data regarding workplace
injuries (and other occupational health and safety factors) in the energy industry are being
studied in a continuing project by the EPRI Environment Sector’s Occupational Health & Safety
Program (EPRI, 1999a, 2001e). Accident reports, however, have limitations for studying human
error: Accidents are rare and uncontrolled events, reporting tends to be inconsistent and biased
towards more serious events (Thompson et al., 1998), and accidents tend to be complex and to
raise concerns about liability and punishment within organizations (Tamuz, 1994). Near-miss
reports seem to offer a desirable alternative, but such events are rarely reported with adequate
consistency and detail for analysis; many energy companies have programs in place for near-
miss reporting (e.g., EPRI, 2001e), but these programs typically lack mechanisms and policies to
ensure frequent reporting and centralized archiving. Thus, in this study, incident reports were
selected as a source of more direct and available data on human errors at energy facilities.

Selecting and obtaining data related to the context within which errors occur represent major
hurdles for an inductive or empirical approach to human error analysis in complex organizations.
The number of variables that might be studied in a large work setting such as an energy facility is
too large to justify any attempt to exhaustively collect, organize, and analyze associated data.
Even in the restricted environment of a control room, many types of measures of work
conditions, operator conditions, and human and system performance have been considered, such
as in the ongoing research program at the Halden Reactor Project (e.g., Haugset, 1997).
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From a practical standpoint, it would be ideal if useful contextual measures could be found
among data streams that are already collected on a routine basis. This would allow researchers to
study the predictive value of the various measures using historical (archived) data; it would also
allow organizations to make human performance predictions without additional and possibly
cost-prohibitive data collection efforts. Discovery of predictive relationships requires
considerable historical data. Thus, finding predictive value in the data that have been collected
for years at energy facilities would help companies obtain practical results more quickly and
more economically than if new data collection procedures had to be instituted.

On the other hand, although complex energy facilities already collect a staggering amount of
data, there is no assurance that they collect the best data for examination of potential antecedent
conditions for human performance and safety. Growing interest in human performance
prediction and improvement is leading some nuclear plants to begin collecting new measures,
such as survey responses following task completion (EPRI, 2001g) or periodic observations of
the frequency of safe behavior by employees, as well as measures intended to bear on selected
leading indicators of organizational health (EPRI, 2001b, 2001d). Eventually, when sufficient
data accrues, studies of organizational epidemiology may be enhanced by the availability of such
measures.

An empirical inductive approach to studying context-behavior relationships needs to cast a rather
broad net for data, but some tentative guidelines also need to be adopted for what is most likely
to be useful. Rather than relying too heavily on intuition or educated guesswork, it is appropriate
to consider research on factors that influence human performance. Indeed, that was a major goal
throughout the literature review conducted for this project (EPRI, 2002a): to learn from past
efforts to identify worker-, workplace-, management-, and organization-centered factors that
influence human and facility performance and to use these factors for predicting future
performance.

There have been several attempts to review and consolidate previous work on factors that
influence human performance in organizational and industrial settings. For example, Wilpert &
Miller (1999) reduced 160 potential influencing factors at nuclear power plants that had been
proposed in 13 organizational factor models to just over 60 factors, grouped in seven categories.
Similarly, participants at a 1998 workshop on organizational factors related to nuclear power
plant safety reached a consensus on 12 major factors important for safety (Committee on the
Safety of Nuclear Installations, 2000):

e External influences (from outside the boundary of an organization)
e Goals and strategies

e Management functions and overview

e Resource allocation

e Human resources management

e Training

e (Coordination of work

e Organizational knowledge
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e Proceduralization
e Organizational culture
e Organizational learning

e Communication

The report from that workshop provides definitions and “aspects” for each factor, as well as
suggested techniques for gathering data. Unfortunately, most of the data, with the exception of
some types of performance data, would be unusual to find routinely in energy industry or other
organizational settings. Many of the items listed as aspects of the major safety factors have no
clear counterparts in routinely archived facility data. The possibility exists, however, that routine
data may provide surrogate measures—ones that indirectly reflect the influence of these or other
important characteristics. It is not essential to understand connections between measures and
underlying factors, although theory (or models or hunches) could lead to exploration of measures
that would otherwise not be obvious. For example, possible ACHEs such as stress and workload
(which are likely to influence performance) may not be measured directly in typical energy
industry settings, but they may be captured indirectly in available measures such as overtime
hours or corrective maintenance activity.

There is general agreement that operational safety depends on a wide variety of organizational,
environmental, task, and worker factors. Wreathall er al. (1991) summarize this state of affairs in
the “onion model” of human performance influence factors, with the worker at the center of rings
of influence from the team and work environment, the surrounding organizational and corporate
factors, the facility and site conditions, and the outside public and regulatory environment. Such
factors have been codified as performance-shaping factors for probabilistic risk assessment in
the nuclear power industry (e.g., Cooper et al., 1996).

Selection of appropriate and useful variables to include for organizational epidemiology requires
an iterative process. For example, if preliminary analyses indicate that certain factors seem to
have no predictive value, they may be given lower priority for future data collection. On the
other hand, ruling out variables on the basis of intuition, past research, or failure to find an
interesting pattern may compromise the chances of finding new and nonintuitive patterns when a
larger data set becomes available.

Finally, it bears repeating that the goal of this research project is not to understand the causes of
human error and human performance problems in the energy industry (although that would be a
valuable aim). Indeed, such an understanding may in principle be impossible within the
framework of current science. The recent work on computation and complexity by Wolfram
(2002) suggests that complex behavior—including that exhibited by even simple systems, let
alone that of multi-agent interconnected organizations such as energy facilities—may arise from
fairly simple rules and yet be impervious to analysis. Even if computational models can
ultimately be developed to mirror the complex behavior of facilities and organizations, both
understanding and detailed prediction may be beyond analytical reach. Nevertheless, statistical
models that accept probabilistic or random (i.e., not understood) components in complex systems
frequently provide a useful degree of predictability, and the same may be true for energy facility
performance.
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METHODOLOGY—DATA IDENTIFICATION

As noted in the previous section, the literature and experience review (EPRI, 2002a) indicated
that an exploration of organizational epidemiology for energy industry facilities should involve
the collection of data relevant to human and facility performance (outcomes) as well as to
potential ACHESs (antecedent conditions of human error or, more generally, predictors of human
performance). This section describes the basic methodology employed to identify appropriate
data for the HPM project.

Data Sought

To pursue the primarily inductive, or bottom-up, approach planned for this strategic project, an
effort was made to review the types of information normally collected and archived at energy
facilities (for more details, see EPRI, 2002a). At two nuclear power plants (owned by separate
U.S. companies) and two fossil power plants (owned by one non-U.S. company), several days of
interviews were conducted per site with a variety of technical and managerial personnel.
Interviewers spoke with senior management and with other personnel responsible for various
areas within the organization. Based on those interviews and discussions and a synthesis of
results across the four sites involved, indices of interest were identified as shown in Table 3-1. It
was not expected that all of these types of data could be obtained at a single site. It was also not
known whether there would be a great deal in common between this list and what might be
available at other types of energy industry facilities.

Broadly speaking, two types of measures are needed for organizational epidemiology. On the
one hand, outcome or performance measures are of practical interest within the energy industry,
and they presumably reflect (to varying degrees) the influence of human performance and human
error; thus, injuries, incidents, productivity, and unit trips are all important outcomes. On the
other hand, the rest of the variables are hoped to characterize and influence the climate and
conditions within which people work and thereby to harbor potential ACHE:s.

The distinction between predicted (outcome) and predictor variables is not fixed in a
correlational study such as the present one. Injuries to facility personnel are costly and
unfortunate outcomes, to be reduced or avoided if possible. However, the rate of even minor
injuries among staff may be useful as a barometer for less directly measurable factors (e.g.,
safety climate, morale, job stress), and it may allow prediction of subsequent problems having
other outcomes.

For the purpose of analysis in the present study, the data on errors and on context need to cover a

substantial time span, and they need to be collected on a regular basis. As with any study of
events or changes across time, it is advantageous to cover as long a time span as possible. In the
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course of interviews at the four plants, it appeared that 5 years was a reasonable span for which
to seek data for many of the variables. A common time interval for observations is required for
analyses, and it was found that observations on at least a monthly basis would be available for
most types of data for which records were kept; variables recorded more often (e.g., daily or
weekly) could be converted to monthly totals or averages in order to use a common monthly
basis.

Table 3-1
Indices of Interest for Organizational Epidemiology That Are Likely to be Available at
Energy Facilities

Measures Indices of interest

Events, incidents, injuries, errors

Investigations, root cause codes, apparent cause codes
Error-related Corrective actions

Problem observations

Positive behavior observations

Facility performance data, service records
Facility-related Equipment trip records
Facility history

Total hours, overtime hours

Shifts and work schedules

Absenteeism, lost work days, voluntary departures
Worker-related . y ry P .
Worker demographics, years of experience, promotions
Training scores and records

Hiring, retraining, job succession

Project and budget overruns

Operator workarounds

Procedural changes (including temporary)
Work/task-related Preventive maintenance actions
Corrective maintenance

Complaints, suggestions, human resource concerns
Work orders, parts availability

Clearance, tag-outs

Departmental self-evaluations

Surveys
Management/ Evaluations by external regulatory agencies
Organization-related Safety programs

Human performance improvement efforts

Audits, surveillance
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Conceptually, the simplest use of incident data is for counting and trending. Most analysts,
however, improve the diagnostic value of their trending through some form of categorization.
Rare major incidents tend to be extensively studied; minor incidents receive varying degrees of
attention and causal analysis. To the extent that some consistent causal coding has been done for
a set of incident reports (or can be assigned later), this information could be used to look for
relationships between ACHEs and specific types of incidents (or those with specific ascribed
causes).

The list of potential outcome and predictor measures shown in Table 3-1 was developed to serve
as a guide for data collection efforts in order to explore the usefulness of organizational
epidemiology. Ideally, a data set containing measures of all of these variables would be
organized and analyzed in order to look for interrelations among predictors and for predictive
relations with outcomes. Furthermore, if such data were available from numerous facilities,
along with characteristics that differentiate the facilities, it might be possible to do pooled or
comparative analyses, increasing the analytical power to identify predictive antecedent
conditions.

3-3






4

DATA COLLECTION

To perform organizational epidemiology research at energy industry facilities, close cooperation
and active participation of technical and management personnel are essential. Initially,
collaborative work was planned with two U.S. nuclear power plants owned by separate
companies, and visits and interviews at those sites were invaluable for developing the list of
indices of interest presented in Table 3-1. Despite strong expressed commitment from company
management and extensive interaction with plant personnel, however, the EPRI project team was
unable to acquire suitable data from these nuclear power plants within the specified time frame.

A non-U.S. energy company also expressed interest in the HPM project, and the project team
was fortunate to have the opportunity to work closely with the company’s management and staff.
This and subsequent sections of this report focus on research performed using data collected
from two fossil-fueled electric generation plants identified by company personnel. Both are
large, multi-unit coal-fired plants with more than 15 years of operational history and no near-
term plans for decommissioning. The company selected these two plants in part because one had
experienced relatively more performance problems in recent years, especially with respect to
unintended trips. By comparing results from analyses of these two plants, management hoped to
gain useful insights for performance improvement planning.

Site Visits

Following initial discussions and planning with representatives from the non-U.S. company, with
the list of desired data (Table 3-1) as a guide, EPRI-associated members of the project team
visited both fossil plants, as well as the company’s head offices. A total of 35 people (potential
data providers) were questioned over a period of 3 days, with informal, semi-structured
interviews used to address planned issues regarding data content and availability and to seek
suggestions from the participants.

In some cases, the interviewees recommended data sets that the researchers had not anticipated;
in other cases, interviewees were surprised to learn from the researchers about data collected
elsewhere in the plants. Most interviewees appeared receptive to the interests of the researchers
and supportive of the described goals (a brief description of the research project had been sent to
all interviewees in advance, dealing with purpose, types of data sought, expected outcomes,
possible benefits, and technical support needed).

The notes and materials gathered during the visit by the research team were used to draw up a list
of specific data sets and specific data providers. It was determined that most of the variables of
potential interest, if they were archived in a usable manner, were available on at least a monthly
basis for 5 to 6 years (or more). As such, the research team decided to request 6 years of monthly
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data for most variables and to try to convert requested data for other variables to monthly format.
In addition to the monthly data, some historical or descriptive information was sought for each
plant, such as its operational history, dates of any major changes or renovations, and
whether/when there had been any management/labor disputes.

Data Acquisition

The next step was data acquisition. A member of the core research team served as the main
liaison for this process. An additional visit to each plant by the liaison was followed by email and
telephonic contacts (and another visit to one plant by the liaison) over a period of nearly a year to
acquire data files and clarify details about the data. This follow-up phase was finally terminated
in order to conduct final analyses of the data sets (to which no further changes would be made)
and to initiate preparation of the project report; at that time, numerous types of data that had been
identified as available had not yet been obtained (at least in a form usable for analyses).

Table 4-1 summarizes the types of data that proved suitable for analytical use once the data
acquisition phase was terminated.

Table 4-1
Indices Obtained with Adequate Detail and Number of Observations for Analyses

Measures Indices of Interest

Major, significant, minor incidents (Plant A only)
Error-related
Injuries (Plant B only)

Facility performance data
Facility-related Unit trip records

Facility history

Total hours, overtime hours

Absenteeism, lost work days
Worker-related
Worker demographics, education (Plant A only)

Personal problem reports (Plant B only)

Procedural and instructional changes (Plant A only)
Preventive maintenance actions (Plant A only)

Work/task-related
Corrective maintenance

Work orders (Plant B only)

Except as noted, indices in each category were available from both plants, although not always in
the same form. Data on injuries, illness, and absenteeism (both counts and rates) were broken
down by department (engineering, operations, mechanical/maintenance, and service areas).
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The data sets included notable omissions from the list specified in the original study design (see
Table 3-1), which necessarily compromised the research aims. For example, it was not possible
to obtain detailed cause codes for a sufficiently large group of events. In general, detailed
investigations are conducted at these facilities only for major events, which may occur once a
year or less frequently. Unit trips, on the other hand, which may occur up to several times per
month at each plant, are categorized as being plant-related (and thus possibly due to human
action at the plant) or external; some effort is made to identify root causes, but they are not
generally investigated in sufficient detail to be sorted readily and consistently by type of human
error or less-than-adequate action. Training scores and records were available only in
voluminous hard copy, and they could not readily be summarized or linked to employees in a
way suitable for inclusion in the analyses. There was very little information directly related to
management/organization-related issues, other than general observations (e.g., that efforts were
being made in recent years to improve human performance; participation in this research project
was one aspect of that effort).

Before the statistical analyses could be conducted, considerable time and effort were devoted to
reviewing the data and organizing the data set from each energy facility. The first step was to
learn about the individual variables, considering issues such as how each variable was measured,
whether a consistent definition was used throughout the time of measurement in the data set, and
whether all of the observations or data points should be treated as valid. This involved examining
the values for each variable (in tables or in simple descriptive plots) to look for outliers
(divergent values), missing values, or other anomalies, as well as communicating with people
from the facility who were responsible for making the original measurements or who understood
the data collection process and terms. In the absence of additional information, missing values
were omitted from the analyses.

The final data set for Plant A consisted of 72 observations (6 years of monthly values) for most
measures; several plant performance indices were only available for the most recent 5 years of
the period (60 observations), and there were several missing values among the counts of sick
days and injuries. For Plant B, numerous measures had only 4.5 to 5.5 years of data available;
counts of reported personal problems were too incomplete to be included with confidence, and
the associated data included multiple counts (e.g., if both a marital problem and a financial
problem consultation were reported in a month, it was impossible to tell whether the reports were
for two different employees or the same person).

Four outcome measures had sufficient data to be included in the analyses: the number of trips per
month, the thermal index (a measure of how often and to what extent critical temperature
readings exceeded desirable levels), the chemical index (a measure based on readings related to
the material processed in the plant), and unplanned energy losses. Unfortunately, it was
discovered during the data review period that the procedure used for measuring the thermal index
might have changed during the period covered by the study. Thus, it became apparent that any
results involving the thermal index would possibly be contaminated by the change in
measurement procedure and, thus, difficult to interpret.

Lessons learned with respect to the process of data collection are discussed in Section 7.
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Confidentiality of Plant Data

The management of the collaborating company and of the two participating fossil plants
provided data for this strategic project with the understanding that attempts would be made to
avoid the inclusion of identifying details (and proprietary or business-sensitive information) in
any reports, either for EPRI funders or for the public. In this report, a concerted effort has been
made to present important research findings, along with examples of quantitative results, without
compromising the confidentiality of the data set, the participating facilities, or the collaborating
company. Consequently, many quantitative details (which are not necessary for understanding
the conceptual findings), such as the scale numbers for graphs and the specific means for
calculating some of the measures, are omitted throughout this report and, especially, in the
presentation of analytical results in Section 6.
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METHODOLOGY—ANALYTICAL METHODS
CONSIDERED AND APPLIED

As noted in Section 2, the third component involved in conducting organizational epidemiology
in the energy industry is to examine the suitability of candidate quantitative analytical tools in
light of collected data and to apply selected ones in an attempt to discover patterns and predictive
relationships.

Methods Applied

It was decided that the primary focus of the analyses would be prediction of the monthly rate of
unplanned trips. There was considerable interest on the part of the collaborating company (both
expressed explicitly and demonstrated in its own internal efforts) in understanding the causes of
(or precipitating factors for) trips and in reducing their frequency, since these involve significant
economic losses. There was also a strong sense among company management, supported by their
causal investigations, that human performance deficiencies contribute to a large portion of the
trips. As noted, these occurred sufficiently often to be appropriate for monthly counts to be
trended over a period of years.

Two plant health indices—the chemical index and the thermal index—and a measure reflecting
unplanned energy losses were also singled out as important outcome measures. Although these
were not regarded by the company as being as closely related to human performance as the
unplanned trips, they had the advantage (for application of statistical analytical techniques) of
being continuous measures rather than counts.

Possible predictive relationships between context measures and performance or outcome
measures were explored through regression analysis. This began with examination of
relationships between one predictor and one outcome measure at a time, using plots (e.g.,
plotting both measures across time on the same figure, so any strong, obvious relationships might
be detected) and two-way (pairwise) correlations. Correlations were examined at various lags or
time delays between the potential predictor and the outcome measure; for this study, lags of up to
12 months were examined. Any context variables found to be statistically associated
(concurrently, or at one or more time lags) with an outcome measure were entered into a
stepwise regression. This technique is designed to find the best-fitting mathematical model for
predicting the outcome measure from one or more predictors. All calculations were performed
using routines from MINITAB™ (available from Minitab, Inc., www.minitab.com).

Most of the analyses were conducted using the data from each plant separately. Although many
of the variables were common across the two plants, there was no a priori basis for assuming
that both plants would have the same ACHEs affecting performance in the same manner. Rather,
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it would be very interesting, but not necessary, to find that similar influences were involved at
both sites. If the same variables were found to be useful predictors (of the same outcome
measures) at both plants, this would inspire confidence in the generality of those measures as
ACHEs.

In addition to the regression analyses, a tool for scientific visualization was explored. Large
multidimensional arrays of data may not yield their secrets to routine analyses when no theory or
prior findings are available to guide the search. Sometimes, however, representing the data in
several spatial dimensions can allow a human observer to detect potential complex patterns,
which then can be tested by directed analyses. A variety of such icon plots have been explored in
previous research, including star glyphs and sunflower plots (e.g., Yu, 1995). These and related
techniques involve depicting values of variables as physical dimensions of a figure; thus, 10
variables could be represented as the radius lengths for the points of a 10-pointed star or a 10-
petaled flower. A person who views an icon plot of values over time may come to recognize
certain important patterns quickly, such as whether one of the many radii (star vertexes or flower
petals) is much shorter or longer than the others, which could be useful for diagnosing the
situation represented by those values.

An elaborate form of icon plot that is intended to draw on extensive innate and learned human
information processing involves transforming a series of data values into the dimensions of
faces, typically Chernoff faces (Chernoff, 1973). Considerable previous research has been
devoted to the ways in which various dimensions of schematic Chernoff faces are either easily
separated or typically integrated when perceived, although it has been difficult to establish that
the faces have an advantage over other icon plots (e.g., Motris ef al., 1999). In this study, several
potential predictors were encoded as dimensions of Chernoff faces during the initial analysis of
plant data.

Additional Methods

Various other candidate analytical tools exist for organizational epidemiology studies (see EPRI,
2002a). Described below are a few that were considered or explored for use on the data collected
in this project:

e Neural nets could be useful for optimizing regression coefficients in a larger data set (with
complete data over a substantially longer time period, and with more predictor variables), but
were not appropriate for the final data sets.

e Multivariate stepwise regressions could be tried, treating a number of outcome variables as a
vector (e.g., Kerlinger, 1979). However, this requires that data pass certain statistical tests for
fitting a normal distribution, which in general were violated in the data sets obtained in this
study.

e Another multivariate approach, canonical correlation, would search for linear combinations
of the predictors as a group and the outcomes as a group in order to obtain maximum
correlation, but this was not felt to be necessary in this proof-of-concept study.

e Exploratory regression analyses were performed based on a Poisson (rather than a normal)
distribution for the trips (since the Poisson distribution is more appropriate for a count of rare
events, such as the monthly count of unplanned trips). These analyses did not yield
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substantially different results from those performed under the assumption of a normal
distribution for the trips, in terms of the ability to create predictive models from the data.
Thus, this approach was not pursued further for this study.

e Inrelated EPRI strategic work to evaluate the predictive validity of leading indicators of
human performance (EPRI, 2001b), the most promising findings emerged through
comparison of data for two contrasting periods for which data were available: the period
preceding a relatively successful planned outage versus the period preceding a more troubled
planned outage at the same nuclear power plant. Several of the potential predictor variables
were found to display significant differences between those two periods, lending hope that
they might be useful indicators for the success of future planned outages. It was thought that
similar comparisons could be conducted using the data from the two fossil plants in the
present study. Unfortunately, there was nothing quite analogous to the major planned outages
at the nuclear plant, nor could any discrete time periods be identified for meaningful, parallel
“good versus bad” comparisons for these fossil plants.

e Another idea was to compare predictor as well as outcome measures between the two fossil
plants. Since one plant was regarded by company management as having performed better
than the other in recent years, it was thought that the bases of better performance might be
uncovered. As it turned out, however, the two plants and their data sets (especially including
the particular variables that were documented in this study) proved to be different in so many
ways that it was felt that no meaningful comparisons could be made.

Some of these additional methods may merit further exploration for organizational epidemiology
at energy industry facilities. With the possible collection of larger data sets in the future (i.e.,
more detailed taxonomies, more variables, more frequent observations, and longer time periods
covered), it may be possible to improve upon the statistical predictive models that are produced
by stepwise regression.
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ANALYSES AND FINDINGS

As noted earlier, the confidential nature of the data set—and, consequently, of the quantitative
findings specific to these data—prevents full disclosure of the detailed analytical results. The
purpose of this strategic project, however, was to explore the possibility and practicality of
identifying antecedent conditions of human performance changes and of developing predictive
models for human and facility performance. Therefore, for the stated purpose of this proof-of-
concept study, it is sufficient in this report to provide an overview of the results, along with
examples of important findings, without including identifying details or the numerical outcomes
of each analysis.

Key results from the regression analyses are described below. Sample results are provided from
analyses performed using the multivariate visualization technique.

Pairwise Correlations

For each plant, pairwise parametric correlations were computed at lags (prediction intervals) of
up to 12 months between predictor and outcome variables. The correlation coefficient is a
measure of the extent and direction of the statistical relationship between two variables. Negative
values indicate an inverse relationship, in which relatively lower values of one variable are
associated with relatively higher values of the other (e.g., as temperature goes up, the solidity of
ice cream goes down). A correlation coefficient close to 0 indicates that the relationship between
the variables is very weak, whereas a value near -1 or +1 means the relationship is very strong.

Tables were prepared showing how well each outcome variable was correlated with (or
statistically related to) the values for each predictor variable concurrently, 1 month ahead, 2
months ahead, and so on. In order to gauge the reliability of each of these correlations, one-sided
p values were calculated under the normal distribution assumption. (Since the actual distributions
may not be normal, these p values represent only approximations.) Correlations associated with
p <0.20 (or equivalently, correlations in the predicted direction with p < 0.10) were judged to be
significant for the purpose of this analysis (i.e., a probability of less than 20% or 10%),
respectively, that the relationship occurs solely by chance). Note that the criterion for
significance (and the norm of specification of directionality) used here was less stringent than
that typically demanded for published research in the behavioral sciences; this was done in order
to explore possible predictive relationships that might not emerge strongly, on initial analysis,
given that the number of observations was small.

The statistically significant correlations were not readily observable by visual inspection of the

data in tables or in plots. That is, it was not obvious that predictors and outcomes were related,
and certainly not that the correlation was best at specific time lags. However, the tables of
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pairwise correlation results proved to be very useful for screening the data for relationships and
patterns to be examined in predictive models.

At Plant A, for example, the number of sick days per month was found to be significantly
correlated with the number of unplanned trips at all lags tested except 0 and 12 months, with the
strongest correlations at 10, 5, and 4 months, as shown in Figure 6-1. Visual inspection of plots
of unplanned trips and sick days across the 72 months of observations, as shown in Figure 6-2,
would not have led easily to the conclusion that these two variables were significantly
correlated—and certainly not to the specification of the optimum prediction lags. It should be
noted that the correlations here, although statistically significant and even fairly strong, do not
lend themselves to very reliable predictions: the R values (reflecting how well the predictions fit
the data) are all below 0.14, indicating that even at a 5-month lag the correlation accounts for
less than 14% of the variance in the monthly values. (The variance is the mean or average of the
squared variation or difference between the observed value and the average value; thus, it is a
measure of how much variation there is among the observed values for a variable.)

Plant A: Correlation of Monthly Trips and Sick Days
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Figure 6-1
Plant A: Correlation of Trips and Sick Days
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Plant A: Monthly Trips and Sick Days
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Figure 6-2
Plant A: Monthly Trips and Sick Days

Overall, for each plant, significant pairwise correlations were found (for at least one lag) between
various predictors and each of the outcome measures (trips, chemical index, thermal index, and
unplanned energy losses). Predictors included injuries, sickness, and/or absenteeism, separately
and in combination, as well as corrective and preventive maintenance measures, separately and
in combinations such as differences and ratios.

Table 6-1 indicates that, for Plant A, a significant correlation was found for at least one of the
prediction lags (from 1 to 12 months) between variables related to sickness, absenteeism, and
maintenance and each of the four outcome variables examined. In addition to correlations
obtained for the workforce as a whole at Plant A, there were also numerous significant
correlations when the predictor variables were limited to specific staff sectors. At Plant B, with
data available only for the variables related to injuries, sickness, and absenteeism (as noted
earlier, preventive maintenance data were not obtained from Plant B), correlations were found
for most combinations, although sometimes only with predictors limited to specific staff sectors,
as shown in Table 6-2.
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Table 6-1

Significant Pairwise Correlations at Plant A (for at least one lag)

Trips

Chemical
Index

Thermal Index

Unplanned
Energy Losses

Sickness

*

*

*

*

Absenteeism

Maintenance

Table 6-2
Significant Pairwise Correlations at Plant B (for at least one lag)
Chemical Unplanned
Trips Index Thermal Index | Energy Losses
Injuries * * * *
Only Only
Sickness Engineering, Engineering, * *
Operations Operations
Absenteeism * * iny .
Engineering

The pattern of correlations, however, was far from consistent when results from the two plants
were compared (to the extent that results could be compared, given differences in their data sets).
For example, as described above (Figure 6-1), Plant A had significant correlations between trips
per month and the overall days of sickness per month with various lags. At Plant B, on the other
hand, trips were not significantly correlated with overall days of sickness for any lag. Instead,
there were significant correlations at lags of 0 to 5 months between the number of trips per
month and the number of days of sickness per month for the engineering staff, as shown in
Figure 6-3. Significant correlations between monthly counts of trips and sickness days were also
found for the operations staff (for lags of 0 and 1 months) but not for the maintenance staff.

6-4



Analyses and Findings

Plant B: Correlation of Trips per Month and Engineering Sick
Days per Month

0.30

0.20

0.10

0.00

-0.10 ~

-0.20 -

Correlation Coefficient

-0.30 |

-0.40

Predictive Lag (months)

Figure 6-3
Plant B: Correlation of Trips and Engineering Sick Days

Stepwise Regressions

To explore predictive models using more than one predictor, stepwise regressions were used for
each plant and each outcome variable. Detailed below are the analytical procedures and findings.

Analytical Procedures

For each plant and outcome case, the stepwise procedure begins with the predictor that had the
highest pairwise correlation with the outcome (excluding O-month lags, in the interest of being
able to predict performance in advance, which was the underlying aim for this study). Then, one
predictor is added at a time (using the remaining predictor that yields the largest increase, to that
point, in the squared multiple correlation, R, which is equivalent to adding the predictor that
yields the largest remaining partial correlation)—provided that the increment (in R?) is
statistically significant. As in the case of pairwise correlations, statistical significance is here
determined approximately by using the assumption of normality. The procedure is performed
automatically by statistical software (MINITAB was used in this study, although other statistical
packages, such as those available from Unistat, SAS, or BMDP, also perform these analyses); for
these analyses, the criterion for including a predictor was that the improvement be statistically
significant at approximately the p < 0.05 level.
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It is important to note that the terms to be included in a stepwise regression model cannot be
predicted just by looking at tables of pairwise correlations. Each time a predictor variable is
added to the model, it may eliminate other possible predictors. In order to understand why this
occurs, it is necessary to realize that various predictors may be correlated with each other. For
example, suppose that both the number of sick days per month and the number of days absent per
month initially are found to be correlated with the number of trips in the following month (i.e., at
a 1-month lag). Sick day and absentee counts are probably also highly correlated with each other,
since sick days account for many of the days that employees are absent. Once sick days are used
as a predictor variable in a stepwise regression model, there may be little or no additional value
in trying to use absenteeism as a second predictor in the model; this is because if sick days and
absence counts are highly correlated, then the ability to predict or account for the variance in the
trips per month (as measured by R”) will quite likely not increase by much when absenteeism is
added.

The stepwise regression calculations include only the time period for which all of the predictors
have measurements; thus, if one of the predictors is entered in the calculations with a 6-month
lag, then the first 6 months of the predicted variable are not included (because corresponding
values of the predictor are not available). It would not make sense to try to predict the number of
trips per month in January and February 1995, for example, if the regression model predicts the
trip rate 6 months in advance and the predictor variables are only available starting in January
1995. For this reason, even though data for the trip rate may be available beginning with January
1995, the ability of the regression model to predict trip rate 6 months ahead can be evaluated
only with data for trip rate starting 6 months after the time for which the predictor values are
available.

The number of observations used in the analyses varied in order to ensure the greatest number of
observations possible for each step. For example, when data were available for each predictor
and outcome measure for a full 72 months, there would be 72 observations for pairwise
correlations at a O-month lag, 71 observations with 1-month lag, and so on down to 60
observations for a 12-month lag. Next, for the stepwise regression, 60 observations (out of 72)
were used, so that predictors with lags of up to 12 months could be tried in the stepwise
regression. Finally, when the resulting regression model for a given outcome measure was
evaluated (by determining R’, the percent of variance accounted for), observations were added up
to the maximum possible depending on the lags used in the model; for example, if there were
two predictors in the model, with lags of 3 and 8 months respectively, then the regression model
was evaluated using 64 (out of 72) months of data.

Each final stepwise regression model is constrained to non-negative values when the outcome
measure cannot in fact be negative (e.g., the number of trips per month cannot be less than 0).
This restriction does not affect the stepwise regression process or the R” values that are
calculated to evaluate the models. Rather, it makes the predictions easier to understand and use.
The outcome of a stepwise regression is a set of coefficients or multipliers for the predictor
variables, along with a constant; these terms can be used to construct a linear equation for
predicting the outcome variable.
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Results

For Plant A, a two-predictor model emerged, in which the number of trips per month could be
predicted by sick days in one staff sector at a 1-month lag, plus absentee frequency rate in
another sector with an 8-month lag:

Monthly trips = 0.0188x + 18.9y - 1.903
Where
x = Sick days per month in Sector 1 at a 1-month lag
y = Absentee frequency rate in Sector 4 at an 8-month lag
This model accounted for 54% of the variance (just over half of the total mean squared variation
of the monthly trip rate). The actual (data) and estimated (from the regression model) monthly

numbers of trips are shown in Figure 6-4. Visual inspection suggests that the model captures
some of the trends in trips but not the detailed month-to-month variations.

Plant A -- Trips: Stepwise Regression
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Figure 6-4

Plant A: Trips: Stepwise Regression

Somewhat better prediction was obtained for the stepwise regression of the chemical index at
Plant A. In order of importance, the predictors were the ratio of corrective to preventive
maintenance orders outstanding (CM:PM) at a 2-month lag, the gross sickness and absenteeism
rate at an 8-month lag, and the number of sick days (a count of the days missed due to illness)
and sick incidents (a count of the number of reports of illness, regardless of whether an illness
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was associated with no time off or with one or more days off) for one staff sector at lags of 10
and 6 months, respectively. The resulting model accounted for nearly 60% of the variance. The
actual (data) and estimated (from the regression model) monthly trips are shown in Figure 6-5.
Visual inspection suggests that this model does a reasonably good job of capturing trends in the
chemical index, including several peaks and valleys in the first year as well as the reduced level
after the first year.

Plant A - Chemical Index: Stepwise Regression
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Plant A: Chemical Index: Stepwise Regression

It is again interesting to note that visual observation (in plots) of the values of the potential
predictors and the chemical index would not readily lead to specifying the terms and lags likely
to show up in a stepwise regression model. Figure 6-6 shows values for the first (strongest)
predictor (the CM:PM ratio at a 2-month lag) and the chemical index across the 5-year period for
which chemical index values were available. From inspection of this figure, it is not obvious that
CM:PM ratio is fairly well correlated with values of the chemical index observed 2 months later.
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Plant A: Monthly observations of chemical index and CM/PM
orders outstanding
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Figure 6-6
Plant A: Monthly Chemical Index and Ratio of Corrective to Preventive Maintenance
Orders Outstanding

In general, the stepwise regressions were not as successful for Plant B, accounting for only a
small portion of the variance in the outcome measures. The only exception was the model for the
thermal index. A model accounting for more than 50% of the variance in this measure was
developed, involving sick days (total sick days at a 2-month lag as well as sick days for the
maintenance staff at a 1-month lag) and the injury rate (overall rate at an 8-month lag as well as
the rate for power sector staff at a 10-month lag). The actual (data) and estimated (from the
regression model) monthly trips are shown in Figure 6-7. Once again, visual inspection suggests
a potentially useful degree of match between the estimated and actual thermal index.
Unfortunately, as discussed in Section 4, the possible change in the procedure used to collect
thermal index data compromises the potential practical value of this finding.
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Plant B - Thermal Index: Stepwise Regression
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Plant B: Thermal Index: Stepwise Regression

Seasonality

An additional set of analyses was conducted to explore possible seasonality in the outcome
measures. The residuals from the stepwise regression models (the difference between estimated
and actual outcome for each month) were analyzed to determine whether there was a pattern
based on either the 4 seasons or the 12 months of the year. In no case was there a statistically
significant relationship. On the other hand, if the original outcome variables were analyzed
directly, a statistically significant seasonal pattern showed up for trips at Plant B: Trips were
most numerous in the summer, followed in order by spring, fall, and winter. Figure 6-8 shows
the actual average number of trips per month in each season at Plant B, along with the estimated
monthly average (from the regression model) in each season. It appears that each of the two
predictors in the weak but significant stepwise regression model of trips for Plant B—the
absentee frequency rate and the injury rate (at 6- and 11-month lags, respectively), both for the
maintenance staff—had some seasonal variations, which were statistically associated, to some
extent, with the seasonally varying trip rate.
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Plant B - Trips: Seasonal
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Plant B: Seasonal Variation in Trips

Multivariate Visualization

Relatively early during the initial analysis of the plant data, a multivariate visualization technique
was tried with several measures from an early version of the data set from Plant A that were
thought likely to be helpful as predictors. The intent was to try to discover patterns among the
variables. It is possible that visualizing several variables together might allow prediction of an
outcome measure in a way that would not be discovered by the pairwise correlations and
stepwise regression process described earlier in this section.

In order to explore the use of multivariate visualization for discovering patterns, several potential
predictors were encoded as dimensions of Chernoff faces (Chernoff, 1973). These predictors
included measures involving absenteeism (the gross sickness and absentee rate, plus the absentee
frequency rate), as well as a series of measures utilizing preventive and corrective maintenance
data. In addition, facial area was used to encode the thermal index. For each of the 72 months of
observations, a face was produced; these were then placed in order with respect to the number of
trips per month. Examination of the facial plots suggested that, using this preliminary data set,
the thermal index might be related to the trip rate at Plant A, with a higher thermal index
associated with more trips; a staff member of the company indicated that such a relationship
would not be surprising. There was also an indication that trips were higher with a higher
number of preventive maintenance orders outstanding and with a higher ratio of corrective to
preventive maintenance orders outstanding. (See Appendix A for more details and for the entire
set of facial plots.)
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The face plotting method did not appear to be useful for further exploration as a data analysis
tool for this project. In the first place, these plots involve only concurrent (or O-month lag)
comparisons; in order to explore lags at 1 to 12 months systematically, allowing different lags for
different variables, a prohibitively large number of arrays of facial plots would need to be
generated and examined. In addition, the apparent patterns or relationships found in these
analyses were identified only tentatively; there was no sensation of an emergent pattern jumping
out at the viewer, which would be the kind of outcome that would make this technique most
useful.

On the other hand, facial plots (or other multivariate displays) may prove useful for system
monitors or analysts after important predictors have been identified. For example, as noted
earlier, the number of trips per month for Plant A was significantly related to a model based on
sick days in one staff sector at a 1-month lag, plus absentee frequency rate in another sector with
an 8-month lag. If these two variables are encoded (or represented quantitatively) as two
dimensions of a face, the difference between months with high and low trips can be quite
noticeable, as illustrated in Figure 6-9. (These faces were generated using the final data set for
Plant A and a simpler face configuration than those shown in Appendix A.)

More trips per month

Fewer trips per month

Figure 6-9
Plant A: Selected Facial Plots

In principle, a display such as this could be viewed a month ahead of the outcome, since it relies
on input data with a 1-month as well as an 8-month lag. A recent EPRI report (EPRI, 2002c),
which suggested directions for future strategic research related to automated tools for human
performance management, identifies the integration of data analyses with iconic displays as a
promising topic for exploration.
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PRACTICAL LESSONS LEARNED FOR FUTURE
APPLICATION AND RESEARCH

The aim of the strategic HPM research project has been to explore the feasibility of developing
useful predictive models of human-performance-related outcomes in energy industry settings
(e.g., generating plants or power coordination and control centers) based on antecedent
conditions. Although an emphasis has been placed on exploring the use of statistical and other
quantitative analytical techniques for this purpose, assessing the feasibility of such an approach
involves other issues as well.

One of the primary lessons learned is the difficulty involved in acquiring data of the type that
had appeared likely to be most useful for organizational epidemiology in energy industry
contexts. The observations that follow are similar in many respects to those from the
conceptually synergistic strategic work to assess the predictive validity of leading indicators of
human performance (EPRI, 2001b).

From the start, it is important to recognize that the primary business of energy facilities is very
different from the emphasis of researchers, even though they may share goals such as reducing
accidents and increasing productivity. To a large extent, most personnel at energy facilities focus
on safe and productive operations on a day-to-day basis, not on carefully and consistently
archiving a variety of measures that may have no obvious or immediate pragmatic use. Despite
the best intentions of facility management and staff to support strategic research such as that
pursued in this project, it is difficult for them to devote sufficient and sustained resources to the
research, given the demands of their primary responsibilities.

Since it was recognized in advance that the burden on the participating plants should be as light
as possible, a two-stage process was devised in the hope that this would make it relatively
straightforward to collect the data required for the project to succeed: (1) conducting interviews
to identify potentially useful data, while receiving assurances that both the data existed in the
needed form and the providers made some commitment to the effort; and (2) preparing a list of
requested data files (including information on what data were sought and who had the data). No
novel data were to be demanded; no new observations were to be requested of facility staff.
Ideally, it was envisioned that designated data providers would electronically transfer appropriate
files (in relatively good order), perhaps to a liaison, who could then pass them along to the
research team.

This plan appeared conceptually sound, but the reality proved different. Despite the strong

expressed commitment of management at various levels within the three companies that
participated in this study, there were barriers to obtaining useful data sets. The initial experience

7-1



Practical Lessons Learned for Future Application and Research

in this effort was time-consuming and, ultimately, not productive, but the lessons learned in the
process facilitated the more successful subsequent work that is emphasized in the present report.

The first efforts made for this research project involved close work with liaisons at two U.S.
nuclear power plants owned by two different companies. Visits were made, interviews were
conducted, and lists of variables of interest were prepared and provided to the plant staff. It was
planned that individual plant and management personnel with access to data files identified as
potentially useful would provide their files for the research project, but it proved difficult in
practice for the research team to obtain the identified files consistent with the requisite research
timeline. Ultimately, a research team member (an information technology specialist with prior
experience related to the nuclear power industry) obtained a large number of data files by
visiting the plants and working closely with facility information technology specialists, but the
files obtained via bulk transfer proved intractable for analysis. It was not possible to decode the
fields and identify the entries of interest in order to create a usable data set for organizational
epidemiology purposes.

Despite changes in the overall data acquisition procedure implemented to address the problems
revealed in initial work, problems—including some that had previously been encountered and
some that were novel—were also experienced in the study emphasized in this report, which
involved the two fossil plants owned by one non-U.S. company. The data sought often existed
only as notations in multi-volume hard-copy files. Some of the data simply did not exist, in spite
of impressions from interviews, or the data were located in old legacy software systems no
longer used and not compatible with current software. Information existed on different hardware
platforms that did not communicate. Other types of data were contained somewhere within vast
databases, but extracting the variables of interest in a usable and understandable form would
have taken considerable effort on the part of busy programmers.

In the end, a great deal of the work involved in actually obtaining the sought data files and
documenting their contents had to be performed by the staff of the two participating fossil plants,
aided by corporate personnel. As noted, a year elapsed between when the EPRI-associated
research team visited the plants to conduct interviews and when the data sets were finalized for
analysis; during that period, considerable work was done to obtain data files, understand their
contents, and convert variables of interest into a common monthly format. The primary liaison
spent a considerable amount of time (many months) on this project during that year; personnel
from the collaborating company are conservatively estimated to have devoted at least 1 to 2
person-months of labor to this effort. Thus, this represented a major resource expenditure on the
part of the collaborating company.

Even though a significant percentage of the specified data files was eventually obtained from the
two fossil plants, there were problems that compromised the reach of the research. These
included missing observations, seemingly inexplicable outliers (values that seemed too high or
low to have been valid observations), unavailable files, and inadequate documentation of
recording procedures. As one example, mentioned earlier, it became known that the procedures
used to produce the thermal index might have changed across time; thus, the large variations in
the values (see Figure 6-5) may in part reflect changes in measurement technique rather than
changes in plant conditions.
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The fact that a predictive model for the thermal index could be found using stepwise regression
underscores a key, though not necessarily intuitively obvious, conceptual premise in the
primarily empirical approach taken in this study: The presence of a statistical relationship
between variables does not imply that a meaningful explanation or understanding can be found—
or that one even exists. In the absence of a plausible hypothesis regarding the conceptual nature
of an observed predictive relationship, the long-term applicability of such a finding must be
viewed with some caution.

Another problem for the aims of the project was that the analyses had to be conducted using
monthly observations. With only 6 years (at most) of data available for many of the variables, the
data set was limited to a maximum of 72 observations (months) per variable. That is a fairly
severe restriction on the total size of the data set when dealing with a large number of potential
predictor variables. A number of additional statistical techniques (especially methods that would
depend even more on a larger total number of observations) could be tried if more fine-grained
data, such as weekly observations, were appropriate and available.

Nevertheless, the results described in Section 6 suggest the promise of organizational
epidemiology, as do the findings from the strategic predictive validity study (EPRI, 2001b). Most
of the software tools used in this research study are widely available: Spreadsheet software
(Microsoft® Excel) was used for organizing the data sets as well as for generating the graphs
shown in Section 6, and the correlation and regression analyses described in Section 7 were
performed with MINITAB. Implications and future directions for research and application are
discussed in Section 8. Detailed below are some methodological lessons for energy facility
analysts and researchers.

Lessons for Energy Companies

The experiences in this project suggest that companies can take a number of steps that would be
expected to facilitate analysis of human and facility performance trends and to allow for possible
future use of improved analytical tools.

Collect a wider variety of information regarding potential influences on human
performance. Numerous committees and reviewers have agreed that human performance in
energy facilities reflects a number of organizational and work climate factors, but the majority of
these postulated factors seem not to be captured by typical data collection activities. Fortunately,
in terms of both performance analysis and the operational goals of energy facilities, it seems that
a number of companies are making efforts to address this situation, which would be expected to
enhance future analytical capabilities.

Create a central archive for storing data on measures of interest, and update it on a regular
basis. If individuals or departments collect data but there is no mechanism for combining what
they have, potentially important connections and relations are unlikely to be discovered. Having
a wide array of measures available from multiple organizational units of one facility, on one
platform, will make it easier to analyze data, examine performance trends, and evaluate the
effectiveness of performance improvement programs. In this way, knowledge can be derived
from what would otherwise remain only as data or information (EPRI, 2001h; Wildberger et al.,
2000).
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Maintain data on a per-system, per-unit, or per-sector basis rather than only retaining
values that have been aggregated across an entire facility. Systems, units, or sets of units in a
facility may have distinct operational, maintenance, and management personnel and
organizational attributes. If performance differences exist between systems, units, or sectors,
maintaining disaggregated data may allow analysts to identify organizational factors that lead to
such differences. In many instances in this study, it appeared that the original data were collected
at a finer grain than the form in which they were archived. It is always possible to combine data,
but once the original details are lost in the archival process, they cannot be retrieved.

Document the methods and terms for each archived measure. Comparisons across time, or
across facilities, can be problematic if there is uncertainty or confusion about what the numbers
mean. In fact, erroneous conclusions may be drawn if an observed effect or pattern, such as an
increase in a performance measure, is entirely attributable to some definitional change.

Use consistent and common measures across the organization, where applicable. There are
many measures that could reasonably be collected in the same way at various facilities within an
energy company, as well as for various departments within a facility. To the extent that it is clear
that, for example, absenteeism rates, preventive maintenance backlogs, and other measures have
the same meaning in each facility or unit, interpretable analyses and comparisons can be
conducted.

Use a consistent causal taxonomy for attributing incidents (such as trips) to specific
human-related causes or influences. The search for antecedent conditions of performance
changes, as well as the development of predictive models, is likely to benefit from having more
information about outcomes; it may be possible to specify which antecedent conditions
foreshadow which types of errors. For example, trips that are attributed to failure to follow
standard procedures may turn out to be statistically associated with absenteeism rates because
workers acting as substitutes who have to perform unfamiliar tasks may not know exactly what
to do, whereas trips attributed to equipment that has not been adequately serviced may be
statistically associated with some measure of preventive maintenance work orders. Ideally, the
causal taxonomy to be used would be common across the industry to facilitate comparisons.
Further research will be needed to determine what aspects of a causal taxonomy are most useful
for development of predictive models, and whether such a taxonomy can be improved with
respect to its usefulness (by, for example, increasing the number and the grain of available
coding alternatives for human-related causes).

Extend investigations and record-keeping to a wider range of incidents or events. The
power and, thus, the usefulness of statistical quantitative analyses depend in part on the quantity
(and quality) of data available. Major events or accidents, which are carefully investigated at
energy facilities, are very rare. By extending (to the extent feasible) such tools as root cause
analysis and human factors causal taxonomies to relatively minor incidents (which are more
frequent), companies may improve their abilities to track important changes in the organizational
environment, as well as to develop more accurate models for predicting future performance
trends.

Take note of the measures that have been found to be statistically associated with
important facility outcomes. In the present study, statistically predictive models were
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developed using measures related to sickness, absenteeism, injuries, and corrective and
preventive maintenance; there was also some indication of seasonal patterns at one plant. Indeed,
sickness and absenteeism measures, which were available from both plants (unlike the injury and
maintenance measures that were available for only one plant each), were included as significant
predictors in stepwise regression models for both plants; this consistency lends some confidence
in suggesting that such measures are likely to be useful elsewhere. Future research involving a
wider range of potential predictors could indicate that there are other measures more useful than
the ones that have been identified to date; in the meantime, the findings of the present study can
be helpful for planning data archiving and analysis efforts.

Share information about data resources and collection methods, as well as useful analytical
approaches and findings, to the extent feasible—within a facility, across facilities owned by
the same company, and even across different entities. At the very least, management within a
single facility should be aware of data collected and stored by various sectors within the facility;
this was not always found to be the case during the interviews conducted for this project. On a
wider basis, it may be possible to establish industry-wide information-sharing forums such as
communities of practice (e.g., EPRI 2002d) or lessons-learned networks; events such as the
annual Human Performance/Root Cause/Trending workshop series (which focuses on topics at
nuclear plants but addresses more generic issues), as well as IEEE conferences on Human
Factors in Power Plants, help to fill some of this need, but more frequent, extensive, and focused
interchanges could prove useful. Given its established role in the industry, EPRI could well play
an important role in organizing such sharing, or it could act as a central repository for data that
could be analyzed so that general findings could be disseminated to the industry without
compromising the confidentiality of data from individual facilities or entities.

Lessons for Researchers

The promising findings of these studies may lead to future research. Attempts to study
organizational epidemiology in energy industry settings can be expected to benefit from taking
the steps described below.

Obtain formal commitment from data providers, as well as from management of
participating organizations. The ultimate data providers are personnel with demanding work
schedules who generally are not involved in the original planning discussions and agreements
about the research project. Certainly, enthusiastic and articulated support by management is of
great value—and is necessary in order to secure a broad range of potentially sensitive data.
However, this does not ensure that the data providers will have the time and resources available
to devote to extracting, providing, and documenting data files.

Urge management to provide a variety of incentives for participation. If the work of
interacting with the research team and providing data files is unrewarded, is not integrated with
other duties, and/or impedes more pressing tasks, data providers may not be as helpful as the
researchers (or management) would like. Leadership needs to be committed to supporting their
staff in this process. In part, this requires that both data providers and their managers understand
the magnitude of the task, which is likely to involve many person-days or even person-weeks of
work from facility-associated personnel; outside researchers are not suitable replacements for
performing some of the required site-based and site-specific tasks. Given these demands, a
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reasonable allocation of time, as part of the official workload for the staff involved, would be of
value in eliciting the best response from data providers.

Plan on extensive and repeated interaction with data providers. Persistence is required
throughout data identification, collection, and preparation stages—from first learning about the
existence of certain types of information, to arranging for file extraction and transfer, and on to
getting explanations of the file contents (including acronyms). It appears ideal to have a member
of the company play a primary role as a project liaison, assuming that person has sufficient time
and resources allocated to the project and can interact frequently and extensively with members
of the research team.
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CONCLUSIONS AND RECOMMENDATIONS

EPRUI’s strategic “Human Performance Management: Database and Analysis” project marks the
first major attempt to explore the possibility for organizational epidemiology in energy industry
settings. It has involved a literature and experience review (EPRI, 2002a), the organizational
epidemiology study (conducted primarily in cooperation with two fossil plants) reported here,
and a preliminary evaluation (conducted in cooperation with a nuclear plant) of the predictive
validity of leading indicators of organizational health (EPRI, 2001Db).

It is widely accepted that the performance of the energy infrastructure—including physical
assets, such as generating plants and transmission and distribution systems, as well as energy
markets—depends heavily on human performance. Because costly incidents, accidents, outages,
and other problems are frequently attributed, at least in part, to human error or inappropriate
action, it follows that smooth and productive operations rely on good human performance (in
conjunction with well-designed, robust, and error-tolerant systems). It is also widely accepted
that human performance deficiencies have a wide variety of causes or contributing factors, and
that causal code taxonomies incorporate influences ranging from individual idiosyncrasies
through task and workplace conditions up to managerial policies and beyond.

In principle, it should be possible to predict human and facility performance and their variations
through careful scrutiny of such contributing factors. The aim of this research project was to
assess whether useful predictions are possible in practice, given the data resources currently
available at energy facilities. As such, this project could represent an important milestone in the
energy industry’s longstanding efforts to understand and minimize the contribution of human
errors to incidents and accidents, as well as to manage and optimize both human performance
and facility performance.

Conclusions

Based on the findings from this strategic evaluation-of-concept project, it appears that useful
predictions of human and facility performance are possible based on the analysis of antecedent
conditions. Statistically significant models, based on data collected and archived for traditional
purposes, emerged for each of the outcome measures that were studied. These results were
achieved despite the limitations imposed by the restricted data sets that were ultimately
obtained—restricted in the number of years of data that were archived, in the usability of some
of these data, and, even more, by the lack of data for potential predictor measures that would
more directly tap training, safety efforts, and other factors that had been deemed of substantial
interest (based on the background literature review).
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As described in Section 6, several of the models accounted for more than 50% of the variance in
the outcome measures. Energy companies could create real practical value by taking advantage
of their data resources to develop such models. It appears, based on analyses of the obtained data
sets, that measures related to injuries, sickness, absenteeism, corrective and preventive
maintenance activity, and, possibly, seasonality hold particular promise for indicating or
reflecting the antecedent conditions associated with changes in human performance and
consequent facility performance. Although these findings were developed based on analyses of
data from fossil plants, the methodology employed here is likely to be useful in other energy
facilities, as well as in additional industrial and organizational settings.

Of perhaps equal importance as the preceding conclusion is the finding that the precise models
derived in this work could not be specified in advance. It should not come as a great surprise, for
example, that a performance outcome such as the number of trips per month might be higher
when sickness and absenteeism are up—or even that sickness and absenteeism levels might be
related to trip rates at a later time. However, there was no basis for expecting that the best
predictor of trips, within this study, would involve sick days in one staff sector with a 1-month
lag, as well as the absentee rate in a different sector at an 8-month lag. These findings do not
merely confirm long-held hunches about important performance-shaping factors; they also show
that analytical tools are needed to quantify such relationships and optimize predictive models.

A third key finding is that predictive models can be developed by applying conventional
techniques to analyze data that are already collected at energy facilities. It was not necessary to
institute new data collection procedures for novel observations, nor were esoteric analytical
techniques needed (the existence of such requirements could present formidable barriers to the
practical implementation of organizational epidemiology). Although novel observations and
experimental analyses may ultimately provide improved predictive capabilities and deeper
insights into performance-shaping factors, this project has demonstrated that much can be done
with widely available statistical software and the data that are currently archived at energy
facilities.

Recommendations

The specific models that emerged here probably depend in part on the somewhat arbitrary
collection of variables that became available for study. For example, it was anticipated, based on
review of the research literature (EPRI, 2002a) and on the predictive validity of leading
indicators study (EPRI, 2001b), that measures related to maintenance activity might be useful as
predictors of important outcomes. Although that proved to be the case in this study, other useful
predictors may well exist among the measures for which useful data were not available. For
example, the predictive validity study found a strong correlation between the number of
deficiencies in defenses at the participating nuclear plant that were identified first by outsiders
rather than by facility personnel (predictor), on the one hand, and estimated going-forward costs
(outcome), on the other; there was no indication that such a potential predictor variable was
available at the fossil plants that participated in this study. Additional work would be needed to
explore a larger variety of potential predictors, as well as to study the usefulness of predictors
that might be appropriate in specific contexts. Based on the experiences in this project, such
research would not be either easy or inexpensive to conduct.
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The quantitative analytical techniques applied in this study are fairly straightforward, when
considering the full range of statistical techniques, and they can be streamlined and customized
for specific purposes. The three-phase process of pairwise correlations (at various lags), stepwise
regressions, and statistical evaluation, as used here, may be automated through the use of simple
decision algorithms (such as the one used in this study: taking the predictor and lag with the
highest pairwise correlation, then adding predictors one by one until the percent of variance
accounted for does not increase substantially). Alternatively, an analyst may intervene in the
process in order to emphasize particular predictors, such as those that are thought to be more
reliably collected or more readily interpreted in terms of the predictive relationship.

As an example of a possible analyst intervention in predictor selection, note that the number of
sick days (for a particular staff sector and lag) turned up as a predictor in several of the
regression models. It could be argued that this is an inappropriate or confusing measure, since
the number of sick days per month is a function of the total staff size as well as of the typical
health of the staff. An analyst might prefer to try to reformulate the model using one measure of
sickness rate (illnesses per 100 staff members) plus a count of total staff, on the grounds that this
would support a more meaningful interpretation. Such a substitution might help managers avoid
making erroneous decisions based on attributing a causal relationship where only a correlation
has been observed. As an extreme, an analysis showing that trips are greater in the months
following high sick-day counts would not be a sound basis for laying off half of the staff; this
action would quite possibly produce a substantial drop in the number of sick days per month
(given the reduction in the total number of employees remaining), but would almost certainly not
lead to reduced trips. If sickness rate were used as a predictor, the resulting model might not
account for quite as much variance in the outcome measure, but the dubious intervention of
ordering layoffs would be unlikely to be contemplated, even in some purely hypothetical
manner.

Another analytical decision could be to limit predictors to longer lags. In the present study,
predictor variables with O-month lag (i.e., not really “predictions” but simply correlations
between two simultaneous measures) were excluded from the stepwise regressions in order to
look for models that would predict at least 1 month ahead. In practical applications, it might
make sense to limit models to, for example, predictors with at least a 3-month lag or more—long
enough to allow time to gather data, develop statistical predictive models, and consider and
implement interventions to improve performance, but not so long as to reduce the likelihood of
finding such models.

With regard to the statistical analytical methods used in this study, it is very encouraging to find
that widely used tools are adequate to uncover predictive relationships in energy facility data.
Even though it might not be possible to anticipate the exact terms (the variables, the lags, or the
model coefficients) of the regression models, the relationships that emerge invite interpretation
and may lead to increased knowledge of the factors that influence performance in a facility. Such
relatively straightforward understanding would be much less likely if more exotic analytical
methods were required, such as neural nets or very complicated software models that have been
developed to make predictions of financial markets.

Thus, there is reason for optimism about the practical application of organizational epidemiology
in energy industry facilities, and further research and development work would seem warranted
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by this conclusion. Before rushing ahead, however, several important caveats are to be
considered.

One caveat is that a statistically predictive model does not necessarily help analysts understand
the bases for performance changes. As discussed earlier, the search for antecedent conditions
includes but is not limited to the search for causes of human performance problems. A variable
that helps predict outcomes might be only indirectly related to an underlying causal factor. For
example, increased absenteeism might be a direct cause of deteriorating facility performance, but
it may also be that increased absenteeism reflects poor morale, poor labor relations, or
uncomfortable work conditions that lead to performance problems. The distinction between
prediction and understanding may not be crucial if the aim is to predict performance, but it can
have critical pragmatic implications for selection of appropriate interventions or corrective action
programs in a real-world setting. Future research and sharing of results, as feasible, across many
and diverse settings could lead to recommendations for specific performance improvement
efforts tied to certain patterns of predictor variables and predicted outcomes. A software
package, such as the Corrective Action Research and Evaluation (CARE) Tool developed by the
EPRI Nuclear Sector (EPRI, 2001i), could be used to store and retrieve information on
intervention programs. An enhanced version of this concept might make it relatively
straightforward for an analyst to go from a statistical predictive model to one or more selection
algorithms or (potentially) to recommended interventions.

Another caveat to bear in mind is that the models produced by stepwise regression have been
referred to as predictive models, insofar as they find statistically significant relationships
between various measures and a later outcome. However, the models derived to date are only
predictive after the fact—due to the structure of this study, as constrained by pragmatic
considerations, the models describe relationships only found in historical data. It remains an
unanswered (and unaddressed) research question as to whether models such as these can make
useful predictions going forward.

It may not be possible to test the predictive usefulness of such models under real operational
conditions. As noted previously in this report and elsewhere (EPRI, 2001b), the business of
energy facility managers and personnel is to ensure safe and productive operations, not to
conduct scientific research for its own sake. Given a prediction of performance problems ahead,
managers and staff would be expected to take action to prevent those problems, even though
such action would interfere with the research aim of finding out whether the problems would
arise as predicted. As soon as a predictive model is developed or a suggestion is made that a
particular factor is believed to influence human or facility performance, management is likely to
implement changes (preventive rather than corrective action) in an effort to improve future
performance. Furthermore, when everything is going well, outcome measures such as trips are
likely to have very little variability (close to zero trips per month), making it impossible to find
statistical predictive models. This is a positive state of affairs for the industry setting—but it is
an impediment to this type of research (or a challenge to discover a more appropriate outcome
measure).

One way around this apparent quandary regarding testing the predictive usefulness of models
under operational conditions may be to develop predictive models from a subset of historical
data and then to see how well their predictions hold up for more recent data. That approach is
commonly used in situations where the total set of available data is large enough to permit
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developing a model based on a subset and then evaluating how well the model extrapolates to the
rest of the data. With respect to the present study, the time window for observations was a 6-year
period ending in December 2000—too short to allow subdivision into a subset for model
development and a subset for model evaluation; the entire 6 years of monthly data were,
necessarily, used for model development.

Now that those data have been obtained, processed, and analyzed, however, an additional 18
months have elapsed (as of the time of preparation of this report). As a useful follow-up study,
an effort could, theoretically, be made to obtain observations of key variables (the predictors that
were included in the regression models, along with the outcome measures) for these past 18
months, and then to determine whether the existing models developed from the first 6 years of
data yield moderately accurate predictions into the following 18 months. In effect, the research
(and practical) question would be whether, hypothetically, these models would have been useful
to the plants if development of the models had been completed in early January 2001. That
evaluation is outside the scope of the present study, but it could be very valuable for assessing
how far into the future such regression models might be useful.

Aside from doing such additional retrospective evaluations, a field demonstration might be
initiated, in collaboration with one or more energy companies, to set up procedures for
implementing the organizational epidemiology process as described in this report. This would
first involve gathering data for appropriate measures—such as those that were included in the
predictive models in the present study, as well as ones related to training, safety efforts, and
other factors that had been deemed of interest in this study but were not available from the two
participating fossil plants. Data streams would then be collected on a central platform, which
would merge them into a common data set on a regular and timely basis. Existing statistical
analytical software tools would be used to develop and revise predictive models on a monthly
basis. The primary barriers to such research would involve ensuring that data are provided
reasonably quickly and thoroughly; the methodology for the work has already been developed, as
described in this report.

Such a project would be designed to yield true predictions of performance—in advance, rather
than in hindsight, as was done in this proof-of-concept study. These predictions would provide
useful insights for the design of proactive interventions to improve both human and facility
performance. Ultimately, experiences with organizational epidemiology in various industry
settings could be shared through a consortium or community of practice. Lessons learned about
performance prediction and about the effectiveness of specific interventions for optimizing
human performance in specific workplace environments could help improve the reliability,
safety, security, productivity, and environmental performance of energy infrastructure.
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FACIAL DISPLAYS

This appendix details results from trial use of a multivariate visualization technique to analyze
data from Plant A. The technique is briefly introduced in Section 5, and results are described at
the end of Section 6.

For this trial examination of the technique, variables selected for display using Chernoff faces
and the associated features were as follows:

Area of Face: Thermal Index

Shape of Face: Gross Sickness and Absentee Rate

Length of Nose: Absentee Frequency Rate

Location of Mouth: Preventive Maintenance Orders, Total

Curve of Smile: Preventive Maintenance Orders, Initiated

Width of Mouth: Preventive Maintenance Orders, Outstanding

Location of Eyes: Ratio of Corrective to Preventive Maintenance Orders, Outstanding
Separation of Eyes: Ratio of Corrective to Preventive Maintenance Orders, Initiated

Angle of Eyes: Ratio of Corrective to Preventive Maintenance Orders, Total

The faces are shown on the following pages. Missing facial features (e.g., no facial outline for
Face 14) indicate that the corresponding value was missing or had not yet been obtained at the
time these plots were prepared. The faces are ordered by number of trips per month, with the
fewest trips for the first faces in the set and the greatest number of trips for the last faces. (The
number under each face is an identifier, not the number of trips that occurred in the
corresponding month.)
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