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REPORT SUMMARY 

This report describes an empirical study of the prediction of human performance and energy 
facility performance based on analysis of historical data relating to worker-, workplace-, 
management-, and organization-centered factors. Findings verify the relationship between such 
antecedent conditions and subsequent human performance and facility productivity, reliability, 
and safety. 

Background 
The most frequently used approach to study human performance and reduce the impacts of 
human error is retrospective, i.e., the review of an accident, intended to identify its cause(s), 
leads to identification of corrective action(s) intended to prevent repetition of the accident. 
Although the retrospective approach has yielded significant benefits, the ability to predict human 
performance could support more efficient allocation of resources toward error prevention and 
human performance optimization. A literature and experience review (EPRI report 1004668) led 
to the concept of organizational epidemiology, in which data relating to human error, human 
performance, and facility performance are combined with contextual information that could 
reveal antecedent conditions for performance changes. 

Objective 
To explore the feasibility and practicality of applying organizational epidemiology in energy 
industry contexts by collecting historical data from energy facilities and assessing the use of 
various analytical methods to predict human and facility performance. 

Approach 
Previous EPRI strategic work (1004668) revealed that exploration of organizational 
epidemiology should involve the collection of historical data relating to measures of potential 
antecedent conditions (predictors) and of human and facility performance (outcomes). In this 
study, a preliminary list of measures of interest potentially available from energy facilities was 
developed in conjunction with management and personnel from two nuclear plants. Through 
collaborative work with two fossil plants, investigators obtained suitable data for various 
measures of interest. They next applied statistical methods based primarily on regression 
techniques to find reliable relationships between possible predictor variables and four outcome 
measures. 

Results 
Statistically significant predictive models emerged for each outcome measure, despite limitations 
imposed by the restricted data sets ultimately obtained. These data sets were restricted in the 
number of years of data archived, in the usability of some data, and, even more, by the lack of 
other measures that would more directly tap training, safety efforts, and other factors that had 
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been deemed of interest. Based on analyses of these data sets, predictor measures related to 
injuries, sickness, absenteeism, corrective and preventive maintenance activity, and, possibly, 
seasonality hold particular promise for reflecting the antecedent conditions associated with 
changes in human performance and consequent facility performance. Several of the models 
accounted for more than 50% of the variance in the outcome measures. 

Predictive models could have real value for energy facilities that take advantage of their existing 
data resources. Of perhaps equal importance is the conclusion that it will not be possible to 
specify the models (particularly model coefficients and optimum lags) in advance. Although 
some connections identified in this study between predictors and outcomes were not surprising, 
the details were discovered only through statistical analysis. This finding supports the long-held 
suspicion that performance may be shaped by many factors operating at multiple organizational 
levels and interacting over varied time scales. It also shows that analytical tools are needed to 
quantify such relationships and optimize predictive models. 

Organizational epidemiology appears promising for energy industry facilities and additional 
industrial and organizational settings, but several lessons learned and important caveats should 
be considered. Practical recommendations are provided to help energy company analysts and 
researchers apply lessons regarding the acquisition of data on potential measures of interest. 
Major caveats are as follows: 1) the models developed in this study are predictive only after the 
fact, describing relationships found in historical data; and 2) statistically predictive models do 
not necessarily help analysts understand the bases for performance changes. Follow-on studies 
could help determine whether truly predictive models can be developed as well as examine 
causal relations between predictors and important performance outcomes. 

EPRI Perspective 
This report was prepared as part of the “Human Performance Management: Database and 
Analysis” project under the Strategic Human Performance Program. The project sought to 
improve understanding of how varied factors affect human and facility performance. Such 
knowledge would enable development of methods and tools for predicting performance and 
informing design of prospective or proactive interventions. The study described in this report—
the first major attempt to explore the use of organizational epidemiology in energy industry 
settings—provides proof of concept for this type of approach. Compatible findings were 
produced in a complementary strategic study (1004670), which investigated a predictive 
approach based on work by EPRI’s Nuclear Sector to develop leading indicators of organizational 
health (reports TR-107315, 1000647, 1003033). Further work is needed to develop predictive 
methodologies, test their applicability in real-world environments, and employ their findings for 
guiding efforts to optimize human performance and improve the reliability, safety, security, 
productivity, and environmental performance of the energy infrastructure. 

Keywords 
Human Error 
Accidents 
Human Performance 
Organizational Epidemiology 
Intervention 
Prediction 
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1  
INTRODUCTION 

Human performance is fundamental to the planning, design, procurement, installation, 
management, analysis, operation, and repair of energy infrastructure, as well as to the 
introduction and acceptance of new technology. Managing and improving human performance 
are critical to optimize the performance of the energy infrastructure and achieve economic, 
environmental, and social goals. 

Human performance is also a critical determinant of safety in the energy and other industries. It 
is often estimated that a majority of significant events (accidents or mishaps) in commercial 
nuclear power plants and other industrial facilities—perhaps as high as 70-80%—involves 
human error or inappropriate action as a critical element (e.g., Ayres et al., 1993; Muschara, 
1997). In addition to contributing to significant events, human error also plays a frequent role in 
exacerbating the severity of consequences (Fujimoto, 1994; Heyes, 1995). Successful reduction 
of human error problems yields clear benefits with respect to both safety and cost (e.g., Lanoie & 
Trottier, 1998; Smith & Larson, 1991). 

In regulated, high-risk industries such as electricity production and delivery, the potential 
economic, environmental, and social costs of events—including the remote but real possibility of 
a catastrophic outcome—motivate prospective efforts to identify antecedent conditions 
associated with human errors and performance deficiencies. Ideally, selection of corrective 
actions and planning and implementation of preventive measures could be implemented based on 
the appearance of antecedent conditions of problems; similarly, detection of antecedent 
conditions that foreshadow good performance could guide the allocation of resources for human 
performance optimization. Methods and tools that enable prospective or proactive human 
performance intervention thus could prove extremely valuable in the energy industry and other 
sectors.  

Numerous tools based on the management of organizational factors have been proposed and 
applied in industry settings for human performance improvement (see review in EPRI, 2001a); 
selection of site- or situation-specific tools would benefit from identification of antecedent 
conditions. This report describes a methodology for developing predictive models of human and 
facility performance based on statistical analysis of historical (archived) data from energy 
facilities. Application of this method could be expected to improve the effectiveness of human 
performance management efforts. 

Research Context 

The “Human Performance Management: Database and Analysis” (HPM) project, a major 
element of EPRI’s Strategic Human Performance Program (1999-2001), sought to improve 
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understanding of how aspects of worker-, workplace-, management-, and organization-centered 
factors affect human and facility performance. The overall strategic program is providing tools, 
capabilities, and services to optimize human productivity and reliability in specific workplace 
environments, as well as to anticipate and address factors with adverse impacts on human 
performance and on the productivity, reliability, and safety of energy and other facilities. 

An extensive literature and background review, conducted as a lead-in to the HPM project, was 
published in 2002, with a substantial annotated bibliography incorporated in the appendices 
(EPRI, 2002a). It surveyed relevant technical human performance literature and state-of-the-art 
human performance data collection, handling, and analysis practices developed for and applied 
in industry and government contexts. The literature and experience review was intended in large 
measure as support for empirical research.  

Two empirical studies were initiated as the most substantial part of the effort carried out under 
the strategic HPM project. The central study, described in this report, sought to apply what may 
be called organizational epidemiology (Rosenthal, in Hale et al., 1997). The second, the 
“Predictive Validity of Leading Indicators of Human Performance” (PV) study, took an initial 
look at a related approach (EPRI, 2001b). 

The organizational epidemiology concept involves linkage of data regarding human and facility 
performance with information on workplace conditions in order to explore possible relationships 
between corporate performance measures, such as events or accidents, and organizational 
attributes. The study that is the central topic of this report took a broad perspective on the types 
of antecedent conditions that could influence both human and facility performance.  

Preliminary findings from the study were described in an interim report, Organizational 
Epidemiology: Analytical Approaches for Predicting Human and Energy Facility Performance 
(EPRI, 2002b). Interim findings from the literature/background review and the two empirical 
studies were briefly summarized in several conference presentations (Murray et al., 1999; Gross 
et al., 2000; Ayres et al., 2001; Gross et al., 2001).  

Report Organization 

Section 2 of this report reviews the background for this research study, based primarily on the 
review conducted earlier (EPRI, 2002a). It discusses characteristics of human error and describes 
how discovery of the factors contributing to human error, i.e., the antecedent conditions, may 
enable development of proactive human performance improvement measures.  

Section 3 details the methods used to identify data for the study. This includes discussion of the 
empirical approach chosen for this work, as well as description of the types of data considered 
most likely to be useful. Section 4 describes the actual data collection process and the final data 
set. Section 5 identifies analytical tools considered for trial use in the project, as well as methods 
that were actually applied. Section 6 details the analyses and findings. Section 7 covers the 
practical lessons learned for conducting this type of research, both from this study and from the 
previous PV study. Finally, Section 8 provides conclusions and recommendations, and references 
are listed in Section 9. Appendix A details results from trial use of a multivariate visualization 
technique.
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2  
HUMAN ERROR—CAUSES AND ANTECEDENTS 

Much has been written about human error. Numerous reviews are available (e.g., Moray, 1992; 
Park, 1997; Reason, 1990, 1997), and a variety of cognitive models have been developed for 
error generation. The literature and background review conducted for the strategic HPM project 
guided the research directions pursued in this empirical study of human performance prediction 
in energy facilities. Conclusions and recommendations from that review are summarized in this 
section; more details, including an annotated bibliography, can be found in the full literature and 
background review report (EPRI, 2002a). 

Human Error  

The term human error is itself controversial. It implies fault and invites blame even though, in 
many instances, the person(s) who acted improperly did not do so intentionally. The general term 
human error is used in this report for the sake of convenience (since it is the most common term 
in the field), but public pronouncements and workplace safety programs might do well to adopt 
more neutral language for referring to situations in which human action or inaction is judged to 
be less than adequate. 

Human error is sometimes distinguished from deliberate inappropriate action or inaction. For this 
project, human error is understood to include both unintentional and intentional errors of 
commission or omission, while it is recognized that categorizing errors by type or circumstance 
can be useful for understanding, prediction, and prevention. For example, one common error 
typology distinguishes between skill-based, rule-based, and knowledge-based errors (Rasmussen, 
1986), and several researchers add a fourth category for judgment- or attitude-based errors 
(Lehto, 1991; Ayres et al., 1993). Intentional errors, including deliberate sabotage, could be 
regarded as extreme cases of judgment/attitude errors.  

The preponderance of judgment/attitude errors in many contexts—and their resistance to training 
programs (Ayres et al., 1993)—creates a quandary for human performance improvement efforts. 
Problems with traditional enforcement solutions for such errors in one area of human behavior in 
an industrial context are discussed in a report produced under the EPRI Strategic Human 
Performance Program (EPRI, 2001c), as are suggested directions for human error reduction 
through implementation of behavioral safety programs. Error types that are more difficult to 
eliminate, however, are not necessarily more difficult to predict. Indeed, the very difficulty of 
improving certain aspects of human performance by traditional solutions, such as training and 
enforcement, increases the need for tools that can help predict such problems in advance. 
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Antecedent Conditions 

In order to find ways to reduce error frequency (or the frequency of nonoptimal performance) in 
the workplace and to mitigate the associated consequences, it is important to identify antecedent 
conditions for human errors. Strictly speaking, it is not necessary to identify causes of human 
error, nor even the facilitating factors that allow errors to occur (although knowledge of both 
causes and facilitators would be very helpful, and this approach receives considerable research 
attention). Rather, considerable safety gains should be possible if antecedent conditions can be 
discovered, allowing managers and supervisors to predict general error trends and to spot trouble 
in advance—even if the causal links are not understood. In this project, the search for antecedent 
conditions concentrates on antecedent conditions for human error (ACHEs). It is just as 
reasonable, however, to try to find antecedents for human performance improvements or, more 
generally, antecedents for human performance changes. 

For antecedent conditions to be useful for predicting future performance, they need to be 
causally related in some direct or indirect way to the performance; otherwise there would be no 
reason to believe that the antecedent conditions would have predictive value. It is important to 
note that the causal relation can take several forms. An antecedent condition can cause a human 
performance change, either directly (e.g., hot weather could cause people to have mishaps) or 
indirectly (e.g., hot weather could cause high absenteeism, in turn leading to mishaps). Another 
possibility is that an antecedent condition can reflect or be affected by some factor that also 
causes a human performance change, either directly (e.g., a rise in minor injuries could reflect 
hot weather, which might lead to mishaps) or indirectly (e.g., a rise in minor injuries could 
reflect hot weather, which might lead to maintenance errors that would show up later as facility 
performance problems). Thus, the search for ACHEs includes but is not limited to the search for 
causes of human performance problems. For practical purposes, it would be useful to find 
measures that are correlated with future performance, even if the causes of the correlations are 
not understood. 

Deductive and Inductive Approaches 

Two general approaches may be used to find antecedent conditions of human performance 
changes or human error: deductive and inductive. Deduction involves reasoning from principles 
to specific conclusions; induction involves generalization from data to general rules. The contrast 
between these approaches may be used to distinguish much of the previous work on error 
prevention from the study described in this report.  

Deduction makes use of human intuition and insight to develop models of human error and 
organizational behavior. As a prime example, the search for leading indicators of human 
performance has involved review of both research literature and accident data. Work for the U.S. 
Nuclear Regulatory Commission (NRC) has produced proposed leading indicators for nuclear 
power plant safety based on experience in other industries; the NRC’s proposed indicators 
include significant incidents, reportable incidents, precursor incidents, equipment-forced 
downtime, safety system unavailability, and unrelated contained releases (Connelly et al., 1990; 
Van Hemel et al., 1991; see also American Society for Quality, 1999).  
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Recently, in work funded by the EPRI Nuclear Sector’s Human Performance Technology (HPT) 
Program, review of available models of human performance led to the identification of seven 
“recurrent themes” that could form the basis for proposing leading indicators of human 
performance (EPRI, 1999a, 2000, 2001d; Wreathall & Jones, 2000). The seven themes represent 
a high-level or very general synthesis of cultural or organizational factors. Through a process of 
deduction and discussion, the themes could be tied to industry-specific issues and eventually to 
potential indicators that would reflect conditions at a site or facility relevant to the corresponding 
themes. Since the themes were intended to represent factors that are widely believed to affect 
human performance in work settings, it was hoped that related indicators could serve as leading 
indicators, giving advance notice of human performance changes. 

In a study performed under the strategic HPM project, based on the prior work performed by the 
Nuclear Sector’s HPT Program, the predictive validity of the leading indicators methodology 
was explored (EPRI, 2001b). Results provided support for the premise that such indicators 
ultimately might help predict facility performance outcomes and guide human performance 
interventions. In the present report, the practical lessons regarding research methodology issues 
(Section 7) and the conclusions regarding performance prediction (Section 8) draw in part on the 
findings of the predictive validity study. 

At the opposite end of the spectrum, a purely inductive approach would start with data on human 
performance and the workplace context, and atheoretical analyses would be used to look for 
patterns or relationships. In principle, given enough data about the background or context in a 
workplace—along with information about observed human errors—it should be possible to 
discover predictive relationships (if any exist) between background antecedents and the errors.  

In practice, a purely inductive approach does not make sense; some initial decisions need to be 
made about the data to be collected, based in part on intuition, convenience, and similarity of 
possible predictors to factors that appear relevant based on prior research. The models and 
findings of the deductive approach can be used here to suggest potentially interesting measures. 
Alternating the complementary processes of induction and deduction—observations lead to 
generalizations that lead to hypotheses or research questions to be tested or examined with 
further observations—is a normal feature of the experimental sciences. 

Most attempts to identify potential ACHEs involve (or begin with) deduction. For example, if 
accidents seem to have occurred when complicated tasks were performed across a shift change, it 
makes sense to suggest that the scheduling of such tasks across shift changes might be a 
predictor or antecedent condition for human performance problems (logical deduction); a 
hypothetical causal mechanism would be inadequate information transfer between personnel at a 
shift change. Thus, a combined approach—reasoning from observations to hypothesized 
principles (induction) and then back to potential specific indicators (deduction)—is useful for 
suggesting potential antecedent conditions.  

The distinguishing feature of a strongly inductive approach to human error precursors (or an 
inductive phase of investigation) is the effort to collect a wide range of measures about context 
or background (and thus about possible antecedent conditions) without second-guessing the 
nature of any relationships that may show up. Rosenthal (in Hale et al., 1997) proposed the 
pursuit of organizational epidemiology, linking databases to explore possible relationships 
between accidents and the attributes of organizations and regulatory systems in the chemical 
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industry. The hope of such an approach is to find emergent and perhaps unanticipated patterns of 
relationships. Instead of starting from a proposed causal relation and then seeking confirmation, 
the inductive approach would discover a consistent relationship between conditions and 
performance and, thus, invite speculation, analytical consideration, or research to understand the 
causal basis. 

Organizational Epidemiology in the Energy Industry 

Conducting organizational epidemiology in the energy industry involves three components. First, 
detailed data on errors (or other outcomes to be predicted) need to be collected and organized. 
Second, extensive related data reflecting background conditions must be identified and gathered. 
Finally, analytical tools for discovering patterns and predictive relationships need to be applied. 
Issues related to data are discussed below and in Section 3; analytical tools are discussed in 
Section 5. 

The most useful error data are likely to involve reports of incidents. The term incident is used 
here to cover a wide spectrum, from major accidents and events at one end, through minor 
mishaps to near misses, to inconsequential errors at the other extreme. Catastrophic accidents 
need to be studied in great detail because of their severe consequences, but (fortunately) they are 
too rare to permit systematic, quantitative (statistical) study of the causes and likelihood of 
human error. Accident frequency, of course, is at least partly a function of exposure, or how 
often a given activity takes place; it is not surprising that there are more fatal accidents in the 
trucking industry than in the power industry, given that far more annual person-hours are spent 
working in the former than in the latter. 

Review of incident reports can provide insights into commonly attributed causes and into the 
apparent success of various safety interventions, such as with regard to errors involving selection 
of the wrong unit or train in a nuclear power plant (EPRI, 1994). Data regarding workplace 
injuries (and other occupational health and safety factors) in the energy industry are being 
studied in a continuing project by the EPRI Environment Sector’s Occupational Health & Safety 
Program (EPRI, 1999a, 2001e). Accident reports, however, have limitations for studying human 
error: Accidents are rare and uncontrolled events, reporting tends to be inconsistent and biased 
towards more serious events (Thompson et al., 1998), and accidents tend to be complex and to 
raise concerns about liability and punishment within organizations (Tamuz, 1994). Near-miss 
reports seem to offer a desirable alternative, but such events are rarely reported with adequate 
consistency and detail for analysis; many energy companies have programs in place for near-
miss reporting (e.g., EPRI, 2001e), but these programs typically lack mechanisms and policies to 
ensure frequent reporting and centralized archiving. Thus, in this study, incident reports were 
selected as a source of more direct and available data on human errors at energy facilities.  

Selecting and obtaining data related to the context within which errors occur represent major 
hurdles for an inductive or empirical approach to human error analysis in complex organizations. 
The number of variables that might be studied in a large work setting such as an energy facility is 
too large to justify any attempt to exhaustively collect, organize, and analyze associated data. 
Even in the restricted environment of a control room, many types of measures of work 
conditions, operator conditions, and human and system performance have been considered, such 
as in the ongoing research program at the Halden Reactor Project (e.g., Haugset, 1997). 
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From a practical standpoint, it would be ideal if useful contextual measures could be found 
among data streams that are already collected on a routine basis. This would allow researchers to 
study the predictive value of the various measures using historical (archived) data; it would also 
allow organizations to make human performance predictions without additional and possibly 
cost-prohibitive data collection efforts. Discovery of predictive relationships requires 
considerable historical data. Thus, finding predictive value in the data that have been collected 
for years at energy facilities would help companies obtain practical results more quickly and 
more economically than if new data collection procedures had to be instituted.  

On the other hand, although complex energy facilities already collect a staggering amount of 
data, there is no assurance that they collect the best data for examination of potential antecedent 
conditions for human performance and safety. Growing interest in human performance 
prediction and improvement is leading some nuclear plants to begin collecting new measures, 
such as survey responses following task completion (EPRI, 2001g) or periodic observations of 
the frequency of safe behavior by employees, as well as measures intended to bear on selected 
leading indicators of organizational health (EPRI, 2001b, 2001d). Eventually, when sufficient 
data accrues, studies of organizational epidemiology may be enhanced by the availability of such 
measures. 

An empirical inductive approach to studying context-behavior relationships needs to cast a rather 
broad net for data, but some tentative guidelines also need to be adopted for what is most likely 
to be useful. Rather than relying too heavily on intuition or educated guesswork, it is appropriate 
to consider research on factors that influence human performance. Indeed, that was a major goal 
throughout the literature review conducted for this project (EPRI, 2002a): to learn from past 
efforts to identify worker-, workplace-, management-, and organization-centered factors that 
influence human and facility performance and to use these factors for predicting future 
performance.  

There have been several attempts to review and consolidate previous work on factors that 
influence human performance in organizational and industrial settings. For example, Wilpert & 
Miller (1999) reduced 160 potential influencing factors at nuclear power plants that had been 
proposed in 13 organizational factor models to just over 60 factors, grouped in seven categories. 
Similarly, participants at a 1998 workshop on organizational factors related to nuclear power 
plant safety reached a consensus on 12 major factors important for safety (Committee on the 
Safety of Nuclear Installations, 2000): 

• External influences (from outside the boundary of an organization) 

• Goals and strategies 

• Management functions and overview 

• Resource allocation 

• Human resources management 

• Training 

• Coordination of work 

• Organizational knowledge 
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• Proceduralization 

• Organizational culture 

• Organizational learning 

• Communication 

The report from that workshop provides definitions and “aspects” for each factor, as well as 
suggested techniques for gathering data. Unfortunately, most of the data, with the exception of 
some types of performance data, would be unusual to find routinely in energy industry or other 
organizational settings. Many of the items listed as aspects of the major safety factors have no 
clear counterparts in routinely archived facility data. The possibility exists, however, that routine 
data may provide surrogate measures—ones that indirectly reflect the influence of these or other 
important characteristics. It is not essential to understand connections between measures and 
underlying factors, although theory (or models or hunches) could lead to exploration of measures 
that would otherwise not be obvious. For example, possible ACHEs such as stress and workload 
(which are likely to influence performance) may not be measured directly in typical energy 
industry settings, but they may be captured indirectly in available measures such as overtime 
hours or corrective maintenance activity. 

There is general agreement that operational safety depends on a wide variety of organizational, 
environmental, task, and worker factors. Wreathall et al. (1991) summarize this state of affairs in 
the “onion model” of human performance influence factors, with the worker at the center of rings 
of influence from the team and work environment, the surrounding organizational and corporate 
factors, the facility and site conditions, and the outside public and regulatory environment. Such 
factors have been codified as performance-shaping factors for probabilistic risk assessment in 
the nuclear power industry (e.g., Cooper et al., 1996).  

Selection of appropriate and useful variables to include for organizational epidemiology requires 
an iterative process. For example, if preliminary analyses indicate that certain factors seem to 
have no predictive value, they may be given lower priority for future data collection. On the 
other hand, ruling out variables on the basis of intuition, past research, or failure to find an 
interesting pattern may compromise the chances of finding new and nonintuitive patterns when a 
larger data set becomes available.  

Finally, it bears repeating that the goal of this research project is not to understand the causes of 
human error and human performance problems in the energy industry (although that would be a 
valuable aim). Indeed, such an understanding may in principle be impossible within the 
framework of current science. The recent work on computation and complexity by Wolfram 
(2002) suggests that complex behavior—including that exhibited by even simple systems, let 
alone that of multi-agent interconnected organizations such as energy facilities—may arise from 
fairly simple rules and yet be impervious to analysis. Even if computational models can 
ultimately be developed to mirror the complex behavior of facilities and organizations, both 
understanding and detailed prediction may be beyond analytical reach. Nevertheless, statistical 
models that accept probabilistic or random (i.e., not understood) components in complex systems 
frequently provide a useful degree of predictability, and the same may be true for energy facility 
performance.

0



 

3-1 

3  
METHODOLOGY—DATA IDENTIFICATION 

As noted in the previous section, the literature and experience review (EPRI, 2002a) indicated 
that an exploration of organizational epidemiology for energy industry facilities should involve 
the collection of data relevant to human and facility performance (outcomes) as well as to 
potential ACHEs (antecedent conditions of human error or, more generally, predictors of human 
performance). This section describes the basic methodology employed to identify appropriate 
data for the HPM project. 

Data Sought 

To pursue the primarily inductive, or bottom-up, approach planned for this strategic project, an 
effort was made to review the types of information normally collected and archived at energy 
facilities (for more details, see EPRI, 2002a). At two nuclear power plants (owned by separate 
U.S. companies) and two fossil power plants (owned by one non-U.S. company), several days of 
interviews were conducted per site with a variety of technical and managerial personnel. 
Interviewers spoke with senior management and with other personnel responsible for various 
areas within the organization. Based on those interviews and discussions and a synthesis of 
results across the four sites involved, indices of interest were identified as shown in Table 3-1. It 
was not expected that all of these types of data could be obtained at a single site. It was also not 
known whether there would be a great deal in common between this list and what might be 
available at other types of energy industry facilities. 

Broadly speaking, two types of measures are needed for organizational epidemiology. On the 
one hand, outcome or performance measures are of practical interest within the energy industry, 
and they presumably reflect (to varying degrees) the influence of human performance and human 
error; thus, injuries, incidents, productivity, and unit trips are all important outcomes. On the 
other hand, the rest of the variables are hoped to characterize and influence the climate and 
conditions within which people work and thereby to harbor potential ACHEs.  

The distinction between predicted (outcome) and predictor variables is not fixed in a 
correlational study such as the present one. Injuries to facility personnel are costly and 
unfortunate outcomes, to be reduced or avoided if possible. However, the rate of even minor 
injuries among staff may be useful as a barometer for less directly measurable factors (e.g., 
safety climate, morale, job stress), and it may allow prediction of subsequent problems having 
other outcomes. 

For the purpose of analysis in the present study, the data on errors and on context need to cover a 
substantial time span, and they need to be collected on a regular basis. As with any study of 
events or changes across time, it is advantageous to cover as long a time span as possible. In the 
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course of interviews at the four plants, it appeared that 5 years was a reasonable span for which 
to seek data for many of the variables. A common time interval for observations is required for 
analyses, and it was found that observations on at least a monthly basis would be available for 
most types of data for which records were kept; variables recorded more often (e.g., daily or 
weekly) could be converted to monthly totals or averages in order to use a common monthly 
basis.   

Table 3-1 
Indices of Interest for Organizational Epidemiology That Are Likely to be Available at 
Energy Facilities  

Measures Indices of interest 

Error-related 

Events, incidents, injuries, errors 

Investigations, root cause codes, apparent cause codes 

Corrective actions 

Problem observations 

Positive behavior observations 

Facility-related 
Facility performance data, service records 

Equipment trip records 

Facility history  

Worker-related 

Total hours, overtime hours 

Shifts and work schedules 

Absenteeism, lost work days, voluntary departures 

Worker demographics, years of experience, promotions 

Training scores and records 

Hiring, retraining, job succession 

Work/task-related 

Project and budget overruns 

Operator workarounds 

Procedural changes (including temporary) 

Preventive maintenance actions  

Corrective maintenance 

Complaints, suggestions, human resource concerns 

Work orders, parts availability 

Clearance, tag-outs 

Management/ 
Organization-related 

Departmental self-evaluations 

Surveys 

Evaluations by external regulatory agencies 

Safety programs 

Human performance improvement efforts 

Audits, surveillance 
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Conceptually, the simplest use of incident data is for counting and trending. Most analysts, 
however, improve the diagnostic value of their trending through some form of categorization. 
Rare major incidents tend to be extensively studied; minor incidents receive varying degrees of 
attention and causal analysis. To the extent that some consistent causal coding has been done for 
a set of incident reports (or can be assigned later), this information could be used to look for 
relationships between ACHEs and specific types of incidents (or those with specific ascribed 
causes). 

The list of potential outcome and predictor measures shown in Table 3-1 was developed to serve 
as a guide for data collection efforts in order to explore the usefulness of organizational 
epidemiology. Ideally, a data set containing measures of all of these variables would be 
organized and analyzed in order to look for interrelations among predictors and for predictive 
relations with outcomes. Furthermore, if such data were available from numerous facilities, 
along with characteristics that differentiate the facilities, it might be possible to do pooled or 
comparative analyses, increasing the analytical power to identify predictive antecedent 
conditions. 
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4  
DATA COLLECTION 

To perform organizational epidemiology research at energy industry facilities, close cooperation 
and active participation of technical and management personnel are essential. Initially, 
collaborative work was planned with two U.S. nuclear power plants owned by separate 
companies, and visits and interviews at those sites were invaluable for developing the list of 
indices of interest presented in Table 3-1. Despite strong expressed commitment from company 
management and extensive interaction with plant personnel, however, the EPRI project team was 
unable to acquire suitable data from these nuclear power plants within the specified time frame. 

A non-U.S. energy company also expressed interest in the HPM project, and the project team 
was fortunate to have the opportunity to work closely with the company’s management and staff. 
This and subsequent sections of this report focus on research performed using data collected 
from two fossil-fueled electric generation plants identified by company personnel. Both are 
large, multi-unit coal-fired plants with more than 15 years of operational history and no near-
term plans for decommissioning. The company selected these two plants in part because one had 
experienced relatively more performance problems in recent years, especially with respect to 
unintended trips. By comparing results from analyses of these two plants, management hoped to 
gain useful insights for performance improvement planning. 

Site Visits 

Following initial discussions and planning with representatives from the non-U.S. company, with 
the list of desired data (Table 3-1) as a guide, EPRI-associated members of the project team 
visited both fossil plants, as well as the company’s head offices. A total of 35 people (potential 
data providers) were questioned over a period of 3 days, with informal, semi-structured 
interviews used to address planned issues regarding data content and availability and to seek 
suggestions from the participants.  

In some cases, the interviewees recommended data sets that the researchers had not anticipated; 
in other cases, interviewees were surprised to learn from the researchers about data collected 
elsewhere in the plants. Most interviewees appeared receptive to the interests of the researchers 
and supportive of the described goals (a brief description of the research project had been sent to 
all interviewees in advance, dealing with purpose, types of data sought, expected outcomes, 
possible benefits, and technical support needed). 

The notes and materials gathered during the visit by the research team were used to draw up a list 
of specific data sets and specific data providers. It was determined that most of the variables of 
potential interest, if they were archived in a usable manner, were available on at least a monthly 
basis for 5 to 6 years (or more). As such, the research team decided to request 6 years of monthly 

0



 
 
Data Collection 

4-2 

data for most variables and to try to convert requested data for other variables to monthly format. 
In addition to the monthly data, some historical or descriptive information was sought for each 
plant, such as its operational history, dates of any major changes or renovations, and 
whether/when there had been any management/labor disputes.  

Data Acquisition 

The next step was data acquisition. A member of the core research team served as the main 
liaison for this process. An additional visit to each plant by the liaison was followed by email and 
telephonic contacts (and another visit to one plant by the liaison) over a period of nearly a year to 
acquire data files and clarify details about the data. This follow-up phase was finally terminated 
in order to conduct final analyses of the data sets (to which no further changes would be made) 
and to initiate preparation of the project report; at that time, numerous types of data that had been 
identified as available had not yet been obtained (at least in a form usable for analyses).  

Table 4-1 summarizes the types of data that proved suitable for analytical use once the data 
acquisition phase was terminated.  

Table 4-1 
Indices Obtained with Adequate Detail and Number of Observations for Analyses  

Measures Indices of Interest 

Error-related 
Major, significant, minor incidents (Plant A only) 

Injuries (Plant B only) 

Facility-related 

Facility performance data 

Unit trip records 

Facility history  

Worker-related 

Total hours, overtime hours 

Absenteeism, lost work days 

Worker demographics, education (Plant A only) 

Personal problem reports (Plant B only) 

Work/task-related 

Procedural and instructional changes (Plant A only) 

Preventive maintenance actions (Plant A only) 

Corrective maintenance 

Work orders (Plant B only) 

Except as noted, indices in each category were available from both plants, although not always in 
the same form. Data on injuries, illness, and absenteeism (both counts and rates) were broken 
down by department (engineering, operations, mechanical/maintenance, and service areas). 
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The data sets included notable omissions from the list specified in the original study design (see 
Table 3-1), which necessarily compromised the research aims. For example, it was not possible 
to obtain detailed cause codes for a sufficiently large group of events. In general, detailed 
investigations are conducted at these facilities only for major events, which may occur once a 
year or less frequently. Unit trips, on the other hand, which may occur up to several times per 
month at each plant, are categorized as being plant-related (and thus possibly due to human 
action at the plant) or external; some effort is made to identify root causes, but they are not 
generally investigated in sufficient detail to be sorted readily and consistently by type of human 
error or less-than-adequate action. Training scores and records were available only in 
voluminous hard copy, and they could not readily be summarized or linked to employees in a 
way suitable for inclusion in the analyses. There was very little information directly related to 
management/organization-related issues, other than general observations (e.g., that efforts were 
being made in recent years to improve human performance; participation in this research project 
was one aspect of that effort).  

Before the statistical analyses could be conducted, considerable time and effort were devoted to 
reviewing the data and organizing the data set from each energy facility. The first step was to 
learn about the individual variables, considering issues such as how each variable was measured, 
whether a consistent definition was used throughout the time of measurement in the data set, and 
whether all of the observations or data points should be treated as valid. This involved examining 
the values for each variable (in tables or in simple descriptive plots) to look for outliers 
(divergent values), missing values, or other anomalies, as well as communicating with people 
from the facility who were responsible for making the original measurements or who understood 
the data collection process and terms. In the absence of additional information, missing values 
were omitted from the analyses.  

The final data set for Plant A consisted of 72 observations (6 years of monthly values) for most 
measures; several plant performance indices were only available for the most recent 5 years of 
the period (60 observations), and there were several missing values among the counts of sick 
days and injuries. For Plant B, numerous measures had only 4.5 to 5.5 years of data available; 
counts of reported personal problems were too incomplete to be included with confidence, and 
the associated data included multiple counts (e.g., if both a marital problem and a financial 
problem consultation were reported in a month, it was impossible to tell whether the reports were 
for two different employees or the same person).  

Four outcome measures had sufficient data to be included in the analyses: the number of trips per 
month, the thermal index (a measure of how often and to what extent critical temperature 
readings exceeded desirable levels), the chemical index (a measure based on readings related to 
the material processed in the plant), and unplanned energy losses. Unfortunately, it was 
discovered during the data review period that the procedure used for measuring the thermal index 
might have changed during the period covered by the study. Thus, it became apparent that any 
results involving the thermal index would possibly be contaminated by the change in 
measurement procedure and, thus, difficult to interpret. 

Lessons learned with respect to the process of data collection are discussed in Section 7. 
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Confidentiality of Plant Data 

The management of the collaborating company and of the two participating fossil plants 
provided data for this strategic project with the understanding that attempts would be made to 
avoid the inclusion of identifying details (and proprietary or business-sensitive information) in 
any reports, either for EPRI funders or for the public. In this report, a concerted effort has been 
made to present important research findings, along with examples of quantitative results, without 
compromising the confidentiality of the data set, the participating facilities, or the collaborating 
company. Consequently, many quantitative details (which are not necessary for understanding 
the conceptual findings), such as the scale numbers for graphs and the specific means for 
calculating some of the measures, are omitted throughout this report and, especially, in the 
presentation of analytical results in Section 6. 
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5  
METHODOLOGY—ANALYTICAL METHODS 
CONSIDERED AND APPLIED 

As noted in Section 2, the third component involved in conducting organizational epidemiology 
in the energy industry is to examine the suitability of candidate quantitative analytical tools in 
light of collected data and to apply selected ones in an attempt to discover patterns and predictive 
relationships.  

Methods Applied 

It was decided that the primary focus of the analyses would be prediction of the monthly rate of 
unplanned trips. There was considerable interest on the part of the collaborating company (both 
expressed explicitly and demonstrated in its own internal efforts) in understanding the causes of 
(or precipitating factors for) trips and in reducing their frequency, since these involve significant 
economic losses. There was also a strong sense among company management, supported by their 
causal investigations, that human performance deficiencies contribute to a large portion of the 
trips. As noted, these occurred sufficiently often to be appropriate for monthly counts to be 
trended over a period of years. 

Two plant health indices—the chemical index and the thermal index—and a measure reflecting 
unplanned energy losses were also singled out as important outcome measures. Although these 
were not regarded by the company as being as closely related to human performance as the 
unplanned trips, they had the advantage (for application of statistical analytical techniques) of 
being continuous measures rather than counts.  

Possible predictive relationships between context measures and performance or outcome 
measures were explored through regression analysis. This began with examination of 
relationships between one predictor and one outcome measure at a time, using plots (e.g., 
plotting both measures across time on the same figure, so any strong, obvious relationships might 
be detected) and two-way (pairwise) correlations. Correlations were examined at various lags or 
time delays between the potential predictor and the outcome measure; for this study, lags of up to 
12 months were examined. Any context variables found to be statistically associated 
(concurrently, or at one or more time lags) with an outcome measure were entered into a 
stepwise regression. This technique is designed to find the best-fitting mathematical model for 
predicting the outcome measure from one or more predictors. All calculations were performed 
using routines from MINITAB™ (available from Minitab, Inc., www.minitab.com). 

Most of the analyses were conducted using the data from each plant separately. Although many 
of the variables were common across the two plants, there was no a priori basis for assuming 
that both plants would have the same ACHEs affecting performance in the same manner. Rather, 
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it would be very interesting, but not necessary, to find that similar influences were involved at 
both sites. If the same variables were found to be useful predictors (of the same outcome 
measures) at both plants, this would inspire confidence in the generality of those measures as 
ACHEs.  

In addition to the regression analyses, a tool for scientific visualization was explored. Large 
multidimensional arrays of data may not yield their secrets to routine analyses when no theory or 
prior findings are available to guide the search. Sometimes, however, representing the data in 
several spatial dimensions can allow a human observer to detect potential complex patterns, 
which then can be tested by directed analyses. A variety of such icon plots have been explored in 
previous research, including star glyphs and sunflower plots (e.g., Yu, 1995). These and related 
techniques involve depicting values of variables as physical dimensions of a figure; thus, 10 
variables could be represented as the radius lengths for the points of a 10-pointed star or a 10-
petaled flower. A person who views an icon plot of values over time may come to recognize 
certain important patterns quickly, such as whether one of the many radii (star vertexes or flower 
petals) is much shorter or longer than the others, which could be useful for diagnosing the 
situation represented by those values. 

An elaborate form of icon plot that is intended to draw on extensive innate and learned human 
information processing involves transforming a series of data values into the dimensions of 
faces, typically Chernoff faces (Chernoff, 1973). Considerable previous research has been 
devoted to the ways in which various dimensions of schematic Chernoff faces are either easily 
separated or typically integrated when perceived, although it has been difficult to establish that 
the faces have an advantage over other icon plots (e.g., Morris et al., 1999). In this study, several 
potential predictors were encoded as dimensions of Chernoff faces during the initial analysis of 
plant data. 

Additional Methods 

Various other candidate analytical tools exist for organizational epidemiology studies (see EPRI, 
2002a). Described below are a few that were considered or explored for use on the data collected 
in this project:  

• Neural nets could be useful for optimizing regression coefficients in a larger data set (with 
complete data over a substantially longer time period, and with more predictor variables), but 
were not appropriate for the final data sets.  

• Multivariate stepwise regressions could be tried, treating a number of outcome variables as a 
vector (e.g., Kerlinger, 1979). However, this requires that data pass certain statistical tests for 
fitting a normal distribution, which in general were violated in the data sets obtained in this 
study.  

• Another multivariate approach, canonical correlation, would search for linear combinations 
of the predictors as a group and the outcomes as a group in order to obtain maximum 
correlation, but this was not felt to be necessary in this proof-of-concept study.  

• Exploratory regression analyses were performed based on a Poisson (rather than a normal) 
distribution for the trips (since the Poisson distribution is more appropriate for a count of rare 
events, such as the monthly count of unplanned trips). These analyses did not yield 
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substantially different results from those performed under the assumption of a normal 
distribution for the trips, in terms of the ability to create predictive models from the data. 
Thus, this approach was not pursued further for this study.  

• In related EPRI strategic work to evaluate the predictive validity of leading indicators of 
human performance (EPRI, 2001b), the most promising findings emerged through 
comparison of data for two contrasting periods for which data were available: the period 
preceding a relatively successful planned outage versus the period preceding a more troubled 
planned outage at the same nuclear power plant. Several of the potential predictor variables 
were found to display significant differences between those two periods, lending hope that 
they might be useful indicators for the success of future planned outages. It was thought that 
similar comparisons could be conducted using the data from the two fossil plants in the 
present study. Unfortunately, there was nothing quite analogous to the major planned outages 
at the nuclear plant, nor could any discrete time periods be identified for meaningful, parallel 
“good versus bad” comparisons for these fossil plants.  

• Another idea was to compare predictor as well as outcome measures between the two fossil 
plants. Since one plant was regarded by company management as having performed better 
than the other in recent years, it was thought that the bases of better performance might be 
uncovered. As it turned out, however, the two plants and their data sets (especially including 
the particular variables that were documented in this study) proved to be different in so many 
ways that it was felt that no meaningful comparisons could be made. 

Some of these additional methods may merit further exploration for organizational epidemiology 
at energy industry facilities. With the possible collection of larger data sets in the future (i.e., 
more detailed taxonomies, more variables, more frequent observations, and longer time periods 
covered), it may be possible to improve upon the statistical predictive models that are produced 
by stepwise regression. 
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6  
ANALYSES AND FINDINGS 

As noted earlier, the confidential nature of the data set—and, consequently, of the quantitative 
findings specific to these data—prevents full disclosure of the detailed analytical results. The 
purpose of this strategic project, however, was to explore the possibility and practicality of 
identifying antecedent conditions of human performance changes and of developing predictive 
models for human and facility performance. Therefore, for the stated purpose of this proof-of-
concept study, it is sufficient in this report to provide an overview of the results, along with 
examples of important findings, without including identifying details or the numerical outcomes 
of each analysis.  

Key results from the regression analyses are described below. Sample results are provided from 
analyses performed using the multivariate visualization technique.  

Pairwise Correlations 

For each plant, pairwise parametric correlations were computed at lags (prediction intervals) of 
up to 12 months between predictor and outcome variables. The correlation coefficient is a 
measure of the extent and direction of the statistical relationship between two variables. Negative 
values indicate an inverse relationship, in which relatively lower values of one variable are 
associated with relatively higher values of the other (e.g., as temperature goes up, the solidity of 
ice cream goes down). A correlation coefficient close to 0 indicates that the relationship between 
the variables is very weak, whereas a value near -1 or +1 means the relationship is very strong.  

Tables were prepared showing how well each outcome variable was correlated with (or 
statistically related to) the values for each predictor variable concurrently, 1 month ahead, 2 
months ahead, and so on. In order to gauge the reliability of each of these correlations, one-sided 
p values were calculated under the normal distribution assumption. (Since the actual distributions 
may not be normal, these p values represent only approximations.) Correlations associated with  
p < 0.20 (or equivalently, correlations in the predicted direction with p < 0.10) were judged to be 
significant for the purpose of this analysis (i.e., a probability of less than 20% or 10%, 
respectively, that the relationship occurs solely by chance). Note that the criterion for 
significance (and the norm of specification of directionality) used here was less stringent than 
that typically demanded for published research in the behavioral sciences; this was done in order 
to explore possible predictive relationships that might not emerge strongly, on initial analysis, 
given that the number of observations was small.  

The statistically significant correlations were not readily observable by visual inspection of the 
data in tables or in plots. That is, it was not obvious that predictors and outcomes were related, 
and certainly not that the correlation was best at specific time lags. However, the tables of 

0



 
 
Analyses and Findings 

6-2 

pairwise correlation results proved to be very useful for screening the data for relationships and 
patterns to be examined in predictive models. 

At Plant A, for example, the number of sick days per month was found to be significantly 
correlated with the number of unplanned trips at all lags tested except 0 and 12 months, with the 
strongest correlations at 10, 5, and 4 months, as shown in Figure 6-1. Visual inspection of plots 
of unplanned trips and sick days across the 72 months of observations, as shown in Figure 6-2, 
would not have led easily to the conclusion that these two variables were significantly 
correlated—and certainly not to the specification of the optimum prediction lags. It should be 
noted that the correlations here, although statistically significant and even fairly strong, do not 
lend themselves to very reliable predictions: the R2 values (reflecting how well the predictions fit 
the data) are all below 0.14, indicating that even at a 5-month lag the correlation accounts for 
less than 14% of the variance in the monthly values. (The variance is the mean or average of the 
squared variation or difference between the observed value and the average value; thus, it is a 
measure of how much variation there is among the observed values for a variable.)  

Plant A: Correlation of Monthly Trips and Sick Days
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Figure 6-1 
Plant A: Correlation of Trips and Sick Days 
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Plant A: Monthly Trips and Sick Days
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Figure 6-2 
Plant A: Monthly Trips and Sick Days 

Overall, for each plant, significant pairwise correlations were found (for at least one lag) between 
various predictors and each of the outcome measures (trips, chemical index, thermal index, and 
unplanned energy losses). Predictors included injuries, sickness, and/or absenteeism, separately 
and in combination, as well as corrective and preventive maintenance measures, separately and 
in combinations such as differences and ratios.  

Table 6-1 indicates that, for Plant A, a significant correlation was found for at least one of the 
prediction lags (from 1 to 12 months) between variables related to sickness, absenteeism, and 
maintenance and each of the four outcome variables examined. In addition to correlations 
obtained for the workforce as a whole at Plant A, there were also numerous significant 
correlations when the predictor variables were limited to specific staff sectors. At Plant B, with 
data available only for the variables related to injuries, sickness, and absenteeism (as noted 
earlier, preventive maintenance data were not obtained from Plant B), correlations were found 
for most combinations, although sometimes only with predictors limited to specific staff sectors, 
as shown in Table 6-2.  
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Table 6-1 
Significant Pairwise Correlations at Plant A (for at least one lag) 

 Trips 
Chemical 

Index Thermal Index 
Unplanned 

Energy Losses 

Sickness * * * * 

Absenteeism * * * * 

Maintenance * * * * 

 

Table 6-2 
Significant Pairwise Correlations at Plant B (for at least one lag) 

 Trips 
Chemical 

Index Thermal Index 
Unplanned 

Energy Losses 

Injuries * * * * 

Sickness 
Only 

Engineering, 
Operations 

Only 
Engineering, 
Operations 

* * 

Absenteeism *  * 
Only 

Engineering  

 

The pattern of correlations, however, was far from consistent when results from the two plants 
were compared (to the extent that results could be compared, given differences in their data sets). 
For example, as described above (Figure 6-1), Plant A had significant correlations between trips 
per month and the overall days of sickness per month with various lags. At Plant B, on the other 
hand, trips were not significantly correlated with overall days of sickness for any lag. Instead, 
there were significant correlations at lags of 0 to 5 months between the number of trips per 
month and the number of days of sickness per month for the engineering staff, as shown in 
Figure 6-3. Significant correlations between monthly counts of trips and sickness days were also 
found for the operations staff (for lags of 0 and 1 months) but not for the maintenance staff. 
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Plant B: Correlation of Trips per Month and Engineering Sick 
Days per Month

-0.40

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

0123456789101112

Predictive Lag (months)

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t

 
Figure 6-3 
Plant B: Correlation of Trips and Engineering Sick Days  

Stepwise Regressions 

To explore predictive models using more than one predictor, stepwise regressions were used for 
each plant and each outcome variable. Detailed below are the analytical procedures and findings.  

Analytical Procedures 

For each plant and outcome case, the stepwise procedure begins with the predictor that had the 
highest pairwise correlation with the outcome (excluding 0-month lags, in the interest of being 
able to predict performance in advance, which was the underlying aim for this study). Then, one 
predictor is added at a time (using the remaining predictor that yields the largest increase, to that 
point, in the squared multiple correlation, R2, which is equivalent to adding the predictor that 
yields the largest remaining partial correlation)—provided that the increment (in R2) is 
statistically significant. As in the case of pairwise correlations, statistical significance is here 
determined approximately by using the assumption of normality. The procedure is performed 
automatically by statistical software (MINITAB was used in this study, although other statistical 
packages, such as those available from Unistat, SAS, or BMDP, also perform these analyses); for 
these analyses, the criterion for including a predictor was that the improvement be statistically 
significant at approximately the p < 0.05 level.  
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It is important to note that the terms to be included in a stepwise regression model cannot be 
predicted just by looking at tables of pairwise correlations. Each time a predictor variable is 
added to the model, it may eliminate other possible predictors. In order to understand why this 
occurs, it is necessary to realize that various predictors may be correlated with each other. For 
example, suppose that both the number of sick days per month and the number of days absent per 
month initially are found to be correlated with the number of trips in the following month (i.e., at 
a 1-month lag). Sick day and absentee counts are probably also highly correlated with each other, 
since sick days account for many of the days that employees are absent. Once sick days are used 
as a predictor variable in a stepwise regression model, there may be little or no additional value 
in trying to use absenteeism as a second predictor in the model; this is because if sick days and 
absence counts are highly correlated, then the ability to predict or account for the variance in the 
trips per month (as measured by R2) will quite likely not increase by much when absenteeism is 
added.  

The stepwise regression calculations include only the time period for which all of the predictors 
have measurements; thus, if one of the predictors is entered in the calculations with a 6-month 
lag, then the first 6 months of the predicted variable are not included (because corresponding 
values of the predictor are not available). It would not make sense to try to predict the number of 
trips per month in January and February 1995, for example, if the regression model predicts the 
trip rate 6 months in advance and the predictor variables are only available starting in January 
1995. For this reason, even though data for the trip rate may be available beginning with January 
1995, the ability of the regression model to predict trip rate 6 months ahead can be evaluated 
only with data for trip rate starting 6 months after the time for which the predictor values are 
available. 

The number of observations used in the analyses varied in order to ensure the greatest number of 
observations possible for each step. For example, when data were available for each predictor 
and outcome measure for a full 72 months, there would be 72 observations for pairwise 
correlations at a 0-month lag, 71 observations with 1-month lag, and so on down to 60 
observations for a 12-month lag. Next, for the stepwise regression, 60 observations (out of 72) 
were used, so that predictors with lags of up to 12 months could be tried in the stepwise 
regression. Finally, when the resulting regression model for a given outcome measure was 
evaluated (by determining R2, the percent of variance accounted for), observations were added up 
to the maximum possible depending on the lags used in the model; for example, if there were 
two predictors in the model, with lags of 3 and 8 months respectively, then the regression model 
was evaluated using 64 (out of 72) months of data.  

Each final stepwise regression model is constrained to non-negative values when the outcome 
measure cannot in fact be negative (e.g., the number of trips per month cannot be less than 0). 
This restriction does not affect the stepwise regression process or the R2 values that are 
calculated to evaluate the models. Rather, it makes the predictions easier to understand and use. 
The outcome of a stepwise regression is a set of coefficients or multipliers for the predictor 
variables, along with a constant; these terms can be used to construct a linear equation for 
predicting the outcome variable. 
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Results 

For Plant A, a two-predictor model emerged, in which the number of trips per month could be 
predicted by sick days in one staff sector at a 1-month lag, plus absentee frequency rate in 
another sector with an 8-month lag:  

Monthly trips = 0.0188x + 18.9y - 1.903 

Where  

x = Sick days per month in Sector 1 at a 1-month lag 

y = Absentee frequency rate in Sector 4 at an 8-month lag 

This model accounted for 54% of the variance (just over half of the total mean squared variation 
of the monthly trip rate). The actual (data) and estimated (from the regression model) monthly 
numbers of trips are shown in Figure 6-4. Visual inspection suggests that the model captures 
some of the trends in trips but not the detailed month-to-month variations.  

Plant A -- Trips: Stepwise Regression
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Figure 6-4 
Plant A: Trips: Stepwise Regression 

Somewhat better prediction was obtained for the stepwise regression of the chemical index at 
Plant A. In order of importance, the predictors were the ratio of corrective to preventive 
maintenance orders outstanding (CM:PM) at a 2-month lag, the gross sickness and absenteeism 
rate at an 8-month lag, and the number of sick days (a count of the days missed due to illness) 
and sick incidents (a count of the number of reports of illness, regardless of whether an illness 
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was associated with no time off or with one or more days off) for one staff sector at lags of 10 
and 6 months, respectively. The resulting model accounted for nearly 60% of the variance. The 
actual (data) and estimated (from the regression model) monthly trips are shown in Figure 6-5. 
Visual inspection suggests that this model does a reasonably good job of capturing trends in the 
chemical index, including several peaks and valleys in the first year as well as the reduced level 
after the first year. 

Plant A - Chemical Index: Stepwise Regression
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Figure 6-5 
Plant A: Chemical Index: Stepwise Regression 

It is again interesting to note that visual observation (in plots) of the values of the potential 
predictors and the chemical index would not readily lead to specifying the terms and lags likely 
to show up in a stepwise regression model. Figure 6-6 shows values for the first (strongest) 
predictor (the CM:PM ratio at a 2-month lag) and the chemical index across the 5-year period for 
which chemical index values were available. From inspection of this figure, it is not obvious that 
CM:PM ratio is fairly well correlated with values of the chemical index observed 2 months later. 
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Plant A: Monthly observations of chemical index and CM/PM 
orders outstanding 
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Figure 6-6 
Plant A: Monthly Chemical Index and Ratio of Corrective to Preventive Maintenance 
Orders Outstanding 

In general, the stepwise regressions were not as successful for Plant B, accounting for only a 
small portion of the variance in the outcome measures. The only exception was the model for the 
thermal index. A model accounting for more than 50% of the variance in this measure was 
developed, involving sick days (total sick days at a 2-month lag as well as sick days for the 
maintenance staff at a 1-month lag) and the injury rate (overall rate at an 8-month lag as well as 
the rate for power sector staff at a 10-month lag). The actual (data) and estimated (from the 
regression model) monthly trips are shown in Figure 6-7. Once again, visual inspection suggests 
a potentially useful degree of match between the estimated and actual thermal index. 
Unfortunately, as discussed in Section 4, the possible change in the procedure used to collect 
thermal index data compromises the potential practical value of this finding.  
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Plant B - Thermal Index: Stepwise Regression
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Figure 6-7 
Plant B: Thermal Index: Stepwise Regression 

Seasonality  

An additional set of analyses was conducted to explore possible seasonality in the outcome 
measures. The residuals from the stepwise regression models (the difference between estimated 
and actual outcome for each month) were analyzed to determine whether there was a pattern 
based on either the 4 seasons or the 12 months of the year. In no case was there a statistically 
significant relationship. On the other hand, if the original outcome variables were analyzed 
directly, a statistically significant seasonal pattern showed up for trips at Plant B: Trips were 
most numerous in the summer, followed in order by spring, fall, and winter. Figure 6-8 shows 
the actual average number of trips per month in each season at Plant B, along with the estimated 
monthly average (from the regression model) in each season. It appears that each of the two 
predictors in the weak but significant stepwise regression model of trips for Plant B—the 
absentee frequency rate and the injury rate (at 6- and 11-month lags, respectively), both for the 
maintenance staff—had some seasonal variations, which were statistically associated, to some 
extent, with the seasonally varying trip rate. 
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Plant B - Trips: Seasonal
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Figure 6-8 
Plant B: Seasonal Variation in Trips 

Multivariate Visualization  

Relatively early during the initial analysis of the plant data, a multivariate visualization technique 
was tried with several measures from an early version of the data set from Plant A that were 
thought likely to be helpful as predictors. The intent was to try to discover patterns among the 
variables. It is possible that visualizing several variables together might allow prediction of an 
outcome measure in a way that would not be discovered by the pairwise correlations and 
stepwise regression process described earlier in this section.  

In order to explore the use of multivariate visualization for discovering patterns, several potential 
predictors were encoded as dimensions of Chernoff faces (Chernoff, 1973). These predictors 
included measures involving absenteeism (the gross sickness and absentee rate, plus the absentee 
frequency rate), as well as a series of measures utilizing preventive and corrective maintenance 
data. In addition, facial area was used to encode the thermal index. For each of the 72 months of 
observations, a face was produced; these were then placed in order with respect to the number of 
trips per month. Examination of the facial plots suggested that, using this preliminary data set, 
the thermal index might be related to the trip rate at Plant A, with a higher thermal index 
associated with more trips; a staff member of the company indicated that such a relationship 
would not be surprising. There was also an indication that trips were higher with a higher 
number of preventive maintenance orders outstanding and with a higher ratio of corrective to 
preventive maintenance orders outstanding. (See Appendix A for more details and for the entire 
set of facial plots.) 
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The face plotting method did not appear to be useful for further exploration as a data analysis 
tool for this project. In the first place, these plots involve only concurrent (or 0-month lag) 
comparisons; in order to explore lags at 1 to 12 months systematically, allowing different lags for 
different variables, a prohibitively large number of arrays of facial plots would need to be 
generated and examined. In addition, the apparent patterns or relationships found in these 
analyses were identified only tentatively; there was no sensation of an emergent pattern jumping 
out at the viewer, which would be the kind of outcome that would make this technique most 
useful.  

On the other hand, facial plots (or other multivariate displays) may prove useful for system 
monitors or analysts after important predictors have been identified. For example, as noted 
earlier, the number of trips per month for Plant A was significantly related to a model based on 
sick days in one staff sector at a 1-month lag, plus absentee frequency rate in another sector with 
an 8-month lag. If these two variables are encoded (or represented quantitatively) as two 
dimensions of a face, the difference between months with high and low trips can be quite 
noticeable, as illustrated in Figure 6-9. (These faces were generated using the final data set for 
Plant A and a simpler face configuration than those shown in Appendix A.)  

Figure 6-9 
Plant A: Selected Facial Plots  

In principle, a display such as this could be viewed a month ahead of the outcome, since it relies 
on input data with a 1-month as well as an 8-month lag. A recent EPRI report (EPRI, 2002c), 
which suggested directions for future strategic research related to automated tools for human 
performance management, identifies the integration of data analyses with iconic displays as a 
promising topic for exploration.

More trips per month

Fewer trips per month
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7  
PRACTICAL LESSONS LEARNED FOR FUTURE 
APPLICATION AND RESEARCH 

The aim of the strategic HPM research project has been to explore the feasibility of developing 
useful predictive models of human-performance-related outcomes in energy industry settings 
(e.g., generating plants or power coordination and control centers) based on antecedent 
conditions. Although an emphasis has been placed on exploring the use of statistical and other 
quantitative analytical techniques for this purpose, assessing the feasibility of such an approach 
involves other issues as well.  

One of the primary lessons learned is the difficulty involved in acquiring data of the type that 
had appeared likely to be most useful for organizational epidemiology in energy industry 
contexts. The observations that follow are similar in many respects to those from the 
conceptually synergistic strategic work to assess the predictive validity of leading indicators of 
human performance (EPRI, 2001b). 

From the start, it is important to recognize that the primary business of energy facilities is very 
different from the emphasis of researchers, even though they may share goals such as reducing 
accidents and increasing productivity. To a large extent, most personnel at energy facilities focus 
on safe and productive operations on a day-to-day basis, not on carefully and consistently 
archiving a variety of measures that may have no obvious or immediate pragmatic use. Despite 
the best intentions of facility management and staff to support strategic research such as that 
pursued in this project, it is difficult for them to devote sufficient and sustained resources to the 
research, given the demands of their primary responsibilities. 

Since it was recognized in advance that the burden on the participating plants should be as light 
as possible, a two-stage process was devised in the hope that this would make it relatively 
straightforward to collect the data required for the project to succeed: (1) conducting interviews 
to identify potentially useful data, while receiving assurances that both the data existed in the 
needed form and the providers made some commitment to the effort; and (2) preparing a list of 
requested data files (including information on what data were sought and who had the data). No 
novel data were to be demanded; no new observations were to be requested of facility staff. 
Ideally, it was envisioned that designated data providers would electronically transfer appropriate 
files (in relatively good order), perhaps to a liaison, who could then pass them along to the 
research team.  

This plan appeared conceptually sound, but the reality proved different. Despite the strong 
expressed commitment of management at various levels within the three companies that 
participated in this study, there were barriers to obtaining useful data sets. The initial experience 
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in this effort was time-consuming and, ultimately, not productive, but the lessons learned in the 
process facilitated the more successful subsequent work that is emphasized in the present report. 

The first efforts made for this research project involved close work with liaisons at two U.S. 
nuclear power plants owned by two different companies. Visits were made, interviews were 
conducted, and lists of variables of interest were prepared and provided to the plant staff. It was 
planned that individual plant and management personnel with access to data files identified as 
potentially useful would provide their files for the research project, but it proved difficult in 
practice for the research team to obtain the identified files consistent with the requisite research 
timeline. Ultimately, a research team member (an information technology specialist with prior 
experience related to the nuclear power industry) obtained a large number of data files by 
visiting the plants and working closely with facility information technology specialists, but the 
files obtained via bulk transfer proved intractable for analysis. It was not possible to decode the 
fields and identify the entries of interest in order to create a usable data set for organizational 
epidemiology purposes. 

Despite changes in the overall data acquisition procedure implemented to address the problems 
revealed in initial work, problems—including some that had previously been encountered and 
some that were novel—were also experienced in the study emphasized in this report, which 
involved the two fossil plants owned by one non-U.S. company. The data sought often existed 
only as notations in multi-volume hard-copy files. Some of the data simply did not exist, in spite 
of impressions from interviews, or the data were located in old legacy software systems no 
longer used and not compatible with current software. Information existed on different hardware 
platforms that did not communicate. Other types of data were contained somewhere within vast 
databases, but extracting the variables of interest in a usable and understandable form would 
have taken considerable effort on the part of busy programmers.  

In the end, a great deal of the work involved in actually obtaining the sought data files and 
documenting their contents had to be performed by the staff of the two participating fossil plants, 
aided by corporate personnel. As noted, a year elapsed between when the EPRI-associated 
research team visited the plants to conduct interviews and when the data sets were finalized for 
analysis; during that period, considerable work was done to obtain data files, understand their 
contents, and convert variables of interest into a common monthly format. The primary liaison 
spent a considerable amount of time (many months) on this project during that year; personnel 
from the collaborating company are conservatively estimated to have devoted at least 1 to 2 
person-months of labor to this effort. Thus, this represented a major resource expenditure on the 
part of the collaborating company. 

Even though a significant percentage of the specified data files was eventually obtained from the 
two fossil plants, there were problems that compromised the reach of the research. These 
included missing observations, seemingly inexplicable outliers (values that seemed too high or 
low to have been valid observations), unavailable files, and inadequate documentation of 
recording procedures. As one example, mentioned earlier, it became known that the procedures 
used to produce the thermal index might have changed across time; thus, the large variations in 
the values (see Figure 6-5) may in part reflect changes in measurement technique rather than 
changes in plant conditions.  
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The fact that a predictive model for the thermal index could be found using stepwise regression 
underscores a key, though not necessarily intuitively obvious, conceptual premise in the 
primarily empirical approach taken in this study: The presence of a statistical relationship 
between variables does not imply that a meaningful explanation or understanding can be found—
or that one even exists. In the absence of a plausible hypothesis regarding the conceptual nature 
of an observed predictive relationship, the long-term applicability of such a finding must be 
viewed with some caution.  

Another problem for the aims of the project was that the analyses had to be conducted using 
monthly observations. With only 6 years (at most) of data available for many of the variables, the 
data set was limited to a maximum of 72 observations (months) per variable. That is a fairly 
severe restriction on the total size of the data set when dealing with a large number of potential 
predictor variables. A number of additional statistical techniques (especially methods that would 
depend even more on a larger total number of observations) could be tried if more fine-grained 
data, such as weekly observations, were appropriate and available. 

Nevertheless, the results described in Section 6 suggest the promise of organizational 
epidemiology, as do the findings from the strategic predictive validity study (EPRI, 2001b). Most 
of the software tools used in this research study are widely available: Spreadsheet software 
(Microsoft® Excel) was used for organizing the data sets as well as for generating the graphs 
shown in Section 6, and the correlation and regression analyses described in Section 7 were 
performed with MINITAB. Implications and future directions for research and application are 
discussed in Section 8. Detailed below are some methodological lessons for energy facility 
analysts and researchers.  

Lessons for Energy Companies 

The experiences in this project suggest that companies can take a number of steps that would be 
expected to facilitate analysis of human and facility performance trends and to allow for possible 
future use of improved analytical tools. 

Collect a wider variety of information regarding potential influences on human 
performance. Numerous committees and reviewers have agreed that human performance in 
energy facilities reflects a number of organizational and work climate factors, but the majority of 
these postulated factors seem not to be captured by typical data collection activities. Fortunately, 
in terms of both performance analysis and the operational goals of energy facilities, it seems that 
a number of companies are making efforts to address this situation, which would be expected to 
enhance future analytical capabilities.  

Create a central archive for storing data on measures of interest, and update it on a regular 
basis. If individuals or departments collect data but there is no mechanism for combining what 
they have, potentially important connections and relations are unlikely to be discovered. Having 
a wide array of measures available from multiple organizational units of one facility, on one 
platform, will make it easier to analyze data, examine performance trends, and evaluate the 
effectiveness of performance improvement programs. In this way, knowledge can be derived 
from what would otherwise remain only as data or information (EPRI, 2001h; Wildberger et al., 
2000).  
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Maintain data on a per-system, per-unit, or per-sector basis rather than only retaining 
values that have been aggregated across an entire facility. Systems, units, or sets of units in a 
facility may have distinct operational, maintenance, and management personnel and 
organizational attributes. If performance differences exist between systems, units, or sectors, 
maintaining disaggregated data may allow analysts to identify organizational factors that lead to 
such differences. In many instances in this study, it appeared that the original data were collected 
at a finer grain than the form in which they were archived. It is always possible to combine data, 
but once the original details are lost in the archival process, they cannot be retrieved. 

Document the methods and terms for each archived measure. Comparisons across time, or 
across facilities, can be problematic if there is uncertainty or confusion about what the numbers 
mean. In fact, erroneous conclusions may be drawn if an observed effect or pattern, such as an 
increase in a performance measure, is entirely attributable to some definitional change. 

Use consistent and common measures across the organization, where applicable. There are 
many measures that could reasonably be collected in the same way at various facilities within an 
energy company, as well as for various departments within a facility. To the extent that it is clear 
that, for example, absenteeism rates, preventive maintenance backlogs, and other measures have 
the same meaning in each facility or unit, interpretable analyses and comparisons can be 
conducted. 

Use a consistent causal taxonomy for attributing incidents (such as trips) to specific 
human-related causes or influences. The search for antecedent conditions of performance 
changes, as well as the development of predictive models, is likely to benefit from having more 
information about outcomes; it may be possible to specify which antecedent conditions 
foreshadow which types of errors. For example, trips that are attributed to failure to follow 
standard procedures may turn out to be statistically associated with absenteeism rates because 
workers acting as substitutes who have to perform unfamiliar tasks may not know exactly what 
to do, whereas trips attributed to equipment that has not been adequately serviced may be 
statistically associated with some measure of preventive maintenance work orders. Ideally, the 
causal taxonomy to be used would be common across the industry to facilitate comparisons. 
Further research will be needed to determine what aspects of a causal taxonomy are most useful 
for development of predictive models, and whether such a taxonomy can be improved with 
respect to its usefulness (by, for example, increasing the number and the grain of available 
coding alternatives for human-related causes). 

Extend investigations and record-keeping to a wider range of incidents or events. The 
power and, thus, the usefulness of statistical quantitative analyses depend in part on the quantity 
(and quality) of data available. Major events or accidents, which are carefully investigated at 
energy facilities, are very rare. By extending (to the extent feasible) such tools as root cause 
analysis and human factors causal taxonomies to relatively minor incidents (which are more 
frequent), companies may improve their abilities to track important changes in the organizational 
environment, as well as to develop more accurate models for predicting future performance 
trends. 

Take note of the measures that have been found to be statistically associated with 
important facility outcomes. In the present study, statistically predictive models were 
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developed using measures related to sickness, absenteeism, injuries, and corrective and 
preventive maintenance; there was also some indication of seasonal patterns at one plant. Indeed, 
sickness and absenteeism measures, which were available from both plants (unlike the injury and 
maintenance measures that were available for only one plant each), were included as significant 
predictors in stepwise regression models for both plants; this consistency lends some confidence 
in suggesting that such measures are likely to be useful elsewhere. Future research involving a 
wider range of potential predictors could indicate that there are other measures more useful than 
the ones that have been identified to date; in the meantime, the findings of the present study can 
be helpful for planning data archiving and analysis efforts. 

Share information about data resources and collection methods, as well as useful analytical 
approaches and findings, to the extent feasible—within a facility, across facilities owned by 
the same company, and even across different entities. At the very least, management within a 
single facility should be aware of data collected and stored by various sectors within the facility; 
this was not always found to be the case during the interviews conducted for this project. On a 
wider basis, it may be possible to establish industry-wide information-sharing forums such as 
communities of practice (e.g., EPRI 2002d) or lessons-learned networks; events such as the 
annual Human Performance/Root Cause/Trending workshop series (which focuses on topics at 
nuclear plants but addresses more generic issues), as well as IEEE conferences on Human 
Factors in Power Plants, help to fill some of this need, but more frequent, extensive, and focused 
interchanges could prove useful. Given its established role in the industry, EPRI could well play 
an important role in organizing such sharing, or it could act as a central repository for data that 
could be analyzed so that general findings could be disseminated to the industry without 
compromising the confidentiality of data from individual facilities or entities. 

Lessons for Researchers 

The promising findings of these studies may lead to future research. Attempts to study 
organizational epidemiology in energy industry settings can be expected to benefit from taking 
the steps described below. 

Obtain formal commitment from data providers, as well as from management of 
participating organizations. The ultimate data providers are personnel with demanding work 
schedules who generally are not involved in the original planning discussions and agreements 
about the research project. Certainly, enthusiastic and articulated support by management is of 
great value—and is necessary in order to secure a broad range of potentially sensitive data. 
However, this does not ensure that the data providers will have the time and resources available 
to devote to extracting, providing, and documenting data files. 

Urge management to provide a variety of incentives for participation. If the work of 
interacting with the research team and providing data files is unrewarded, is not integrated with 
other duties, and/or impedes more pressing tasks, data providers may not be as helpful as the 
researchers (or management) would like. Leadership needs to be committed to supporting their 
staff in this process. In part, this requires that both data providers and their managers understand 
the magnitude of the task, which is likely to involve many person-days or even person-weeks of 
work from facility-associated personnel; outside researchers are not suitable replacements for 
performing some of the required site-based and site-specific tasks. Given these demands, a 
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reasonable allocation of time, as part of the official workload for the staff involved, would be of 
value in eliciting the best response from data providers. 

Plan on extensive and repeated interaction with data providers. Persistence is required 
throughout data identification, collection, and preparation stages—from first learning about the 
existence of certain types of information, to arranging for file extraction and transfer, and on to 
getting explanations of the file contents (including acronyms). It appears ideal to have a member 
of the company play a primary role as a project liaison, assuming that person has sufficient time 
and resources allocated to the project and can interact frequently and extensively with members 
of the research team. 
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8  
CONCLUSIONS AND RECOMMENDATIONS 

EPRI’s strategic “Human Performance Management: Database and Analysis” project marks the 
first major attempt to explore the possibility for organizational epidemiology in energy industry 
settings. It has involved a literature and experience review (EPRI, 2002a), the organizational 
epidemiology study (conducted primarily in cooperation with two fossil plants) reported here, 
and a preliminary evaluation (conducted in cooperation with a nuclear plant) of the predictive 
validity of leading indicators of organizational health (EPRI, 2001b).  

It is widely accepted that the performance of the energy infrastructure—including physical 
assets, such as generating plants and transmission and distribution systems, as well as energy 
markets—depends heavily on human performance. Because costly incidents, accidents, outages, 
and other problems are frequently attributed, at least in part, to human error or inappropriate 
action, it follows that smooth and productive operations rely on good human performance (in 
conjunction with well-designed, robust, and error-tolerant systems). It is also widely accepted 
that human performance deficiencies have a wide variety of causes or contributing factors, and 
that causal code taxonomies incorporate influences ranging from individual idiosyncrasies 
through task and workplace conditions up to managerial policies and beyond.  

In principle, it should be possible to predict human and facility performance and their variations 
through careful scrutiny of such contributing factors. The aim of this research project was to 
assess whether useful predictions are possible in practice, given the data resources currently 
available at energy facilities. As such, this project could represent an important milestone in the 
energy industry’s longstanding efforts to understand and minimize the contribution of human 
errors to incidents and accidents, as well as to manage and optimize both human performance 
and facility performance. 

Conclusions 

Based on the findings from this strategic evaluation-of-concept project, it appears that useful 
predictions of human and facility performance are possible based on the analysis of antecedent 
conditions. Statistically significant models, based on data collected and archived for traditional 
purposes, emerged for each of the outcome measures that were studied. These results were 
achieved despite the limitations imposed by the restricted data sets that were ultimately 
obtained—restricted in the number of years of data that were archived, in the usability of some 
of these data, and, even more, by the lack of data for potential predictor measures that would 
more directly tap training, safety efforts, and other factors that had been deemed of substantial 
interest (based on the background literature review).  
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As described in Section 6, several of the models accounted for more than 50% of the variance in 
the outcome measures. Energy companies could create real practical value by taking advantage 
of their data resources to develop such models. It appears, based on analyses of the obtained data 
sets, that measures related to injuries, sickness, absenteeism, corrective and preventive 
maintenance activity, and, possibly, seasonality hold particular promise for indicating or 
reflecting the antecedent conditions associated with changes in human performance and 
consequent facility performance. Although these findings were developed based on analyses of 
data from fossil plants, the methodology employed here is likely to be useful in other energy 
facilities, as well as in additional industrial and organizational settings. 

Of perhaps equal importance as the preceding conclusion is the finding that the precise models 
derived in this work could not be specified in advance. It should not come as a great surprise, for 
example, that a performance outcome such as the number of trips per month might be higher 
when sickness and absenteeism are up—or even that sickness and absenteeism levels might be 
related to trip rates at a later time. However, there was no basis for expecting that the best 
predictor of trips, within this study, would involve sick days in one staff sector with a 1-month 
lag, as well as the absentee rate in a different sector at an 8-month lag. These findings do not 
merely confirm long-held hunches about important performance-shaping factors; they also show 
that analytical tools are needed to quantify such relationships and optimize predictive models.  

A third key finding is that predictive models can be developed by applying conventional 
techniques to analyze data that are already collected at energy facilities. It was not necessary to 
institute new data collection procedures for novel observations, nor were esoteric analytical 
techniques needed (the existence of such requirements could present formidable barriers to the 
practical implementation of organizational epidemiology). Although novel observations and 
experimental analyses may ultimately provide improved predictive capabilities and deeper 
insights into performance-shaping factors, this project has demonstrated that much can be done 
with widely available statistical software and the data that are currently archived at energy 
facilities. 

Recommendations 

The specific models that emerged here probably depend in part on the somewhat arbitrary 
collection of variables that became available for study. For example, it was anticipated, based on 
review of the research literature (EPRI, 2002a) and on the predictive validity of leading 
indicators study (EPRI, 2001b), that measures related to maintenance activity might be useful as 
predictors of important outcomes. Although that proved to be the case in this study, other useful 
predictors may well exist among the measures for which useful data were not available. For 
example, the predictive validity study found a strong correlation between the number of 
deficiencies in defenses at the participating nuclear plant that were identified first by outsiders 
rather than by facility personnel (predictor), on the one hand, and estimated going-forward costs 
(outcome), on the other; there was no indication that such a potential predictor variable was 
available at the fossil plants that participated in this study. Additional work would be needed to 
explore a larger variety of potential predictors, as well as to study the usefulness of predictors 
that might be appropriate in specific contexts. Based on the experiences in this project, such 
research would not be either easy or inexpensive to conduct. 
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The quantitative analytical techniques applied in this study are fairly straightforward, when 
considering the full range of statistical techniques, and they can be streamlined and customized 
for specific purposes. The three-phase process of pairwise correlations (at various lags), stepwise 
regressions, and statistical evaluation, as used here, may be automated through the use of simple 
decision algorithms (such as the one used in this study: taking the predictor and lag with the 
highest pairwise correlation, then adding predictors one by one until the percent of variance 
accounted for does not increase substantially). Alternatively, an analyst may intervene in the 
process in order to emphasize particular predictors, such as those that are thought to be more 
reliably collected or more readily interpreted in terms of the predictive relationship. 

As an example of a possible analyst intervention in predictor selection, note that the number of 
sick days (for a particular staff sector and lag) turned up as a predictor in several of the 
regression models. It could be argued that this is an inappropriate or confusing measure, since 
the number of sick days per month is a function of the total staff size as well as of the typical 
health of the staff. An analyst might prefer to try to reformulate the model using one measure of 
sickness rate (illnesses per 100 staff members) plus a count of total staff, on the grounds that this 
would support a more meaningful interpretation. Such a substitution might help managers avoid 
making erroneous decisions based on attributing a causal relationship where only a correlation 
has been observed. As an extreme, an analysis showing that trips are greater in the months 
following high sick-day counts would not be a sound basis for laying off half of the staff; this 
action would quite possibly produce a substantial drop in the number of sick days per month 
(given the reduction in the total number of employees remaining), but would almost certainly not 
lead to reduced trips. If sickness rate were used as a predictor, the resulting model might not 
account for quite as much variance in the outcome measure, but the dubious intervention of 
ordering layoffs would be unlikely to be contemplated, even in some purely hypothetical 
manner. 

Another analytical decision could be to limit predictors to longer lags. In the present study, 
predictor variables with 0-month lag (i.e., not really “predictions” but simply correlations 
between two simultaneous measures) were excluded from the stepwise regressions in order to 
look for models that would predict at least 1 month ahead. In practical applications, it might 
make sense to limit models to, for example, predictors with at least a 3-month lag or more—long 
enough to allow time to gather data, develop statistical predictive models, and consider and 
implement interventions to improve performance, but not so long as to reduce the likelihood of 
finding such models. 

With regard to the statistical analytical methods used in this study, it is very encouraging to find 
that widely used tools are adequate to uncover predictive relationships in energy facility data. 
Even though it might not be possible to anticipate the exact terms (the variables, the lags, or the 
model coefficients) of the regression models, the relationships that emerge invite interpretation 
and may lead to increased knowledge of the factors that influence performance in a facility. Such 
relatively straightforward understanding would be much less likely if more exotic analytical 
methods were required, such as neural nets or very complicated software models that have been 
developed to make predictions of financial markets. 

Thus, there is reason for optimism about the practical application of organizational epidemiology 
in energy industry facilities, and further research and development work would seem warranted 
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by this conclusion. Before rushing ahead, however, several important caveats are to be 
considered.  

One caveat is that a statistically predictive model does not necessarily help analysts understand 
the bases for performance changes. As discussed earlier, the search for antecedent conditions 
includes but is not limited to the search for causes of human performance problems. A variable 
that helps predict outcomes might be only indirectly related to an underlying causal factor. For 
example, increased absenteeism might be a direct cause of deteriorating facility performance, but 
it may also be that increased absenteeism reflects poor morale, poor labor relations, or 
uncomfortable work conditions that lead to performance problems. The distinction between 
prediction and understanding may not be crucial if the aim is to predict performance, but it can 
have critical pragmatic implications for selection of appropriate interventions or corrective action 
programs in a real-world setting. Future research and sharing of results, as feasible, across many 
and diverse settings could lead to recommendations for specific performance improvement 
efforts tied to certain patterns of predictor variables and predicted outcomes. A software 
package, such as the Corrective Action Research and Evaluation (CARE) Tool developed by the 
EPRI Nuclear Sector (EPRI, 2001i), could be used to store and retrieve information on 
intervention programs. An enhanced version of this concept might make it relatively 
straightforward for an analyst to go from a statistical predictive model to one or more selection 
algorithms or (potentially) to recommended interventions. 

Another caveat to bear in mind is that the models produced by stepwise regression have been 
referred to as predictive models, insofar as they find statistically significant relationships 
between various measures and a later outcome. However, the models derived to date are only 
predictive after the fact—due to the structure of this study, as constrained by pragmatic 
considerations, the models describe relationships only found in historical data. It remains an 
unanswered (and unaddressed) research question as to whether models such as these can make 
useful predictions going forward. 

It may not be possible to test the predictive usefulness of such models under real operational 
conditions. As noted previously in this report and elsewhere (EPRI, 2001b), the business of 
energy facility managers and personnel is to ensure safe and productive operations, not to 
conduct scientific research for its own sake. Given a prediction of performance problems ahead, 
managers and staff would be expected to take action to prevent those problems, even though 
such action would interfere with the research aim of finding out whether the problems would 
arise as predicted. As soon as a predictive model is developed or a suggestion is made that a 
particular factor is believed to influence human or facility performance, management is likely to 
implement changes (preventive rather than corrective action) in an effort to improve future 
performance. Furthermore, when everything is going well, outcome measures such as trips are 
likely to have very little variability (close to zero trips per month), making it impossible to find 
statistical predictive models. This is a positive state of affairs for the industry setting—but it is 
an impediment to this type of research (or a challenge to discover a more appropriate outcome 
measure). 

One way around this apparent quandary regarding testing the predictive usefulness of models 
under operational conditions may be to develop predictive models from a subset of historical 
data and then to see how well their predictions hold up for more recent data. That approach is 
commonly used in situations where the total set of available data is large enough to permit 

0



 
 

Conclusions and Recommendations 

8-5 

developing a model based on a subset and then evaluating how well the model extrapolates to the 
rest of the data. With respect to the present study, the time window for observations was a 6-year 
period ending in December 2000—too short to allow subdivision into a subset for model 
development and a subset for model evaluation; the entire 6 years of monthly data were, 
necessarily, used for model development. 

Now that those data have been obtained, processed, and analyzed, however, an additional 18 
months have elapsed (as of the time of preparation of this report). As a useful follow-up study, 
an effort could, theoretically, be made to obtain observations of key variables (the predictors that 
were included in the regression models, along with the outcome measures) for these past 18 
months, and then to determine whether the existing models developed from the first 6 years of 
data yield moderately accurate predictions into the following 18 months. In effect, the research 
(and practical) question would be whether, hypothetically, these models would have been useful 
to the plants if development of the models had been completed in early January 2001. That 
evaluation is outside the scope of the present study, but it could be very valuable for assessing 
how far into the future such regression models might be useful. 

Aside from doing such additional retrospective evaluations, a field demonstration might be 
initiated, in collaboration with one or more energy companies, to set up procedures for 
implementing the organizational epidemiology process as described in this report. This would 
first involve gathering data for appropriate measures—such as those that were included in the 
predictive models in the present study, as well as ones related to training, safety efforts, and 
other factors that had been deemed of interest in this study but were not available from the two 
participating fossil plants. Data streams would then be collected on a central platform, which 
would merge them into a common data set on a regular and timely basis. Existing statistical 
analytical software tools would be used to develop and revise predictive models on a monthly 
basis. The primary barriers to such research would involve ensuring that data are provided 
reasonably quickly and thoroughly; the methodology for the work has already been developed, as 
described in this report. 

Such a project would be designed to yield true predictions of performance—in advance, rather 
than in hindsight, as was done in this proof-of-concept study. These predictions would provide 
useful insights for the design of proactive interventions to improve both human and facility 
performance. Ultimately, experiences with organizational epidemiology in various industry 
settings could be shared through a consortium or community of practice. Lessons learned about 
performance prediction and about the effectiveness of specific interventions for optimizing 
human performance in specific workplace environments could help improve the reliability, 
safety, security, productivity, and environmental performance of energy infrastructure. 
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A  
FACIAL DISPLAYS 

This appendix details results from trial use of a multivariate visualization technique to analyze 
data from Plant A. The technique is briefly introduced in Section 5, and results are described at 
the end of Section 6.  

For this trial examination of the technique, variables selected for display using Chernoff faces 
and the associated features were as follows: 

• Area of Face: Thermal Index 

• Shape of Face: Gross Sickness and Absentee Rate  

• Length of Nose: Absentee Frequency Rate  

• Location of Mouth: Preventive Maintenance Orders, Total 

• Curve of Smile: Preventive Maintenance Orders, Initiated 

• Width of Mouth: Preventive Maintenance Orders, Outstanding 

• Location of Eyes: Ratio of Corrective to Preventive Maintenance Orders, Outstanding 

• Separation of Eyes: Ratio of Corrective to Preventive Maintenance Orders, Initiated 

• Angle of Eyes: Ratio of Corrective to Preventive Maintenance Orders, Total 

The faces are shown on the following pages. Missing facial features (e.g., no facial outline for 
Face 14) indicate that the corresponding value was missing or had not yet been obtained at the 
time these plots were prepared. The faces are ordered by number of trips per month, with the 
fewest trips for the first faces in the set and the greatest number of trips for the last faces. (The 
number under each face is an identifier, not the number of trips that occurred in the 
corresponding month.) 
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