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PRODUCT DESCRIPTION 

 
The industrywide transition to condition-based maintenance strategies has prompted 
development of sophisticated, automated condition assessment tools. The sensor validation and 
recovery module (SVRM) presented in this report is the first of a suite of intelligent software 
tools being developed by EPRI and the U.S. Department of Energy (DOE) National Energy 
Technology Laboratory as part of the Combustion Turbine Health Management (CTHM) 
System. The CTHM System will be a significant improvement over currently available 
techniques for turbine monitoring and diagnostics. 

Results & Findings 
The CTHM System requires the integration of real-time anomaly detection with diagnostics of 
performance and mechanical faults as well as prediction of critical component remaining useful 
life and turbine degradation. Through proper application of these health management 
technologies, timely decisions can be made regarding unit operation and maintenance practices. 
A primary concern when implementing real-time or off-line health management technologies is 
to ensure the reliability of the measured parameters. When automated algorithms identify a 
performance or vibration fault, the diagnostic system must be confident that the faults are indeed 
occurring and are not the result of sensor errors. Therefore, a comprehensive sensor analysis 
module is recommended as a front end to validate the integrity of sensor signals, recover failed 
signals, and even predict important parameters not sensed on the combustion turbine.  

The SVRM acts as a preprocessing step, utilized by automated condition assessment tools to 
validate the integrity of the sensor output. This validated output is later utilized by health 
assessment algorithms. The SVRM obtains information directly from the data archive and 
determines the presence of erroneous data, which does not reflect the current state of the 
underlying parameter. Upon completion of the validation assessment, should anomalous values 
be detected, the “recovery” portion of the module offers a reasonable proxy value for use in 
further health assessment algorithms. This report presents an in-depth discussion of issues 
encountered in the development of this land-based, combustion turbine SVRM technology. 
Topics covered include the 1) architecture employed, 2) selection of sensors to be validated, 3) 
data treatment considerations, including hysteretic effects and ambient conditions associated 
with the parameters, 4) validation techniques, and 5) sensor recovery. 

Challenges & Objectives 
The sensor validation process developed for use by the electrical power generation industry 
relies on collaborative techniques that are technically independent. Neural networks, fuzzy logic, 
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and generic signal processing techniques are employed to thoroughly examine the integrity of the 
output received from the sensors being validated. The neural network operates by analyzing and 
exploiting the physical relationships existing between signals obtained from baseline empirical 
data from the turbine’s performance parameters. The fuzzy-logic-based sensor validation 
continuously checks the “normal” bands (membership functions) associated with each sensor 
signal at the current operating condition. When a signal goes outside these membership 
functions, while others remain within, an anomaly is detected associated with those specific 
sensors. Concurrently, generic signal processing techniques determine the presence of any 
anomalies that may manifest themselves as jump discontinuities or excessive noise in the 
underlying signals. These parallel algorithms are combined in a probabilistic data fusion process, 
which determines the final confidence levels that a particular sensor has either failed or shows 
evidence of “suspect operation.” 

Applications, Values & Use 
This report should be of great interest to engineering personnel concerned with maintaining 
optimal performance in simple and combined-cycle power generation systems. The SVRM 
described in this report serves as an enabling technology—critical as a preprocessing step in the 
development of robust health assessment technologies. Technology such as this empowers 
personnel with the ability to make informed decisions, unencumbered by erroneous sensor data 
that could otherwise result in inappropriate maintenance activities. 

EPRI Perspective 
Deregulation of the power generation industry has elevated the bar of marketplace 
competitiveness. Operators need to be more cautious and proactive in their maintenance 
programs in an effort to maximize output while minimizing unscheduled downtime. The SVRM 
is the first of the CTHM suite of intelligent software tools that offers customers an essential 
added level of confidence in the validity of results obtained from any performance diagnostic 
program. 

Keywords 
Sensor Validation 
Generic Signal Processing Techniques 
Model-Based Techniques 
Neural Networks 
Fuzzy Logic 
Results Fusion 
Sensor Recovery 
Gas Turbines 
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ABSTRACT 

 
Development of a comprehensive Combustion Turbine Health Management (CTHM) System 
will play a critical role in reducing the cost of electricity by improving reliability, availability, 
and maintainability. The real-time health management technologies under development use a 
combination of probabilistic and artificial-intelligence-based tools to assess both thermodynamic 
and mechanical health of combustion turbines. These technologies include sensor validation, 
performance diagnostics and prognostics, vibration diagnostics, and critical component 
remaining useful life assessments. Sensor validation is an important front end of the health 
management system that checks the integrity of sensed data before it is passed to the diagnostic 
and prognostic modules. The sensor validation software utilizes a combination or fusion of 
neural network model-based and generic signal-processing approaches to ensure the highest 
possible sensor fault detection confidence with minimal false alarms. In the event that a gas path 
sensor fault is detected, neural network models are used in calculating proxy or “recovered” 
signal values that allow diagnostic and component life assessments until the fault is corrected. 
The sensor validation and recovery module (SVRM) described in this report is demonstrated on a 
GE Frame 7FA application. 
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1  
INTRODUCTION 

The industry wide interest in condition-based maintenance strategies has prompted development 
of sophisticated, automated condition assessment tools. Comprehensive Combustion Turbine 
(CT) Health Management includes the integration of real-time anomaly detection and diagnostics 
of performance and mechanical faults in addition to the prediction of critical component 
remaining useful life and turbine degradation.  Through proper utilization of these health 
management technologies, timely decisions can be made regarding unit operation and 
maintenance practices. A primary concern when implementing real-time or off-line health 
management technologies is to insure the reliability of the measured parameters. When 
automated algorithms identify a performance or vibration fault, the diagnostic system must be 
confident that the faults are indeed occurring and are not the result of normal system transients or 
faulty sensors. Therefore, a comprehensive sensor analysis module is recommended as a front-
end to validate the integrity of sensor signals, recover failed signals, and predict important 
parameters that are not sensed on the CT. 

EPRI has sponsored the development of this module to act as a pre-processing step utilized by 
automated condition assessment tools, validating the integrity of the sensor output before being 
utilized by health assessment algorithms. This module will obtain data directly from the data 
archive and determine the presence of erroneous data. Here, erroneous data refers to data which 
do not reflect the current state of the underlying parameter. EPRI obtained the support of 
Progress Energy’s Asheville  plant for the data required for development. Upon completion of 
the validation determination, should anomalous values be detected, the ‘recovery’ portion of the 
module will offer a reasonable replacement value for utilization in further health assessment 
algorithms. 

The sensor validation process employed in the CT Health Management Sensor Validation and 
Recovery Module (SVRM) utilizes technically independent, but collaborative techniques. Neural 
networks, fuzzy-logic, and generic signal processing techniques are employed to thoroughly 
examine the integrity of the output received from the sensors being validated.  The neural 
network operates by comparing the physical relationships between signals as determined from a 
baseline empirical data from the turbine’s performance parameters.  The fuzzy logic based sensor 
validation continuously checks the “normal” bands (membership functions) associated with each 
sensor signal at the current operating condition.  When a signal goes outside these membership 
functions, while others remain within, an anomaly is detected associated with those specific 
sensors. Finally, generic signal processing techniques are utilized to determine the presence of 
any anomalies that may manifest themselves as jump discontinuities or excessive noise in the 
underlying signals. These parallel algorithms are combined in a probabilistic data fusion process 
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that determines the final confidence levels that a particular sensor has either failed or has suspect 
operation.  

As previously stated, robust, automated CT condition assessment tools require verification of the 
integrity of the inputs. As such, the selection of parameters to be validated by the SVRM is based 
on the requirements of the performance algorithms to insure that the inputs are valid. The current 
CT health assessment utility requires a selection of inputs covering the gas path parameters in 
addition to ambient condition information (see Table 2-1). 

The SVRM has been developed to operate in two modes in an effort to maximize its utility. The 
first is a batch analysis mode, which was established based on discussions with on-site personnel, 
to operate in an automated manner. A timer is utilized to initiate an analysis, in the early hours of 
the morning when network traffic is at its low point, on data from the previous day’s operation. 
The second mode features a user defined, interactive mode. In this mode personnel can specify 
the time period over which the analysis will take place from a user interface. 

An in depth discussion is presented in this report covering the components of the Sensor 
Validation and Recovery Module. This will include topics covering; the architecture of the 
SVRM, the selection of sensors to be validated, consideration of hysteretic effects on the 
parameters, validation techniques and finally sensor recovery.  
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2  
DATA RETRIEVAL 

Development of the Sensor Validation and Recovery Module (SVRM) requires large amounts of 
data. In order to build in the desired level of robustness the data must span all modes of operation 
encountered by the CT unit. Data for the development of the algorithms utilized by the SVRM 
was obtained from the two GE Frame 7F units operating at Progress Energy’s Asheville, North 
Carolina facility. The CT units are single spool turbines capable of running on either liquid fuel 
or gas fuel. The base load for the generator units is approximately 165 MW in the summer and 
192 MW in the winter. 

The development of any automated condition assessment program is contingent upon the 
seamless flow of this data between the plant’s data archive and the health appraisal tool. Open 
DataBase Connectivity, ODBC, has been developed to create an abstract means of passing data, 
using Structured Query Language (SQL), between the database and the application analyzing the 
data. Utilizing this architecture liberates the process from restrictions due to specific database 
Input/Output interaction. Secured queries are possible either internally, accessing the system 
through the plant’s internal network, or externally by accessing the local network utilizing a 
Virtual Private Network to establish connectivity via the Internet. 

Process Overview  

Implementation of the various modules being developed for the CT Diagnostic Health 
Monitoring Program is dependent upon the supply of data being provided from the Asheville PI 
Historian system. For the development of this program, OSIsoft’s PI system offers a Microsoft 
Excel Add-In called DataLink that is commonly used throughout the industry and can easily 
interface with the PI Historian via Excel in obtaining data. While the test facility utilizes the PI 
Historian, the same functionality can be replicated with any data archiving system utilizing the 
process outlined above. 

The data exchange, which takes place between the CT Diagnostic Health Monitoring Program, 
Excel, PI DataLink, and the PI Historian, will take place behind the scene, invisible to the 
operator. The DataLink utility is comprised of several pre-defined functions, which can be called 
from within the cells of Excel. The data querying process begins with Excel starting as an 
ActiveX server. The application being developed becomes the ActiveX client. Information is 
passed back and forth seamlessly between the client and server as required by the necessary data 
queries. Queries are conducted based on the sensor tags, which are the sensor designations 
obtained from the Mark V control system utilized at the Asheville site. The basic process used in 
querying the tags is the same regardless of the current operating mode of SVRM, only the 
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periods covered by the queries changes. Initially, a query of the DWATT (Generator Output) PI 
tag is conducted to determine if the unit in question reached a level of operation sufficient for 
further analysis, i.e. generator output in excess of 65 Megawatts. Upon confirmation of positive 
results, the remaining PI tags are queried. This process is followed by each query required to 
satisfy the investigation period defined by the user.  

The ActiveX approach stems from the ability of ActiveX to handle formula arrays within Excel. 
Formula arrays are single formulas applied to a range of cells. The PI DataLink utility is based 
upon a set of function calls of this type. Upon completion of a data query initiated by PI 
DataLink from within Excel, examination of the cells reveals that each cell has the identical 
formula active within it. The formula consists of the DataLink function call with its’ 
accompanying arguments, all contained in curly brackets, {}. This curly brackets designation is 
what signifies the contents of the cell as a formula array within Excel. Function calls of the type 
required the Ctrl+Shift+Enter keystroke to enter the function. 

Data Querying 

As stated above, the querying process is initiated by querying the DWATT tag to determine if the 
unit reached a sufficient level of operation. The search type (DataLink function) utilized here is 
Compressed data (start time/end time)…. This function will conduct a search of the compressed 
data based on the desired tag and encompassing the date/time between the start time and the end 
time. Here, the start time and the stop time propagate in one hour increments until the entire 
period defined by the user for analysis has been covered. Arguments to be supplied to this 
function call include: “Tagname”, “Start Time”, “End Time”, “Output Cell” and “Filter 
Expression.” The data query process occurs in two steps. The first step is an initial inquiry, 
placed into only two adjacent cells, that yields the number of points which satisfy the search 
criteria. In this case the data archive is queried for data from the desired parameters, over a time 
period specified by the “Start Time” and “End Time” and filtered by an expression requesting 
only values corresponding to periods of generator output in excess of 65 MW. The result from 
this initial query will be the number of data points found that satisfy the search criteria. In the 
event that no points satisfy the query requirements, the next hour is queried. If a number of data 
points is returned, as shown in the left half of Figure 2-1, this integer value is then utilized in 
redefining a new region of cells to be activated in preparation for the second step in the querying 
process. This subsequent step of the query process then places the identical formula into each 
cell contained in the activated region, in the form of a formula array, and executes the function. 
This results in the designated region being populated by the sought after data values, as shown in 
the right half of Figure 2-1. The example shown illustrates the results obtained from querying the 
CTD tag for all values from July 11, 2003 for which the level of output from the generator 
exceeded 65 MW. 
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Figure 2-1 
Screen Captures from Excel Illustrating the Results Obtained from the Two Data Querying 
Steps 

The data values obtained from the queries are then returned to the SVRM for subsequent 
analysis. Table 2-1 is included to outline the sensors utilized by the performance assessment 
utility. The column Comments lists the availability of the respective sensors at the Asheville site. 
Sensors that are not available either have a default value, which is substituted into subsequent 
calculations or will restrict the performance calculations conducted. 

Table 2-1 
SCAMP Inputs Data Source (Adapted from the SCAMP Spreadsheet, Version 3, Computer 
Manual, Table 4-1) 

Inputs 
Row # Description 

English 
Units SI Units Comments 

3 Unit Name N/A N/A 
Displays Name of Unit Being 
Evaluated 

4 Date of Data Capture N/A N/A MM-DD-YYYY 

5 Time of Data Capture N/A N/A HH:MM:SS 

6 Firing Mode Option N/A N/A 0 = base, 1 = peak 

7 Fuel Type Option N/A N/A 0 = natural gas fuel, 1 = liquid fuel 

8 Ambient Temperature °F °C Measurement Available 

9 Barometric Pressure " Hga bara Measurement Available 

10 Relative Humidity % % Calculated from Dew point 

11 Compressor Inlet Temperature °F °C Measurement Available 

12 Inlet Filter Pressure Drop " H2O mbar Measurement Available 

13 Total Inlet Pressure Drop " H2O mbar Default value available 

14 Exhaust Pressure Drop " H2O mbar Default value available 

15 Bellmouth Static Pressure Drop " H2O mbar Optional, used in air flow formula 
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Inputs 
Row # Description 

English 
Units SI Units Comments 

16 Reserved for Future Use N/A N/A  

17 Compressor Discharge Press. psig barg Measurement Available 

18 Compressor Discharge Temp. °F °C Measurement Available 

19 Inlet Guide Vane Position degrees degrees Measurement Available 

20 Power MW MW Measurement Available 

21 Natural Gas Fuel Flow lb/sec kg/sec Measurement Available 

22 Liquid Fuel Flow lb/sec kg/sec Measurement Available 

23 Inlet Air Flow lb/sec kg/sec Not Available on Asheville Units 

24 Water Injection Flow lb/sec kg/sec Measurement Available 

25 Steam Injection Flow lb/sec kg/sec Default value available 

26 Dew Point Temperature °F °C Measurement Available 

27 Injected Water Temperature °F °C Default value available 

28 Injected Steam Temperature °F °C Default value available 

29 Gas Fuel Temperature °F °C Measurement Available 

30 Gas Fuel Pressure psig barg Default value available 

31 Liquid Fuel Temperature °F °C Default value available 

32 Exhaust Temperature °F °C Measurement Available 
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3  
DATA CORRECTIONS 

Here we will discuss the considerations that went into laying out the architecture of the sensor 
validation and recovery module. Specifically, an analysis of the hysteretic effects experienced by 
the parameters as a result of normal operating transients is presented. Sensor output resulting 
from transient operating modes would require separate consideration if deviations from expected 
values resulting from hysteretic effects are severe. This study was completed to address this issue 
and determine the necessity of treating transient modes separately from steady-state operation.  

Also presented is the procedure followed for correcting the effects of humidity on gas path 
parameters utilized in performance calculations. Humidity can have a great effect on 
performance calculations largely due to the effect it has on the properties of air. As such, if one 
wishes to eliminate as many variabilities due to atmospheric conditions as possible, it becomes 
necessary to address humidity as well as ambient temperature and pressure. 

Transient Effects  

Transient events manifest themselves in the gas path parameters as a deviation from the expected 
value for a given level of operation. The variance is due to the response lag of the parameters as 
the operating levels transition from one to the next. In the event that the response lags become 
too great, the difference between the parameter’s value and the expected value becomes large 
enough to be interpreted by the sensor validation algorithms as an anomalous signal. To 
determine the necessity of accounting for hysteretic effects, a mode detection algorithm was 
applied to the GE Frame 7F data set. Corrected Compressor_Discharge_Temperature (CTD) 
values corresponding to steady-state operating mode data were compared to the complete data 
set for Generator_Load (DWATT) values of 98 Mega Watts and above. Figure 3-1 and Figure 
3-2 illustrate the results obtained for corrected values of CTD. 
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Figure 3-1  
CTD Steady-State Values 

 
Figure 3-2  
CTD Steady-State and Transient Value 

Clearly the results shown in Figure 3-2 illustrate slightly broader data scatter across the range of 
operation characteristic of hysteresis as transient events occur. The scatter differential between 
the steady-state only data and the data set including transient data, however, is less than 1% of 
the expected value and therefore of little consequence with regard to the sensor validation 
module which focuses on much larger differentials. Figure 3-3 illustrates the analysis behind the 
determination. The curves represent the distribution of compressor discharge temperature values, 
corrected to “ISO standard day” conditions as covered in the following two sections, 
corresponding to a generator load of 110 Megawatts. This region of output was selected because 
it was one of the most densely populated. The distributions do appear to be different, however, 
within the framework of the sensor validation module these differences are not significant 
enough to warrant separation of the steady-state data from the transient data. 
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Figure 3-3  
Distribution of Corrected CTD Data Corresponding to 110 MW Generator Load 

Ambient Condition Correction 

In an effort to increase the accuracy of the diagnostics modules, variations due to ambient 
conditions must be accounted for. These corrections include not only accounting for the effects 
of ambient temperature and pressure but also the effects due to humidity.  

The ambient temperature and pressure are first order effects on the gas path parameters, and as 
such correcting for these influences is of critical importance. The temperature and pressure 
effects are accounted for by the standard delta and theta correction factors shown in equations (1) 
and (2). 

ISO

Ambient

P
P=δ  

(1) 

ISO

Ambient

T
T=θ  

(2) 

These factors are then utilized to correct the gas path parameters as follows: 

δ
Station

CorrStation
PP =_  

(3) 

θ
Station

CorrStation
TT =_  

(4) 

θδ
f

Corrf

W
W =_  

(5) 
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The following figures (Figure 3-4 and Figure 3-5) are included to illustrate the effect of 
accounting for these first order influences on the gas path parameters. The data shown in blue are 
the original data obtained from the data archive. The points illustrated in red show the correction 
effect when accounting for the first order influences of ambient pressure and temperature. The 
points illustrated in green depict the correction for the second order effects of ambient humidity. 

 
Figure 3-4 
Results Obtained from Ambient Condition Corrections Made to CTD Values 

 
Figure 3-5 
Results Obtained from Ambient Condition Corrections Made to CPD Values 

The effects of humidity are a second order effect and as such have less of an impact on the data. 
However, in an effort to remove all possible variations due to the effects of atmospheric 
conditions, accounting for humidity is required. The presence of water vapor in dry air changes 
the values of the gas properties, namely, CP (constant pressure specific heat), CV (constant 
volume specific heat), R (gas constant), and γ (the ratio of CP/CV ), primarily due to the molecular 
weight of water being far lower than that of dry air. Changing the gas properties can have a 
significant effect on thermodynamic processes throughout the CT. The correction algorithm 
utilizes generic exchange rates that are applied to the gas properties or specific gas path 
parameters, which may be utilized for first-order accuracy, to predict the effects of humidity on 
key performance parameters.1 
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The ambient humidity correction method used to adjust the gas properties and select gas path 
parameters to their corresponding values at ‘standard day’ relative humidity conditions employs 
the generic exchange rates given in Figure 3-6 and Figure 3-7, respectively. The humidity 
correction process utilized first converts the desired value to its corresponding zero-moisture, 
‘dry-air’ value if necessary by dividing the value by the exchange rate given for the current 
specific humidity. A subsequent step is taken to further modify the property or parameter value 
to its ‘standard day’ value by multiplying the value by the exchange rate resultant of a specific 
humidity value of 0.0064, corresponding to a relative humidity of 60 %. 

 
Figure 3-6 
Exchange Rates for Ambient Humidity Correction of Gas Properties1 

 
Figure 3-7 
Exchange Rates for Ambient Humidity Correction of Select Gas Path Parameters1 
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4  
SENSOR VALIDATION 

The SVRM utilizes a suite of technically independent techniques to assess the overall health of 
the incoming signals. These independent methodologies have collaborative abilities in detecting 
various sensor failure modes. A final fusion process is used to combine results obtained from the 
different techniques to come up with a final overall health assessment. Table 4-1 outlines the 
validation techniques utilized by the respective sensors. 

Table 4-1 
Validation Technique by Sensor Type 

Parameter Description 
Generic 
Signal 
Processing 

Model Based 

AMBIENT_BAROMETRIC_PRESSURE X  

AMBIENT_TEMPERATURE X  

COMPRESSOR_DISCHARGE_PRESSURE X X 

COMPRESSOR_DISCHARGE_TEMPERATURE X X 

COMPRESSOR_INLET_DUCT_DIFFERENTIAL_PRESSURE X  

COMPRESSOR_INLET_TEMPERATURE X  

DEWPOINT_SENSOR X  

GAS_FUEL_FLOW X X 

LIQUID FUEL FLOW X X 

GENERATOR_LOAD X  

INLET_GUIDE_VANE_DEGREES X  

RELATIVE_HUMIDITY X  

EXHAUST_THERMOCOUPLE_1_COMPENSATED X X 

EXHAUST_THERMOCOUPLE_10_COMPENSATED X X 

EXHAUST_THERMOCOUPLE_11_COMPENSATED X X 
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Parameter Description 
Generic 
Signal 
Processing 

Model Based 

EXHAUST_THERMOCOUPLE_12_COMPENSATED X X 

EXHAUST_THERMOCOUPLE_13_COMPENSATED X X 

EXHAUST_THERMOCOUPLE_14_COMPENSATED X X 

EXHAUST_THERMOCOUPLE_15_COMPENSATED X X 

EXHAUST_THERMOCOUPLE_16_COMPENSATED X X 

EXHAUST_THERMOCOUPLE_17_COMPENSATED X X 

EXHAUST_THERMOCOUPLE_18_COMPENSATED X X 

EXHAUST_THERMOCOUPLE_19_COMPENSATED X X 

EXHAUST_THERMOCOUPLE_2_COMPENSATED X X 

EXHAUST_THERMOCOUPLE_20_COMPENSATED X X 

EXHAUST_THERMOCOUPLE_21_COMPENSATED X X 

EXHAUST_THERMOCOUPLE_22_COMPENSATED X X 

EXHAUST_THERMOCOUPLE_23_COMPENSATED X X 

EXHAUST_THERMOCOUPLE_24_COMPENSATED X X 

EXHAUST_THERMOCOUPLE_25_COMPENSATED X X 

EXHAUST_THERMOCOUPLE_26_COMPENSATED X X 

EXHAUST_THERMOCOUPLE_27_COMPENSATED X X 

EXHAUST_THERMOCOUPLE_3_COMPENSATED X X 

EXHAUST_THERMOCOUPLE_4_COMPENSATED X X 

EXHAUST_THERMOCOUPLE_5_COMPENSATED X X 

EXHAUST_THERMOCOUPLE_6_COMPENSATED X X 

EXHAUST_THERMOCOUPLE_7_COMPENSATED X X 

EXHAUST_THERMOCOUPLE_8_COMPENSATED X X 

EXHAUST_THERMOCOUPLE_9_COMPENSATED X X 

WATER INJECTION FLOW X X 
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Sensor Validation Architecture 

The architecture of the Sensor Validation and Recovery Module, illustrated in Figure 4-1, has 
been developed to employ parallel signal validation methods. As presented in Table 4-1, there is 
a high degree of overlap in the sensors validated and also the failure modes detected by the two 
methods. This repetition in sensor fault detection capabilities helps to insure that a minimal 
number of “false alarms” are declared. The architecture first employs a low level check, which 
detects if the sensor values fall within their expected range of operation. This check will detect 
sensor saturation, as well as possible cross-talk and erroneous sensor connections. Failing this 
check results in an immediate zero confidence level in the sensor’s integrity. Subsequent to the 
initial low level check, parameter values are further evaluated by the generic signal processing 
and model-based validation techniques. The output from these methods is a zero to one 
confidence level where zero corresponds to no confidence and one corresponds to one hundred 
percent confidence in the integrity of the signal. The final step in the process is the combination 
of results to yield a final determination of the confidence in the sensor’s output. This culminating 
step utilizes the Dempster-Schafer method of data fusion to ascertain the ultimate determination 
of overall sensor health. In the event that an anomalous signal is detected from a sensor which is 
validated utilizing the model-based techniques, the output from the corresponding neural 
network is obtained for submission as a replacement for the erroneous data. 

 
Figure 4-1 
Architecture Utilized by the Sensor Validation Process 
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Generic Signal Processing Techniques 

The motivation behind the development of generic signal processing techniques as a means of 
validating sensor output lies in the adaptability of the approach. The thought is to develop 
techniques that hold no regard for the type of parameter the sensor in question is monitoring. The 
signal processing based, sensor validation schema employs generic approaches that require 
minimal a priori information about the performance of the underlying system. Consequently, 
these techniques can be applied to virtually any sensor with minimal recurring design effort. 

The initial check performed on the data is a basic saturation check. Exploiting the fact that each 
parameter has an expected range of operation determined by the physics involved, the incoming 
data is checked to determine if the values screened are physically possible. Though this is a very 
low level check, it is extremely useful in detecting sensor anomalies such as drop-outs and 
spikes. 

A subsequent check of the data is made utilizing a digital high-pass filter. The engine signal 
digital filtering serves to screen the low frequency component of the sensor’s signals (containing 
the relevant engine information), and allows any highly transient signal components that are 
greater than the highest transient expected from the CT to be passed through and isolated. The 
digital filtering algorithms are used to detect faults such as spikes, noise, intermittent signal loss, 
cross talk, clipping, and other anomalies, which manifest themselves by a rapid change in signal 
magnitude. These jump-discontinuities are passed by the filter and are the key metric utilized in 
detecting the failure modes mentioned. 

The metric used to determine the presence of an anomaly in the signal is the standard deviation 
of the signal segment being examined. After filtering, the noisy signal will contain a standard 
deviation, which is an order of magnitude greater than that of the clean signal. This provides a 
clear distinction for detection of signal anomalies, which manifest themselves by a rapid change 
in magnitude.  

Neural Network Model Based Technique 

The model-based technique employs neural networks to capture inter-parameter relationships of 
the combustion turbine units throughout their range of operation. This methodology is highly 
data-driven and requires a sufficient supply of data to adequately capture all operating modes. 
Input data for training and subsequently during operation must be corrected to “ISO standard 
day” conditions before being supplied to the networks. This is done to remove variability in the 
resultant output due to fluctuations in ambient conditions. Results obtained from the neural 
networks are then utilized to calculate the residuals relative to the data from the sensors. The 
residuals are then analyzed by a fuzzy logic system to obtain the respective confidence level of 
the sensed data. 

The artificial intelligence component of the sensor validation module utilizes a back-propagating 
artificial neural network (ANN’s). Neural networks are adaptive systems, which can be trained to 
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expect a particular outcome given certain conditions or inputs. To summarize, they “learn” from 
example. In this application, the neural network is taught to recognize the relationships that occur 
among the gas path parameters throughout the range of normal operation. As such, if one of the 
parameters deviates significantly from its expected value, without affecting any of the other 
sensors, the network is able to recognize this as a possible sensor fault.  

Operation 

Two distinct phases of neural nets are “training” and “operation.”  The operation phase is simply 
"running" or "using" the trained network. The architecture utilized in back-propagation of the 
error is discarded and only the forward propagation of input data is needed.  After the network 
converges on a training set, it is true that the particular architecture has learned the training set. 
But how well the network performs on new, unseen data depends on (i) whether the training data 
was a good representative sample of the universe of discourse for each variable, and (ii) whether 
the network structure is sufficiently compact for generalization.  (If the neural net has excessive 
degrees of freedom (weights) it will "memorize" the training data set well, but generalize poorly 
on new data). 

 
Figure 4-2 
Neural Network Results for TTXD1_7 (Exhaust Gas Temperature) 

 

Figure 4-2 illustrates the output results from the example network. The data illustrated is test data 
extracted from the PI Historian in the same manner as the training data and not a temporally 
sequential series. 
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As previously stated, implementation of the model-based techniques is also independent of the 
operating mode of the CT unit within the expected operating range, i.e. turbine running at full 
speed and the generator outputting a load between 65 MW and 170 MW. Again this goes back to 
the underlying assumption that the hysteretic effects encountered by the CT unit due to transients 
have little impact on the network’s ability to determine the correct output. The neural networks 
have been developed to encompass the full range of reasonable operating values and conditions. 
Once the generalization is made that hysteretic effects can be ignored, the assumption can be 
made that each instant in time can be considered a pseudo steady-state condition. Now we are 
allowed to utilize the model-based techniques for all points whether the unit is at partial load or 
full load. Results obtained from analysis of the neural network’s prediction compared to the 
actual data show consistent variation regardless of the operating mode. Figure 4-3 illustrates 
neural network results obtained for a sample set of data. The data sample reflects the actual 
operational modes experienced by the CT unit. Figure 4-4 and Figure 4-5 illustrate magnified 
views of two transient events encountered during operation. Figure 4-4 shows a long steady 
transient. The neural network does a very good job of tracking the actual compressor discharge 
temperature values through the transition. The results presented in Figure 4-5 illustrate a sharp 
transient. Again, the neural network does an excellent job of approximating the desired 
compressor discharge temperature values.  

 

 
Figure 4-3 
Sample Neural Network Results for Compressor Discharge Temperature 
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Figure 4-4 
Neural Network Results Tracking a Gradual Transient 

 
Figure 4-5 
Neural Network Results Tracking a Steep Transient 

One final consideration with respect to operating modes lies in the type of fuel being burned by 
the CT unit. We know that the Asheville units are required to burn liquid fuel during the winter 
months due to the drain they place on the gas pipeline when they are in operation. Analysis has 
shown that at low load conditions the characteristic response of the gas path parameters differs 
between the two fuel types. To compensate for this distinction two neural networks have been 
developed for each parameter, one for each fuel type. We should note that there is significantly 
less data available for periods of liquid fuel usage than for natural gas usage in the ten months of 
data available. This is due to the nature of the operation of the Asheville CT units. Recall the 
units there are ‘peakers’ and as such only come on line when the demand on the power grid is 
sufficient to warrant help in sustaining adequate supply. During the summer months the units 
will run from late morning through mid-evening with regularity. In contrast, during the winter 
months the CT units are generally only called upon for short durations, two to six hours. 

The table below lists the networks employed within the Sensor Validation and Recovery Module. 
Recall that the input values presented to the networks have all been corrected to ‘ISO standard 
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day’ conditions in an effort to remove the effects of ambient conditions on the networks’ results. 
Each parameter has two underlying networks ready to evaluate based on the type of fuel being 
utilized. Note: During transitional periods when both types of fuel are being used 
simultaneously, no model-based evaluation can be completed. 

Table 4-2 
List of Neural Networks Employed by the SVRM 

Output Inputs 

COMPRESSOR DISCHARGE PRESSURE 

COMPRESSOR DISCHARGE TEMPERATURE 
GENERATOR OUTPUT POWER 
GAS OR LIQUID FUEL FLOW 
EXHAUST GAS TEMPERATURE 
WATER FLOW 

INLET GUIDE VANE ANGLE 
INSUFFICIENT DATA IS CURRENTLY 
AVAILABLE TO PROPERLY DEVELOP THIS 
NEURAL NETWORK  

COMPRESSOR DISCHARGE TEMPERATURE 

COMPRESSOR DISCHARGE PRESSURE 
GENERATOR OUTPUT POWER 
GAS OR LIQUID FUEL FLOW 
EXHAUST GAS TEMPERATURE 
WATER FLOW 

GENERATOR OUTPUT POWER 

COMPRESSOR DISCHARGE PRESSURE 
COMPRESSOR DISCHARGE TEMPERATURE 
GAS OR LIQUID FUEL FLOW 
EXHAUST GAS TEMPERATURE 
WATER FLOW 

GAS FUEL FLOW 

COMPRESSOR DISCHARGE PRESSURE 
COMPRESSOR DISCHARGE TEMPERATURE 
GENERATOR OUTPUT POWER 
EXHAUST GAS TEMPERATURE 
WATER FLOW 

LIQUID FUEL FLOW 

COMPRESSOR DISCHARGE PRESSURE 
COMPRESSOR DISCHARGE TEMPERATURE 
GENERATOR OUTPUT POWER  
EXHAUST GAS TEMPERATURE 
WATER FLOW 

GAS FUEL TEMPERATURE 
INSUFFICIENT DATA IS CURRENTLY 
AVAILABLE TO PROPERLY DEVELOP THIS 
NEURAL NETWORK 
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Output Inputs 

EXHAUST GAS TEMPERATURE 

COMPRESSOR DISCHARGE PRESSURE  
COMPRESSOR DISCHARGE TEMPERATURE 
GENERATOR OUTPUT POWER  
GAS OR LIQUID FUEL FLOW 
INLET GUIDE VANE ANGLE 
WATER FLOW 

WATER FLOW 

COMPRESSOR DISCHARGE PRESSURE  
GENERATOR OUTPUT POWER 
GAS OR LIQUID FUEL FLOW 
EXHAUST GAS TEMPERATURE 

Each parameter requires two networks be developed since the characteristic behavior of the 
parameters varies depending on the fuel used, natural gas or liquid. The ‘Output’ from the neural 
networks can be used to validate and recover either the voted value or the values output from the 
individual sensors used to monitor the parameters if they are available.  

Fuzzy Logic System 

As previously stated, the residuals obtained from the comparison of the neural network outputs 
to the original, corrected parameter values are evaluated by a fuzzy logic system in determining 
the associated confidence level in the sensor’s integrity. 

A fundamental concept of fuzzy sets is that its elements can belong to a set to varying degrees -- 
i.e. every element is characterized by a degree of membership within the set. A mapping of the 
domain interval to its degree of membership defines a membership function. The number of 
membership functions assigned to input/output variables and their shapes comprise an essential 
part of the "knowledge" embodied in a fuzzy logic system. This information is supplied by the 
domain expert, and when combined with the rulebase, forms a complete knowledge base for a 
particular application. 

This system utilizes a pre-processing step, which determines the “hard input.” Here, the hard 
input is the difference between the measured value and the expected value in a normalized 
format. The fuzzy logic system then “fuzzifies” the hard input by utilizing the max-min inference 
method (see Appendix B) for assessing the appropriate rules from the rulebase utilizing the 
values obtained from the “membership functions.” The “membership functions” determine the 
degree of membership of the associated input into the three fuzzy classifications, “Low”, 
“Medium” and “High.” Developing the membership function requires determining the “Universe 
of Discourse” which defines the range of hard input values expected by the fuzzy system. Figure 
4-6 and Figure 4-7 illustrate levels of displacement used to develop the membership function 
shown in Figure 4-8. Clearly the one percent and two percent levels fall within the three-sigma 
boundary of expected values; therefore, these levels will be used to define the “Low” region. The 
five percent to ten percent displacement range, while a substantial amount in the realm of 
performance evaluation, is a “Medium” offset within sensor validation. Twenty percent offset 
will bound the upper limit of the “High” region. 
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Figure 4-6 
Levels of Displacement from Expected Values  

 
Figure 4-7  
Levels of Displacement Shown on Operating Signature Curve 
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Figure 4-8  
Fuzzy System Input “Fuzzification” Membership Function 

The end result of the fuzzification step is the determination of the “fuzzy set.” The “fuzzy set” is 
a geometric subset of the original membership functions. The shape of the “fuzzy set” is 
determined by the degree of membership of the hard inputs in the membership functions based 
on the applicable rules encountered in the expert rulebase. This fuzzy set is subsequently 
converted back into a hard output by a “de-fuzzification” process. The de-fuzzification process 
employed here utilizes the centroid method. Intuitively, the centroid method can be viewed as a 
"compromise" among the output actions recommended by different rules. The output value 
obtained as a result of the de-fuzzification process can now be interpreted as the signal 
confidence level obtained from the model-based validation technique. 

Results Fusion 

The results fusion process consists of the synergistic combination of collaborative information 
from the sensor validation techniques in order to provide an accurate and effective assessment of 
the observed sensor’s past and present integrity. The result obtained from the Dempster-Shafer 
fusion process possesses greater certainty than the individual confidence with uncertainty levels 
when evaluating collaborative evidence.  

An example of the Dempster-Shafer fusion process is shown in Figure 4-9. Here, Method #1 can 
represent the generic signal processing technique results and Method #2, the data driven model 
based results.  The net result of the fusion process is a diagnostic confidence that is more 
accurate and robust than could be obtained by any single information source. 
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Figure 4-9  
Dempster-Shafer Fusion Process 
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5  
SENSOR RECOVERY 

“Recovery” of signals from failed sensors has been identified as a highly valuable feature for 
enabling robust diagnostics on combustion turbines. “Sensor recovery” refers to the capability of 
the Sensor Validation and Recovery Module (SVRM) to substitute reasonable parameter values 
for data obtained from malfunctioning sensors. In the event that an anomalous value is detected a 
replacement value can be provided to the performance worksheet and the assessment can 
continue.  

The addition of the sensor recovery feature will enable the health diagnostics modules being 
developed to utilize suggested substitute parameter values upon identification of an anomalous 
sensed value. To this end, the artificial intelligence networks necessary to predict parameter 
values given the current operating state are called upon to serve dual duty. Initially, the neural 
networks are vehicles for supplying the model-based expected parameter values. As a subsequent 
duty, upon identification of anomalous sensor values, the output from the neural network is 
supplied to the performance algorithms as replacement values for the erroneous data. Each 
individual parameter requiring recoverability must have two corresponding neural networks 
developed, one for each type of fuel used. The neural networks developed utilize four to six 
inputs as specified in Table 4-2 that are used to define the current level of operation and predict 
the appropriate output. These inputs are primarily sensed gas path parameters, which are already 
being used in the sensor validation and performance analysis modules. Output from the network 
is a reasonable approximation of the expected output value, based on the inputs, which can be 
used to replace anomalous sensor output if necessary.  

The architecture of the SVRM needed to be augmented to accommodate the functionality of 
parameter recovery as shown in Figure 5-1. The output from the neural networks needs to be 
retained until final results are obtained from the data fusion process. Should an anomalous 
sensed value be identified, the corresponding replacement value must be obtained from the 
appropriate neural network output. The modifications are highlighted in red in Figure 5-1. 
Feedback from the final sensor health assessment step is utilized to obtain any required 
replacement values from the original neural network output. This output is then post-processed to 
reintroduce the effects of the ambient conditions at the corresponding instance in time, i.e. revert 
back from ISO standard day conditions, to obtain an approximation of the original data for 
replacement in subsequent performance calculations. 
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Figure 5-1 
Sensor Validation Architecture with Recovery Capabilities 

Neural Network Based Approach 

The absence of rigorously matured empirical models necessitates the development of low cost, 
easy to develop alternatives, which can be developed reasonably quickly for varying CT unit 
types. These alternative methods are usually data driven requiring extensive amounts of data, 
sufficient to capture all modes of operation experienced by the combustion turbine unit. The 
Sensor Validation and Recovery Module utilizes this data driven approach in developing the 
neural networks utilized in the model-based validation technique and subsequently in the value 
recovery process. Neural networks lend themselves very well to this type of application due to 
their ability to “learn” inter-parameter relationships which exist and generalize these learned 
relationships to adapt to “unseen,” during training, inputs.  
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6  
SVRM FEATURES 

Features of the SVRM Interface 

The main graphical user interface (GUI) has been developed to present plant personnel with key 
information required for validation and subsequent performance assessment. The GUI, written in 
Tcl/Tk, provides an organized and aesthetically appealing way of presenting the information 
concerning sensor anomalies found in the data set being scrutinized, as shown in Figure 6-1. The 
SVRM GUI contains four fields for each sensor listed. The four fields are: ‘SENSOR:’, 
‘COND:’, ‘ERR(#):', and ‘ERR(sev):’.  Also included for each sensor is a ‘View >>’ pushbutton, 
which calls a new window for viewing the underlying time series. An in-depth discussion of this 
functionality is forthcoming. Other features of the main SVRM graphical user interface include 
display of the site and unit currently being accessed by the data querying utility. Finally, a color-
coded status field is presented in the lower right corner to allow easy recognition of the status of 
the current analysis. 

Field Descriptions 

The ‘SENSOR:’ field is a static field that contains the name of the sensor. The sensor name 
coincides with the tag name utilized within the PI Historian. The ‘COND:’ field is a dynamic 
Boolean field. This field is updated by the SVRM, is color-coded, and contains text. The 
response to a sensor with no anomalies detected will be a green field with ‘OK’ text. A red field 
with ‘Alarm’ text will signify an anomalous sensor. The ‘ERR(#):’ field is also a dynamic field 
updated by the SVRM. This field acts as a counter for the number of anomalous points found. 
The final field is ‘ERR(sev):’. This field is utilized to rate the severity of the faults identified. 
Within the sensor validation module, the algorithms assign a confidence level to each sensor’s 
output. This determination reflects the level of confidence that the output of each sensor reflects 
the actual parameter value. Calculating one hundred minus this confidence level gives the error 
severity level, which can be interpreted as the certainty, expressed as a percentage, that the 
sensor’s output is erroneous. A sensor fault is identified when the error severity level crosses a 
pre-determined threshold. When numerous sensor faults have been identified, the error severity 
values are totaled and averaged by the number of faults found. This figure may be interpreted as 
an indication of the overall health of the sensor and the ability to use the data given to assess 
performance measures. Finally, a pushbutton is available for each sensor marked ‘View >>’. 
Selection of the pushbutton opens a new window, which contains a ‘notebook’ to view the time 
series data which has just been evaluated by the SVRM. Each ‘notebook’ contains at least one 
‘tab’ or ‘sheet’ that contains the time series plot on it. In the event that multiple time series have 
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been evaluated a separate ‘tab’ is created for each individual time series and the user may view 
the individual time series by selecting the different tabs.  

 
Figure 6-1 
Sensor Validation and Recovery Module’s Graphical User Interface 
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Figure 6-2 
Generator Output Power for July 24, 2003 

 
Figure 6-3 
Exhaust Gas Temperature Output, Thermocouple Array -- #24 
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Figure 6-4 
Exhaust Gas Temperature Output, Thermocouple Array -- #25 

 
Figure 6-5 
Magnified View of Region Around Thermocouple Drop-Out 

Figure 6-2 through Figure 6-5 are screen shots illustrating the viewing capabilities of the GUI. 
Figure 6-2 and Figure 6-3 are presented for comparison purposes to illustrate “normal” sensor 
output for the period of the analysis. Figure 6-4 and Figure 6-5 illustrate anomalous output from 
a thermocouple monitoring exhaust gas temperature. A ZOOM feature is available utilizing a 
user specified click and drag box to define the region to be magnified, shown in Figure 6-5. 
Looking at the results for the TTXD1_25 sensor it is clear that anomalous points were detected. 
The results shown in Figure 6-1 depict the results of the validation analysis, ‘ERR(#):’ equal to 
3630 erroneous points were detected, resulting in an error severity level, ‘ERR(sev):’, of 
98.16 %,. 
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E-Mailing Capabilities 

File  Email Analysis Results… 

The SVRM batch analysis operating mode was set up to enable the SVRM to operate as a behind 
the scenes application which would run unnoticed by CT operators unless a problem was 
detected.  In the event that an anomalous signal is detected, specified e-mail recipients will 
receive a report detailing the exceptions found. The desired e-mail addresses are entered in the 
configuration file. Beta testing revealed that this functionality would also be a desirable feature 
when utilizing the SVRM module in its interactive operating mode. To this end a dialogue box, 
shown below, has been made available during all modes of operation that allows the user to enter 
an e-mail address and send the recipient results from the current analysis.  

 
Figure 6-6 
Dialogue Box Enabling Entry of E-mail Recipient’s Address 

Configuration Capabilities 

The configuration capabilities are driven by the desire to make the Sensor Validation and 
Recovery Module as easy to use and as adaptable as possible. To this end the options made 
available to the user through the three tabs, which make up the Configuration window allow the 
user to tailor the capabilities of the SVRM to suit their requirements. 

Options  Configuration… 

The Configuration dialogue box has been modified to contain three tabs. The first tab, Program, 
is primarily used to select and enter information required by the DataLink Add-In utility 
pertaining to the desired CT unit to be analyzed. Here, the user can also now specify whether or 
not the SCAMP module is run.  
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Figure 6-7 
Program Tab of the Configuration Dialogue Box 

Feedback from beta testing revealed that an added benefit would be attained if the user could 
specify which parameters were displayed on the main SVRM window. Certain sensors may be 
thought of as extraneous to the current scope of interest when the user sits down to use the 
SVRM and as such can now be “turned off.” The second tab of the Configuration dialogue box, 
Sensor Display, configures which parameters are displayed on the main Sensor Validation and 
Recovery Module screen.  The user simply checks which parameters to be viewed.  
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Figure 6-8 
Sensor Display of the Configuration Dialogue Box 

The final tab, Batch Analysis, facilitates configuration of the SVRM when in batch analysis 
mode. Respondents to beta testing thought the original set-up of querying the previous twenty-
four hours of data for analysis at or near mid-night, when network traffic is low, too constrictive. 
Utilizing this dialogue box the user can now dictate the duration of the window of time being 
analyzed and specify when the analysis takes place. For example, with the settings as they appear 
in Figure 6-9 an analysis would be initiated at mid-night and query the previous hour’s data. 
Subsequent analyses would then start each hour after that on the respective previous hour’s data.  
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Figure 6-9 
Batch Analysis Tab of the Configuration Dialogue Box 

Options  Run Sensor Validation (User Defined Time Period)… 

Further key feature improvements included as a result of testing is an improved dialogue box for 
defining the time period of the analysis when using the SVRM in its interactive analysis mode. 
The addition of the new dialogue box allows the user to quickly and easily specify the date and 
time of interest. Figure 6-10 illustrates the dialogue box. Clicking the arrows at the top of the 
calendar will scroll through the months. A date is selected and subsequently highlighted by the 
click of the mouse. Finally, the hours of interest can be highlighted in the pane at the right to 
specify the hours of data being analyzed. 
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Figure 6-10 
Dynamic Dialogue Box for Specifying Interactive Analysis Time Periods 

Monitoring Multiple Units 

Development concerning the issue of monitoring multiple CT units at the same time is in 
progress. At this time it is possible to monitor multiple units concurrently by launching multiple 
instances of the SVRM in batch mode and initiating their respective queries in non-coincident 
hours, e.g. the module monitoring G3 initiates on even hours for an analysis duration of two 
hours while the module monitoring G4 initiates on the odd hours for an analysis duration of two 
hours. This scenario has been difficult to test since the two units have not run at the same time 
very often. 
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7  
RECOMMENDATIONS FOR FUTURE DEVELOPMENT 

Virtual sensing of currently unmonitored parameters has been discussed as a possible avenue of 
future development. Certain gas path parameters, such as station total pressures and combustor 
discharge temperature, are very beneficial in calculating hot section performance. They are, 
however, impractical to monitor on all units. Virtual sensing of the parameters entails the 
development of predictive tools that assess the current state of operation of the unit and then map 
that state to a probable value of the virtually sensed parameter. Neural networks, like those 
currently utilized in the SVRM, are well suited to this type of application.  

Another possible area of development would be to mature the ability to write recovered values 
back to the PI Historian. In the event that erroneous data values are detected as the result of 
analysis by the Sensor Validation and Recovery Module, the recovered values could be written 
back to an appropriate place in the PI Historian. Having these values available could be 
advantageous for use in any subsequent analysis, which may take place or if 
verification/duplication of already completed analysis is ever required.  
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A  
NEURAL NETWORKS 

Artificial neural networks (ANN’s or NN’s) utilize a network of simple processing units 
(“neurons”), each having a small amount of local memory. These units are connected by 
“communication” channels (“connections”), which usually carry numeric data. The units operate 
only on their local data, which is received as input to the units via the connections. Most ANN’s 
have some sort of training rule by which the weights of connections are adjusted based on some 
optimization criterion. Hence, ANN’s learn from examples and exhibit certain capability for 
generalization beyond the training data (examples). ANN’s represent a branch of the artificial 
intelligence techniques that have been increasingly accepted for data fusion and automated 
diagnostics in a wide range of applications. Their abilities to recognize patterns, and to learn 
from samples have made ANN’s attractive for use with large data sets from complex systems. 

The ANN structure is sometimes called architecture, or topology, which is an expression of the 
number of processing units and of the connections among these units; this is illustrated in Figure 
A-1.  Most processing units are arranged in layers (a layer is a collection of the units aligned for 
the same computational sequence), and the ANN is often referenced by the number of layers and 
the number of units in each layer. 

 
Figure  A-1 
Neural Network Architecture Utilized in the Sensor Validation/Recovery Module 
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Each solid connection line in Figure A-1 represents a numerical value called the weight, 
representing the connecting strength between the two inter-connected units.  Each circle is a unit 
and it performs three sequential computations: the first is to multiply the weight by the output of 
the unit on the other end of the connection; the second is to sum the weighted outputs from all 
connections; and the third is to apply the weighted sum to a function (usually nonlinear and 
bounded) called an activation function. One of the most common activation functions is called 
the sigmoid function and the binary f(x) and bipolar g(x) versions are given below.   
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The functional value of the weighted sum is called the output (or threshold) of the unit.  This 
sequence of computation is carried out for each unit and for each layer until the outputs layer of 
the ANN is reached.   

Training 

The ANN’s utilized within the SVRM for the sensor recovery are multi-layered, feed forward 
neural networks, often referred to as “back-prop” neural networks. The back-prop designation 
comes from the training algorithm used in the learning phase. Networks of this type require a 
supervised learning process. Supervised training means that every “set” of data presented to the 
neural network for training is accompanied by a corresponding desired result that is also 
presented.  Here, “set” implies an instantaneous snapshot of the input and output parameters, 
which form a “training pattern.” Complete and proper training requires that a sufficient number 
of patterns be presented to the network to represent the entire range of operation of the 
parameters. However, presenting too many patterns causes “overtraining,” which limits the 
networks’ ability to generalize and interpret the inputs. In the supervised training mode, error for 
the output units can be determined from the difference between the actual output value and the 
target (desired) value. Back-prop minimizes the mean squared error for the training set by 
modifying the weights according the negative of the partial derivative of the error term with 
respect to the weight space. 
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Figure  A-2 
Training Data Sample for the TTXD1_7 Neural Network 

Training data has been obtained from the PI Historian. Query results, similar to those utilized in 
the development of the operating signature curves, are first referred (corrected) to International 
Standard Atmosphere (ISA) sea level (‘ISO standard day’) static inlet conditions to account for 
the changing environmental conditions that occur over the course of operation. Sub-sets, as 
shown in Figure A-2, are then extracted from the referred data to be presented to the neural 
networks as training patterns. The neural network used for illustration is for the TTXD1_7 
sensor, a thermocouple in the array measuring exhaust gas temperature. Compressor discharge 
pressure and temperature (CPD and CTD respectively), gas fuel flow ( FQG ) and generator 
output power (DWATT) are utilized as inputs for this network. Sixteen points have been selected 
from each period the CT unit, G3 in this case, was in service. The operating range of generator 
output power (DWATT) encompassing 65 MW to 165 MW was divided into four sub-ranges and 
four points extracted from each sub-range. Corresponding points were taken from CPD, CTD, 
FQG and TTXD1_7 based on the time stamp accompanying the DWATT data selected.  
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B  
FUZZY LOGIC SYSTEMS 

Overview of Fuzzy Logic Systems 

Fuzzy logic refers to a mode of reasoning based on imprecise/ambiguous information. Fuzzy 
logic technology enables machines to perform "approximate reasoning" and improves their 
performance through (i) efficient numerical representation of vague terms and concepts [such as 
'dirty', 'slow', 'tall', 'heavy'], (ii) increasing their range of operation in ill-defined environments 
and (iii) decreasing their sensitivity to noisy data. Fuzzy logic also offers useful solutions to 
complex problems where mathematical models are unavailable nor cost-effective to develop. 
Contrary to its nomenclature, fuzzy logic (or "fuzzy") systems operate based on precise, rigorous 
arithmetic of fuzzy sets. A fuzzy set that relates a domain interval to their "degree of 
membership" to a specific label (category) describes a membership function of the corresponding 
variable. After membership functions are defined over a variable's universe of discourse, 
relations between input and output fuzzy sets can be defined through a list of rules in the form: 
IF <condition> THEN <conclusion>. Sequence of operations in a fuzzy system can be described 
by three phases named fuzzification, inference, and defuzzification.  

Many implementations of fuzzy systems are in the form of knowledge-based expert systems.  
Applications suitable for fuzzy logic range from systems modeling in science and economics, 
natural language man-machine interfaces, emulation of human decision making processes, to 
controlling nonlinear dynamic systems. 

Max-Min Inference 

Suppose the membership function sets for T1, T2 and V are as shown below.  If T1 and T2 use 
the same membership function set, and the following three rules are applied: 

 

Rule 1:  IF T1 IS warm OR T2 IS warm, THEN V is fast 
Rule 2:  IF T1 IS normal AND T2 IS warm, THEN V is fast 
Rule 3:  IF T1 IS normal AND T2 IS hot, THEN V is medium 
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Assume that fuzzification results are: 

 T1:  cold=0.0, cool=0.0, normal=0.3, warm=0.7, hot=0.0 
 T2:  cold=0.0, cool=0.0, normal=0.0, warm=0.4, hot=0.6 

In the max-min inference method,  

 union)(set n disjunctio OR for the used is ][operation max 
 and on)intersecti(set n conjunctio AND for the used is ][operation min 

BA

BA

µµ
µµ

∪
∩

 

to evaluate the grade ("strength") of the antecedent clause in each rule: 

 Rule 1:  max(0.7, 0.4) = 0.7  fast 
 Rule 2:  min(0.3, 0.4) = 0.3  fast 
 Rule 3:  min(0.3, 0.6) = 0.3  medium 

These values are used to clip the corresponding output membership function shapes.  If multiple 
rules have the same consequent label, max operation is used to resolve conflicts.  Since Rule 1 
and Rule 2 have the same consequence label (fast), max operation is used: 

 Rule 1 & Rule 2:  max(0.7, 0.3) = 0.7  fast 

 

The clipped membership functions are then merged to produce one final fuzzy set.  The max 
operation is used to merge overlapping regions. 

Centroid Defuzzification 

Referred to as the "center-of gravity" method, this process produces crisp data by computing the 
horizontal-axis (abscissa) component of the geometric centroid of the fuzzy set. Intuitively, the 
centroid method can be viewed as a "compromise" among the output actions recommended by 
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different rules. For each output using this defuzzification method, the resultant fuzzy sets from 
all contributed rules are merged into a final aggregate shape. For example, the defuzzified result 
of the following shape is x=39: 

 

The operation to use when merging overlapping shapes depends on the inference algorithm: 
(maximum for max-min and sum for max-dot and product-sum). 
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