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PRODUCT DESCRIPTION 

 
Increasing pressure from both customers and regulators to maintain and enhance service 
reliability, while at the same time controlling costs, has put many utilities’ distribution 
businesses in a classic dilemma of conflicting objectives. For that reason, asset management has 
become an increasingly important aspect of corporate business strategies. A significant focus of 
EPRI’s asset management research in recent years has been to develop a rational basis for 
selecting repair or replacement options for specific classes of equipment by balancing the risks of 
equipment failure against the costs of continued maintenance or capital replacement. 

EPRI has published a series of reports that discuss methods for making decisions about aging 
assets in electric distribution systems. Three reports on guidelines for asset replacement 
presented the methodology (Guidelines for Intelligent Asset Replacement, Volume I, 1002086, 
December 2003), applied the methodology to inventories of wood poles (Guidelines for 
Intelligent Asset Replacement, Volume II, 1002087, December 2004) and to inventories of 
underground cables (Guidelines for Intelligent Asset Replacement, Volume III, 1002088, 
December 2005).  The purpose of these reports is to provide utilities with sufficient information 
and methodology in order that specific asset management decisions can be made that will yield 
least cost asset management strategies. 

Background  
For many utilities, particularly those focusing on the power delivery business, their distribution 
system assets such as the transformer inventory, the wood poles inventory, the underground 
cable inventory, and other system components, represent a substantial portion of their capital 
assets. Managing these inventories entails significant costs and directly affects the reliability of 
electric service. Therefore, utilities need cost-effective strategies for maintaining their 
distribution system assets.  In previous reports, as cited above, the methodology for determining 
such strategies was presented.   

Objective 
This report consists of three somewhat independent papers addressing aspects of the aging assets 
management problem developed in prior EPRI work. The purpose of these papers is to extend 
the decision framework for equipment replacement that forms the heart of EPRI’s approach to 
the aging assets problem. 

Approach  
EPRI has developed a decision framework that enables utilities to generate business cases for 
asset management policies. This framework takes a life-cycle costing approach that enables 
corporate financial managers and regulators to assess the multi-year financial impacts of 
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maintaining specific classes of power delivery infrastructure assets, such as underground cable, 
wooden poles, and transformers.  

The analytical tools presented in this report share a basic framework for decision-making that 
specifies the evolution of the condition of the asset population over time, the various decision 
alternatives that are available, and the basic data needed to support the decision model.   

Results 

The first paper in this report uses a simple economic model to show how to find the optimal 
policy for replacing aging equipment using dynamic programming. The model illustrates the 
basic concepts in a straightforward and concrete manner. The principles laid out in this chapter 
also apply to more general formulations of the optimal equipment replacement decision, used in 
other EPRI work on aging assets management. 

The second paper in this report uses a simple economic model to show how to find the optimal 
policy for testing and replacing aging equipment using Bayesian analysis. Again, the principles 
laid out in this chapter also apply to more general formulations of the optimal equipment testing 
and replacement decision, used in other EPRI work on aging assets management.  

The third paper in this report addresses a question that frequently arises in using EPRI’s aging 
assets decision framework – what should a company do if the annual cost of optimal replacement 
policy exceeds the available budget? The models find the optimal stationary policy for 
equipment replacement, which applies over an indefinite time horizon. Following this policy 
typically leads to a stable distribution of the asset population among the various ages and 
condition states. However, initially, the asset population inventory may be quite different than 
the long-run distribution. This situation may force unreasonably large expenditures in the early 
years of application of the stationary policy, as the oldest, most deteriorated equipment in the 
initial inventory is replaced. Thus a transient policy must be applied to the initial asset inventory, 
in order to move it toward the long-run population distribution without violating the available 
budget constraints. This third paper discusses how to find such transient policies.  

EPRI Perspective  
EPRI has been developing methods for distribution planning since 1992. Methodology, software, 
and equipment failure data have been under development for several years to aid companies in 
developing economic asset management strategies – strategies that meet customer needs for 
reliability and power quality at least cost. The objective of this project is to use the information, 
tools, and experience that have been developed in EPRI’s asset management research to deliver 
general guidelines and strategies for managing specific equipment categories based on the 
knowledge assembled in previous years’ work. 

Keywords 
Distribution systems, Distribution, Aging assets management, Reliability analysis, Repair and 
replacement policies  
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ABSTRACT 

Increasing pressure from both customers and regulators to maintain and enhance service 
reliability, while at the same time controlling costs, has put many utilities’ distribution 
businesses in a classic dilemma of conflicting objectives. For that reason, asset management has 
become an increasingly important aspect of corporate business strategies. A significant focus of 
EPRI’s asset management research in recent years has been to develop a rational basis for 
selecting repair or replacement options for specific classes of equipment by balancing the risks of 
equipment failure against the costs of continued maintenance or capital replacement. 

This report consists of three somewhat independent papers addressing aspects of the aging assets 
management problem developed in prior EPRI work. The purpose of these papers is to extend 
the decision framework for equipment replacement that forms the heart of EPRI’s approach to 
the aging assets problem. 

The first paper in this report uses a simple economic model to show how to find the optimal 
policy for replacing aging equipment using dynamic programming. The model illustrates the 
basic concepts in a straightforward and concrete manner. The principles laid out in this chapter 
also apply to more general formulations of the optimal equipment replacement decision, used in 
other EPRI work on aging assets management. 

The second paper in this report uses a simple economic model to show how to find the optimal 
policy for testing and replacing aging equipment using Bayesian analysis. Again, the principles 
laid out in this chapter also apply to more general formulations of the optimal equipment testing 
and replacement decision, used in other EPRI work on aging assets management.  

The third paper in this report addresses a question that frequently arises in using EPRI’s aging 
assets decision framework - what should a company do if the annual cost of optimal replacement 
policy exceeds the available budget? The models find the optimal stationary policy for 
equipment replacement, which applies over an indefinite time horizon. Following this policy 
typically leads to a stable distribution of the asset population among the various ages and 
condition states. However, initially, the asset population inventory may be quite different than 
the long-run distribution. This situation may force unreasonably large expenditures in the early 
years of application of the stationary policy, as the oldest, most deteriorated equipment in the 
initial inventory is replaced. Thus a transient policy must be applied to the initial asset inventory, 
in order to move it toward the long-run population distribution without violating the available 
budget constraints. This third paper discusses how to find such transient policies.  
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1  
INTRODUCTION 

This report consists of three somewhat independent papers addressing aspects of the aging assets 
management problem developed in prior EPRI work. The purpose of these papers is to extend 
the decision framework for equipment replacement that forms the heart of EPRI’s approach to 
the aging assets problem. 

The first paper, presented in chapter 2, describes and illustrates the decision framework for 
equipment replacement. It uses a simple economic model to show how to find the optimal policy 
for replacing aging equipment using dynamic programming, which is discussed in detail in 
several prior EPRI reports as well as in many text books. The model developed in this chapter 
does not exhaust the power of dynamic programming methods, but it does illustrate the basic 
concepts in a straightforward and concrete manner. The principles laid out in this chapter also 
apply to more general formulations of the optimal equipment replacement decision, used in other 
EPRI work on aging assets management. 

The second paper, presented in chapter 3, extends the decision framework for equipment 
replacement to include the possibility of diagnostic testing. It uses a simple economic model to 
show how to find the optimal policy for testing and replacing aging equipment using Bayesian 
analysis, which is discussed several prior EPRI reports as well as in many text books. Again, the 
model developed in this chapter does not exhaust the power of such analysis methods, but it does 
illustrate the basic concepts in a straightforward and concrete manner. The principles laid out in 
this chapter also apply to more general formulations of the optimal equipment testing and 
replacement decision, used in other EPRI work on aging assets management.  

The third paper addresses a question that frequently arises in using the dynamic programming 
methods that form the basis for EPRI’s equipment replacement decision framework – what 
should a company do if the annual cost of optimal replacement policy exceeds the available 
budget? This issue arises because the dynamic programming models find the optimal stationary 
policy for equipment replacement, which applies over an indefinite time horizon. Following this 
policy typically leads to a stable distribution of the asset population among the various ages and 
condition states. However, initially, the asset population inventory may be quite different than 
the long-run distribution. This situation may force unreasonably large expenditures in the early 
years of application of the stationary policy, as the oldest, most deteriorated equipment in the 
initial inventory is replaced. Thus a transient policy must be applied to the initial asset inventory, 
in order to move it toward the long-run population distribution without violating the available 
budget constraints. This chapter discusses how to find such transient policies.  
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2  
OPTIMAL EQUIPMENT REPLACEMENT USING 
DYNAMIC PROGRAMMING 

Utilities today face the twin challenges of satisfying increasingly high standards for reliability 
and service quality while at the same time reducing costs and improving earnings. To meet the 
challenges, utilities are adopting asset management as their framework for allocating capital and 
operation/maintenance budgets. Simply stated, asset management consists of decision-making 
processes which have the goal of deriving the most value from utility assets within the available 
budget. 

Many utilities have aging equipment, such as underground cables and power transformers, that 
are rapidly deteriorating. In many cases, utilities face substantial replacement costs as cohorts of 
equipment installed during periods of high load growth in previous decades simultaneously begin 
to show rapidly increasing failure rates as they reach end of life. The capital required to replace 
this vital infrastructure represents a substantial financial burden over the coming decade. Thus, 
equipment replacement decisions represent an importance aspect of asset management. 

Managing a population of aging equipment requires considering three distinct phenomena: 1) 
representing the dynamic processes of failure and replacement of the equipment; 2) projecting 
changing failure rates as equipment ages; 3) balancing the costs of equipment failure with 
replacement options to come up with the least-cost equipment replacement policy. This chapter 
describes and illustrates a decision framework for equipment replacement. It uses a simple 
economic model to show how to find the optimal (that is, the lowest life-cycle cost) policy for 
replacing aging equipment. The theory underlying this model is called dynamic programming, 
and it is discussed in detail in several prior EPRI reports as well as in many text books (see the 
references at the end of this chapter). The model developed here does not exhaust the power of 
dynamic programming methods, but it does illustrate the basic concepts in a straightforward and 
concrete manner. 

The objective of the economic model is to minimize the lifecycle cost of maintaining the 
equipment inventory, subject to serviceability requirements. The lifecycle cost comprises the 
total of the installation, testing (if used), and failure costs throughout a long-term horizon, all 
taken on a present value basis. The serviceability requirement means that equipment that fails 
must be replaced. 

Modeling the Dynamics of Equipment Deterioration 

Over time, the condition of a piece of equipment usually deteriorates as it experiences 
environmental and operating stresses. The economic model utilized in this note represents the 
dynamic process of equipment deterioration mathematically, using a set of equations that provide 
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a forecast of future deterioration. The forecast depends on the present condition of the 
equipment. Information summarizing the current condition is called its state. Dynamic equations 
then represent how the state evolves over time. While many representations of the state may be 
useful in replacement decisions, in the simple model presented here, it is assumed that the 
equipment age t  is the only state variable. 

The economic model represents the decisions regarding equipment replacement as depending on 
its state. The specification of a decision for each state is called a policy, so the model develops a 
state-dependent policy that minimizes the lifecycle cost of maintaining the equipment 
population. In the simple optimal replacement age model discussed in this note, the decision 
options are simply to replace now at cost R  or to wait one year at cost 0 . 

0 t t+1 Age

Replace

Wait Fail

Survive

1-h(t)

h(t)
( )tV

( )0V

( )1+tV

R

E

 
Figure 2-1 
Dynamics of Equipment Deterioration 

In general, the evolution of the equipment state cannot be predicted with certainty; that is, 
deterioration is subject to random influences. This fact implies that the dynamic equations must 
describe the state evolution probabilistically – given the current state, there will be a probability 
distribution of states in which the equipment might be found a year later. In the optimal 
replacement age model, the uncertainty is represented by two possibilities: either the equipment 
survives, in which case it will become a year older, or it fails, in which case it is replaced with 
new (age 0 ) equipment. Failure has probability ( )th  and incurs an additional failure cost E , and 

then it must be replaced. Survival has probability ( )th−1  and incurs no cost. The failure 

probability ( )th  depends on the equipment age and is called the hazard function. (More 
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precisely, ( )th  is the probability that equipment that has survived to age t  does not survive to 

age 1+t ). Assume the failure rate increases with age, ( ) ( )thth ≥+1 . The dynamics of equipment 
deterioration are illustrated in figure 2-1, which shows the uncertainty (indicated by the circular 
node) and the decision (indicated by the square node) at stage t . The dynamic model of the 
equipment deterioration over time is constructed by stacking multiple stages of this type into a 
decision tree. 

In the optimal replacement age model, the hazard function is represented by a linearized s-curve, 
illustrated in figure 2-2a. This form of the hazard function exhibits the following plausible 
behavior. When the equipment is relatively new, its likelihood of failure is small and constant. 
As it ages, it reaches a period, called burn-out, during which the failure probability accelerates 
rapidly. At some later age, the hazard rate levels off again, but at a higher rate than when the 
equipment was new, reflecting the intuition that equipment which survives to old age is 
unusually durable. Several empirical studies of power delivery equipment (notably underground 
cables and wood poles) have confirmed statistically this behavior of failure rates with age. 
Mathematically, the hazard function has the form 

( ) ( ){ } { })(,0max,0max 211 TtMTtMHth −−−+=  

with 12 TT > , where 

=1H  steady-state failure rate 

=1T  beginning of burn-out 

M = failure acceleration rate during burn-out 

=2T  end of burn-out 

( ) =−+ 121 TTMH  final failure rate 

The values of these parameters for the hazard function shown in figure 2-2 are given in table 2-1. 

Table 2-1 
Hazard Function Parameters 

H1  Steady-state failure rate 0.025 

T 1  Beginning of burn-out 25 

M  Failure acceleration during burn-out 0.01 

T 2  End of burn-out 40 
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Closely related to the hazard function is the survivor curve ( )tS , which is the probability that the 
equipment survives (i.e. does not fail prior) to age t . Figure 2-2b illustrates the survivor curve 
for the hazard function shown in figure 2-2a. Mathematically, 

( ) ( )[ ]shtS
t

s

−= ∏
−

=

1
1

0

 

where ( ) 10 =S . 

(a) Hazard Function

0.00

0.05

0.10

0.15

0.20

0 10 20 30 40 50 60 70 80 90 100

Age

H
az

ar
d 

R
at

e

(b) Survivor Function

0.00

0.20

0.40

0.60

0.80

1.00

0 10 20 30 40 50 60 70 80 90 100

Age

Su
rv

iv
or

 F
ra

ct
io

n

 

Figure 2-2 
Linearized S-Curve Hazard Function and Survivor Curve 
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Modeling the Replacement Decision 

A key concept in modeling replacement is the cost-to-go, which is the present value (over an 
infinite horizon) of following the optimal replacement policy starting when the equipment is age 
t . Let 

( ) =tV  cost-to-go at age t  with an infinite horizon 

=α  annual discount factor (if the annual discount rate is r  then r+= 1
1α ) 

At age t , the decision options are to replace immediately or to wait one year. In the former case, 
the cost-to-go is simply the cost of replacement plus the cost-to-go of the optimal policy starting 
with new equipment age 0 , that is ( )0VR + . In the latter case, waiting a year creates an 
uncertainty about whether or not the equipment fails in that period. If it does not fail, the cost is 
the discounted cost-to-go of equipment one year older, that is ( )1+tVα . If it does fail, the cost is 
cost of failure plus the cost of replacement plus the cost-to-go of the optimal policy starting with 
new equipment age 0 , that is ( )0VRE ++ . Thus the cost-to-go of waiting a year is the expected 
value of these two contingencies weighted by their respective probabilities, 

( )[ ] ( ) ( ) ( )[ ]011 VREthtVth ++++− α . 
Then the optimal decision is to replace at age t  if 

( ) ( )[ ] ( ) ( ) ( )[ ]0110 VREthtVthVR ++++−<+ α  
or to wait if the reverse is true. Therefore, the cost-to-go at age t  is the minimum of the two 
decision options, immediate replacement or waiting a year: 

( ) ( ) ( )[ ] ( ) ( ) ( )[ ]{ }011,0min VREthtVthVRtV ++++−+= α  

This relationship is known as Bellman's equation, and it establishes a recursive relationship 
among the costs-to-go at different ages that permits solving for the optimal policy, as will be 
discussed below. The entire formulation of this problem is called a dynamic program. 

The cost-to-go depends on the policy used; a policy is a decision rule (or function) d  that 
specifies what action is to be taken in each state; this dependence is indicated explicitly by 
including the policy in the notation for the cost-to-go as ( )dtV , . 

It is a property of this particular model (that is, age is the only state variable and the failure rate 
increases with age) that the optimal policy is completely characterized by a single age ∗τ , the 
optimal replacement age. That is, the optimal policy is to wait if ∗< τt  and to replace if ∗≥τt . 

Thus, define a decision policy (not necessarily optimal) to replace at age τ  by 

( )
⎪
⎩

⎪
⎨

⎧

≥

<
=

τ

τ

t

t
td

 ifreplace

 ifwait
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Since the cost-to-go depends on the replacement age τ , it is computed for this policy by: 

( ) ( )[ ] ( ) ( ) ( )[ ]ττατ ,0,11, VREthtVthtV ++++−=  for τ<t  

( ) ( )ττ ,0, VRtV +=  for τ≥t  

The optimal replacement age ∗τ  minimizes the cost-to-go. In order to find the optimal 
replacement age, first these equations are used to derive a formula for ( )τ,tV  as a function of 

( )τ,0V . In particular, for τ<t  

( ) ( )[ ] ( ) ( )
( )

( ) ( ) ( )
( )

( ) ( ) ( )
( ) ⎭

⎬
⎫

⎩
⎨
⎧ +−

+
⎭
⎬
⎫

⎩
⎨
⎧ +−

++= −
−

=

−
−

=

− ∑∑ tS
sSsSE

tS
sSsS

tS
SRVtV ts

ts

ts

ts

t 11,0,
11

ααταττ
ττ

τ  

This formula has the following interpretation: 

( ) ( )
( )tS

sSsS 1+−
 is the probability that a piece of equipment currently age t  fails in service at age 

ts ≥ , and 
( )
( )tS

S τ
 is the probability that it survives to the scheduled replacement age τ . Whether 

the equipment fails in service or is replaced as scheduled, it incurs the cost ( ) RV +τ,0  at the 
time of replacement, appropriately discounted from the time of replacement to the current age; 
this explains the first term in the formula. In addition, equipment that fails in service incurs the 
additional cost E , appropriately discounted, as computed in the second term. 

To simplify the notation, let 

( ) ( )tStA tα=  with ( ) 10 =A  

( ) ( ) ( )[ ]1
1

0

+−= ∑
−

=

sSsStB s
t

s

α  with ( ) 00 =B  

Note that recursively ( ) ( ) ( ) ( ) ( )[ ]tStStBtB t −−+−= − 11 1α  

Then for τ<t  

( ) ( )[ ] ( )
( )

( ) ( )
( )

( ) ( )
( ) ⎥

⎦

⎤
⎢
⎣

⎡ −
+⎥

⎦

⎤
⎢
⎣

⎡ −
++=

tA
tBBE

tA
tBB

tA
ARVtV τττττ ,0,      (2-1) 

Now, setting 0=t  

( ) ( )[ ] ( ) ( ){ } ( ){ }τττττ BEBARVV +++= ,0,0  
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Thus 

( ) ( ) ( )
( ) ( )

( )
( ) ( )ττ

τ
ττ

τττ
BA

BE
BA

BARV
−−

+
−−

+
=

11
,0       (2-2) 

Solving for the Optimal Policy Using Policy Iteration 

In general, the optimal solution to a dynamic program is a specification of a decision for each 
state, that is, a policy, which satisfies Bellman's equation. Policy iteration is a mathematical 
programming algorithm that calculates the optimal policy for a dynamic program. It is a general 
procedure that applies to a wide variety of dynamic programming models. It is an iterative 
procedure that starts with a trial policy and seeks to improve the policy by changing the decisions 
in each state. The policy iteration algorithm consists of two general steps: 

Step 1: Policy Evaluation: With the current trial policy, compute the cost-to-go 

Step 2: Policy Improvement: With the current cost-to-go, test the decision in each state to 
determine whether changing it would reduce the cost. If so, then revise the trial policy and go to 
step 1; otherwise stop: the current policy is optimal. 

In the optimal replacement age model, the policy is characterized by the replacement age, so the 
policy improvement step consists of changing the replacement age. More specifically for this 
model, policy iteration looks like this: 

Step 1 - Policy Evaluation: 

Assume a trial value for the optimal replacement age, τ ′  

Compute the trial cost-to-go for each age using formula (2-2) for ( )τ ′,0V  and formula (2-1) for 

( )τ ′,tV  with τ ′<t  and ( ) ( )ττ ′+=′ ,0, VRtV  with τ ′≥t . 

Step 2 - Policy Improvement: 

Let ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]{ }ττατ ′+++′+−′+= ,0,11,,0min VREthtVthVRtQ . 

Only one of the following cases applies: 

(1) If τ ′<t  and ( ) ( )tQtV >′τ,  then decrease τ ′ . 

(2) If τ ′>t  and ( ) ( )tQtV >′τ,  then increase τ ′ . 

(3) If ( ) ( )tQtV ≤′τ,  for all t  then stop; the current value of τ ′  is optimal. Otherwise, continue 
increasing or decreasing τ ′  until the respective inequality no longer holds. 
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Go back to step 1 with the new trial age τ ′ . 

Table 2-3 and figure 2-3 illustrate the policy iteration algorithm for the range of ages of interest, 
with the linearized s-curve hazard function of figure 2-2. The entries in italics in table 3 
represent the non-optimality of the current solution (conditions (1) or (2) of policy improvement 
step). The following are the values of the cost parameters: 

Table 2-2 
Base Case Cost Parameters 

R  Replacement cost $10,000 

E  Failure cost $5,000 

r  Annual discount rate  5% 

Note that the algorithm converges to the optimal policy in just three iterations. For the example 
data, the initial trial value of the replacement age is arbitrarily set at 50 years. On iteration 1, 

( ) ( )tQtV >′τ,  for ages between 49 and 37, so the trial replacement age is lowered to 37 for the 

next iteration. On iteration 2, ( ) ( )tQtV >′τ,  for age 37, so the trial replacement age is raised to 

38. On iteration 3, ( ) ( )tQtV ≤′τ,  for all ages, so the optimal solution is 38 years. (Note that in 
figure 2-3, the lines representing the three iterations have been separated for clarity.) 
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Figure 2-3 
Policy Iteration 
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Table 2-3 
Policy Iteration 

 Iteration 1 Iteration 2 Iteration 3 

 50=′τ  37=′τ  38=′τ  

Age ( )τ ′,tV  ( )tQ  ( )τ ′,tV  ( )tQ  ( )τ ′,tV  ( )tQ  

30 $18,173 $18,244 $18,121  $18,194  $18,091  $18,164  

31 $18,516 $18,585 $18,458  $18,528  $18,425  $18,495  

32 $18,828 $18,894 $18,763  $18,829  $18,724  $18,792  

33 $19,110 $19,174 $19,035  $19,099  $18,991  $19,056  

34 $19,363 $19,425 $19,276  $19,339  $19,225  $19,288  

35 $19,588 $19,648 $19,486  $19,547  $19,426  $19,487  

36 $19,784 $19,811 $19,662  $19,722  $19,591  $19,652  

37 $19,950 $19,811 $19,803  $19,781  $19,718  $19,777  

38 $20,081 $19,811 $19,803  $19,803  $19,799  $19,799  

39 $20,175 $19,811 $19,803  $19,803  $19,799  $19,799  

40 $20,221 $19,811 $19,803  $19,803  $19,799  $19,799  

41 $20,210 $19,811 $19,803  $19,803  $19,799  $19,799  

42 $20,196 $19,811 $19,803  $19,803  $19,799  $19,799  

43 $20,178 $19,811 $19,803  $19,803  $19,799  $19,799  

44 $20,156 $19,811 $19,803  $19,803  $19,799  $19,799  

45 $20,127 $19,811 $19,803  $19,803  $19,799  $19,799  

46 $20,090 $19,811 $19,803  $19,803  $19,799  $19,799  

47 $20,043 $19,811 $19,803  $19,803  $19,799  $19,799  

48 $19,983 $19,811 $19,803  $19,803  $19,799  $19,799  

49 $19,907 $19,811 $19,803  $19,803  $21,799 $21,799 

50 $19,811 $19,811 $19,803  $19,803  $21,799 $21,799 
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In general, policy Iteration has the following three extremely desirable features: (1) each trial 
policy it suggests is guaranteed to be at least as good as the previous policy, (2) the new policy is 
at least as good in every state, and (3) it is guaranteed to converge to the optimal policy. It also 
converges extremely rapidly. 

Analytical Results 

In general, closed-form solutions to dynamic programs are rare (that is, solutions that can be 
expressed as a formula rather than as the output of an iterative process). However, for the 
optimal replacement age model, it is possible to find the optimal replacement age by solving a 
single equation. An approximation to optimal replacement age occurs at τ̂  such that the two 
decisions (replace now, wait one year) have equal value 

( ) ( )[ ] ( ) ( ) ( )[ ]τττταττ ˆ,0ˆˆ,1ˆˆ1ˆ,0 VREhVhVR ++++−=+  

Rewriting this equation to simplify it gives 

[ ] ( )[ ] ( )[ ] ( )EhVRh τττα ˆˆ,0ˆ11 =+−−  

Figure 2-4 illustrates the solution to the example by showing the graphs of the left-hand side 
(LHS) and right-hand-side (RHS) of this equation. The optimal replacement age occurs where 
the two graphs cross, 38 years for the example. 
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Figure 2-4 
Analytical Solution for the Optimal Replacement Age 
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Note that if the value of E  is changed to $4000, as shown in figure 2-5, the two graphs do not 
intersect. That is, for the lower failure cost, the optimal replacement age is infinite and the 
optimal policy is to run to failure. 
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Figure 2-5 
Run-to-Failure is Optimal 

Steady-State Analysis 

After the optimal policy has been applied for a long time, the age distribution of the equipment 
population stabilizes to a steady-state, regardless of the initial age distribution. This steady state 
distribution is useful for several reasons. It enables calculating the expenditures due to equipment 
replacement. It also enables determining the reliability of the equipment population. 

Let ( ) =tπ  fraction of equipment population of age t  in the long run (assuming the optimal 
replacement policy is used) 

The probability distribution ( )tπ  satisfies the equations 

( ) ( )[ ] ( )111 −−−= ttht ππ  for 1,,1 −= ∗τKt  

( ) ( ) ( ) ( )[ ] ( )1110
1

1

−−−+= ∗∗
−

=
∑

∗

τπτππ
τ

hssh
s
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( ) 0=tπ  for ∗≥ τt  

and the probabilities must add to one 

( ) 1
1

0

=∑
−

=

∗

s
s

π
τ

 

Solving these equations gives 

( ) ( ) ( )
1

1

0

−
−

=
⎥
⎦

⎤
⎢
⎣

⎡
= ∑

∗

sStSt
s

τ

π  for 1,,0 −= ∗τKt  

Figure 2-6 shows the steady-state age distribution for the example data. Note that approximately 
0.7% of the equipment survives till the scheduled replacement age. 
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Figure 2-6 
Steady-State Population Distribution 

The expected annual number of failures per unit of equipment (a measure of reliability) is the 
sum over all ages of the steady-state population at that age times the failure rate at that age, 

( ) ( )tth
s

πφ
τ

∑
−

=

∗

=
1

0

. For the example, =φ  0.0352; that is, in a population of 10,000, one would 
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expect about 352 failures per year. By contrast, about ( )[ ] ( ) =−−− ∗∗ 111 τπτh  70 scheduled 
replacements would occur. 

When ∞=∗τ , the steady state distribution still exists, because 

( ) [ ] ( ) ( )[ ]=+−+= ∑∑
∞

=

∞

=

11
00

nSnSnsS
ns

 the mean time to failure. 

In the example, the mean time to failure is about 24.7 years, and =φ  0.0405, meaning that in a 
population of 10,000, one would expect about 405 failures per year. 

The present value cost, including replacement and failure costs, of the optimal policy is the sum 
over all ages of the steady-state population at that age times the cost-to-go at that age, 

( ) ( )∑
−

=

1

0

*
*

,
τ

τπ
t

tVt . For population of 10,000, the present value cost is $128 million or $6.42 million 

annually ( ) ( )⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑

−

=

1

0

*
*

,
τ

τπ
t

tVtr .  

The cost of a failure E  may be interpreted as the value of lost service due to equipment 
unavailability. As E  increases, it becomes optimal to replace at earlier and earlier ages. This 
trade-off is illustrated in table 2-4 and figure 2-7. 

Table 2-4 
The Cost vs. Reliability Trade-off 

Failure 
Cost 

Replacement 
Age 

Failures 
per 
year 

Scheduled 
Replacements 
per year 

Total 
Replacements

Total 
Replacement 
Cost 

$4,000  Infinite 405 0 405 $4,054,882 

$5,000  38 352 70 422 $4,221,375 

$7,000  35 323 111 434 $4,344,846 

$9,000  33 302 144 446 $4,463,523 

$11,000  31 282 180 462 $4,617,439 

$13,000  30 272 199 471 $4,709,111 

 

0



 

2-14 

200

250

300

350

400

450

$4,000,000 $4,500,000 $5,000,000

Annual Equipment Budget

Fa
ilu

re
s 

pe
r y

ea
r

 
Figure 2-7 
The Cost vs. Reliability Trade-off 

Conclusion 

In general, modeling optimal equipment replacement involves three stages. First, choose an 
appropriate representation of the equipment condition state and formulate a mathematical 
description of the evolution of the state with time. In the example described in this note, this 
stage is illustrated in figure 2-1. Second, gather data to estimate the relevant parameters of this 
formulation, notably the hazard functions representing the failure behavior of the equipment as it 
ages. This stage involves using historical data, expert judgment, or a combination of the two. 
Third, formulate an optimization model using dynamic programming and solve it using the 
policy iteration algorithm. Solving the dynamic program is essentially a mechanical process that 
requires solving a system of equations, such as (1) and (2) in this example. In general, the 
equations will not have a closed form solution, so the solution algorithm will need to invert a 
matrix in step 1. 

These three stages interact with each other. Choosing a representation of the state is a design 
decision. Usually, the amount of information that the state can represent is limited, for two 
reasons. First, the amount of historical information available about equipment performance is 
often limited for reasons of cost or practicality. Second, a complex definition of the state can 
make the dynamic equations mathematically intractable. The more information that is encoded in 
the state, the higher the dimension that is needed in the dynamic equations, a phenomenon called 
the “curse of dimensionality.” Thus, considerations of data available in stage two and 
mathematical tractability in stage three must influence the state definition in stage one. 
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This chapter provides a simple example to illustrate the principles that apply to more general 
formulations of the optimal equipment replacement decision. 
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3  
THE VALUE OF TESTING IN EQUIPMENT 
REPLACEMENT DECISIONS 

When considering when to replace aging equipment, the likelihood that the equipment will 
survive another year represents a critical uncertainty. In the simple optimal replacement age 
model discussed in chapter 2, equipment is replaced when the survival probability becomes low 
enough that the cost of immediate replacement is less than waiting a year and paying for a failure 
if the equipment fails during that time. One way to reduce this uncertainty, and thus the cost of 
the replacement policy, is to use diagnostic tests to determine which equipment is more likely to 
fail at a certain age, and then to replace only that equipment rather than all the equipment of that 
age. The value of testing derives from the information it provides about equipment condition that 
permits better forecasting of future failures. This note describes and illustrates a decision 
framework for equipment replacement that includes the possibility of testing. It uses a simple 
economic model to show how to find the optimal (that is, the lowest life-cycle cost) policy for 
testing and replacing aging equipment. The theory underlying this model is called Bayesian 
analysis, and it is discussed in detail in several prior EPRI reports as well as in many text books 
(see the references at the end of this chapter). The model developed here does not exhaust the 
power of such analysis methods, but it does illustrate the basic concepts in a straightforward and 
concrete manner. 

To test or not is a decision, just as is the decision to replace now or wait. In fact, the two 
decisions are intimately linked, since the value of testing depends on the action taken as a result 
of the test outcome. A test has no value unless at least one of its possible outcomes changes the 
replacement decision. That fact implies that it is not always useful to test; at some ages, 
equipment failure is either so unlikely or so likely that a test would not change the decision, so 
typically tests are applied only at ages when the failure probability is in some intermediate range. 
However, testing also introduces its own uncertainty, since most tests are not perfectly accurate. 
The value of testing depends on its ability to discriminate equipment that is likely to fail from 
that which is not. 

An Example 

Consider a population of 10,000 pieces of equipment, all of the same age, with a probability of 
failing in the next year of 2%. Suppose a test is available that can distinguish equipment that is in 
good condition from that which is in bad condition. Bad equipment is due to fail in the next year 
but good equipment will likely survive. However, the test is not perfectly accurate – in fact, the 
probability that the test result is accurate (that is, the test result says that the equipment is in good 
condition when it is actually due to survive and it says that the equipment is in bad condition 
when it is actually due to fail) is 95%. (Note that these two probabilities do not have to be the 
same.) 
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After observing the test results, there are four possibilities: 

• Equipment due to survive for which the test result is good 

• Equipment due to survive for which the test result is bad 

• Equipment due to fail for which the test result is bad 

• Equipment due to fail for which the test result is good 

Table 3-1 illustrates the possibilities. 

Table 3-1 
Test Quality and Results 

  Test good Test bad   

Equipment due to survive 95% 5%   

Equipment due to fail 5% 95%   

        

  Test good Test bad Total 
Probability of 
condition 

Equipment due to survive 9310 490 9800 98% 

Equipment due to fail 10 190 200 2% 

Total 9320 680 10000  

Probability of test outcome 93% 7%   

For instance, 98% or 9800 pieces of equipment are in condition to survive and 95% or 9310 of 
them will give a test good result, whereas 5% or 490 will give a bad test result. Overall 93% of 
the equipment will test good and 7% will test bad. 

Based on table 3-1, then, this test would lead you to believe that there are 680 bad pieces of 
equipment, 190 of which are really due to fail; thus, the failure likelihood given a bad test result 
is 28%. Furthermore, this test would lead you to believe that there are 9,320 good pieces of 
equipment, 10 of which are really due to fail; thus, the failure likelihood given a good test result 
is 0.107%. In other words, the test has changed the probability of failure from 2% prior to the 
test either to 28% after a bad test result or to 0.107% after a good test result (these probabilities 
are called the posterior failure probabilities given the test outcome to distinguish them from the 
prior failure probability before the test result is known). The discriminatory power of the test is 
the ratio of these two likelihoods or 260. 

The value of the test is determined by what decisions are made based on the test result. Suppose 
the cost of replacing the equipment is $1000 but the cost of a failure is $5000. Table 3-2 
illustrates the economic consequences of the decision to test. 
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Table 3-2 
Economic Analysis of the Testing Decision 

 #  of 
Equipment  

 

Expected cost of not replacing without testing 200 $1,000,000 ⇐ Optimal 
Decision 

Expected cost of replacing without testing 10,000 $10,000,000  

Optimal cost without testing  $1,000,000  

    

Expected cost of not replacing with bad test 190 $950,000  

Expected cost of replacing with bad test 680 $680,000 ⇐ Optimal 
Decision 

    

Expected cost of not replacing with good test 10 $50,000 ⇐ Optimal 
Decision 

Expected cost of replacing with good test 9,320 $9,320,000  

    

Optimal cost with testing  $730,000  

    

Value of testing  $270,000  

per equipment  $27  

Without the test, the choice is between replacing all 10,000 pieces of equipment (because there is 
no way to know a priori which will fail) at a cost of $10 million or not replacing, in which case 
there will be 200 failures at a cost of $1 million; clearly the optimal decision is not to replace. 

If the test is used, then the decision depends on its outcome. If the test outcome is bad, the choice 
is between replacing all 680 pieces of equipment with that result at a cost of $680,000 or not 
replacing, in which case there will be 190 failures at a cost of $950,000; therefore, the optimal 
decision for equipment that tests bad is to replace. On the other hand, if the test outcome is good, 
the choice is between replacing all 9,320 pieces of equipment with that result at a cost of $9.3 
million or not replacing, in which case there will be 10 failures at a cost of $50,000; hence, the 
optimal decision for equipment that tests good is not to replace. Thus, the test discriminates the 
equipment that is more likely to fail, and even though only 28% of the equipment that tests bad 
will actually fail, that level discrimination is enough to justify replacing it all. 
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The cost of following the optimal strategy with testing (replace only if the test is bad) is therefore 
$730,000, which is less than the cost of the optimal strategy without testing (do not replace) of 
$1 million. Therefore, testing is optimal as long as its cost is less than the difference between the 
two cases, $270,000 or $27 per piece. 

Testing in the Dynamic Model 

The example just discussed is a static or single period model. To extend testing to the dynamic 
model of equipment replacement discussed in chapter 2 requires several modifications. Most 
importantly, the underlying failure rate increases with age, so that the posterior failure 
probabilities resulting from the test also increase with age. This fact implies that there will be a 
range of ages during which it will be optimal to test. Parallel reasoning to that used to derive the 
optimal replacement age model in chapter 2 can also be used to formulate an optimal 
replacement age with testing model. 

The probabilities prior to testing that equipment age t  survives or fails are given by the hazard 
function 

( ) =th  probability that equipment fails in the next period. 

1 – h(t) = probability that equipment age t survives in the next period. 

Test accuracy is represented by the probabilities 

=Bp  probability that test result is bad given that the equipment is due to fail 

=Gp  probability that test result is good given that the equipment is due to survive 

Table 3-3 
Test parameter definitions 

 Test good Test bad 

Equipment due to survive Gp  Gp−1  

Equipment due to fail Bp−1  Bp  

 

Assume that the test accuracy is constant with time and, in particular, that it is independent of the 
increasing failure rate ( )th . Also, it can be assumed that BB pp −> 1  and GG pp −> 1 , that is, the 

test reveals some information about the true condition of the equipment (unless they all equal 2
1 , 

in which case the test gives no information). In the example, Gp = Bp = 95%. 

Then the total probabilities of the test outcomes are computed using the following table 
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Table 3-4 
Test parameter definitions (continued) 

 Test good Test bad 

Total Prior 
Failure 

Probability 

Equipment due to 
survive ( )[ ] Gpth−1  ( )[ ][ ]Gpth −− 11  ( )th−1  

Equipment due to 
fail ( )[ ]Bpth −1  ( ) Bpth  ( )th  

Total probability 
of test outcome ( )[ ] ( )[ ] GB pthpth −+− 11  ( ) ( )[ ][ ]GB pthpth −−+ 11  1 

 

Define 

( ) ( ) ( )[ ][ ] =−−+= GB pthptht 11λ  probability of bad test outcome 

( ) ( )[ ] ( )[ ] =−+−=− GB pthptht 111 λ  probability of good test outcome 

In the example =λ  7%. 

Then the (posterior) failure probabilities given the test outcome are 

( ) ( )
( ) ( )[ ][ ]

( )
( ) ==

−−+
=

t
pth

pthpth
pthtq B

GB

B
B λ11

 probability that equipment fails given bad test 

outcome 

( ) ( )[ ]
( )[ ] ( )[ ]

( )[ ]
( ) =

−
−

=
−+−

−
=

t
pth

pthpth
pthtq B

GB

B
G λ1

1
11

1
 probability that equipment fails given good test 

outcome 

These equations are specific instances of a general result in probability theory called Bayes' 
Theorem, and so they are often called Bayesian updating of the failure rate based on the test 
result. In the example, =Bq  28% and =Gq  0.107% 

Note the following relationships among the test parameters: 

• ( ) ( ) ( ) BB pthtqt =λ  

• ( ) ( )[ ] ( )[ ][ ]GB pthtqt −−=− 111λ  

• ( )[ ] ( ) ( )[ ]BG pthtqt −=− 11 λ  
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• ( )[ ] ( )[ ] ( )[ ] GG pthtqt −=−− 111 λ  

Figure 3-1 shows the behavior of the probability of a bad test outcome, ( )tλ , and the posterior 

failure probabilities, ( )tqB  and ( )tqG  with the test parameters used in the example. In general, 

they all increase with age because the failure rate ( )th  increases with age. 
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Figure 3-1 
Probability parameters of the testing model 

Modeling the Testing and Replacement Decision 

When testing is a decision option, the dynamic model discussed in chapter 2 has to be modified. 
One critical issue that has to be resolved in a dynamic model is how much information is 
revealed by repeated tests, since in a multi-stage model, testing can occur at each stage. A 
number of alternative assumptions about repeated tests could be considered, but for this simple 
model it has been assumed that the results of repeated tests on the same equipment are 
independent of each other; that is, the probability of each test outcome does not depend on 
whether a prior test result was good or bad. In other words, testing has no memory. This 
assumption makes sense if the interval between successive tests is fairly long. Thus, in this paper 
it is assumed that the equipment ages in increments of 5 years, in contrast to the model discussed 
in chapter 2, in which the age increment is one year. The hazard function shown in figure 3-1 is 
the same as that used in the previous chapter but recomputed with the 5-year age increment. 
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Figure 3-2 
Dynamics of Equipment Deterioration and Testing 

The optimal replacement age with testing model is formulated as a dynamic program as 
discussed in the previous chapter; figure 3-2 illustrates the decisions at one stage of the dynamic 
program. If the decision is not to test, the optimal decision is the same as the basic model 
discussed in chapter 2 and the cost-to-go is 

( ) ( )[ ] ( ) ( ) ( )[ ]{ }011,0min VREthtVthVR ++++−+ α  

where 

V(0) = cost-to-go when equipment is new (age 0) 

R = cost of a replacement 

E = cost of a failure 

=α  annual discount factor (if the annual discount rate is r  then r+= 1
1α ) 

If the decision is to test, the optimal decision depends on the test outcome, and the cost-to-go is 
given by 

Test outcome bad: ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]{ }011,0min VREtqtVtqVRtV BBB ++++−+= α  
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Test outcome good: ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]{ }011,0min VREtqtVtqVRtV GGG ++++−+= α  

Let =T  cost of test. Then the expected cost to go with testing is 

( ) ( ) ( )[ ] ( )tVttVtT GB λλ −++ 1  

Then the total expected cost-to-go is 

( )
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which is Bellman’s equation for this dynamic program. 

A policy in the optimal replacement age with testing model is characterized by two ages: 

=1τ  age at which testing begins 

=2τ  age at which replacement begins regardless of the test result (i.e. testing is no longer useful) 

The optimal policy ( )*
2

*
1 ,ττ  that minimizes the cost-to-go can be found using the policy iteration 

algorithm discussed in chapter 2. 

The cost-to-go is a function of the policy and, particularly, of these two parameters and so it is 
written as ( )21 ,, ττtV . Then 
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where the second equation results from making the relevant substitutions for ( )tλ , ( )tqB  and 

( )tqG . This formula is essentially a recursive relationship which can be solved for ( )21 ,, ττtV  in 

terms of ( )21 ,,0 ττV . Solution of this recursion equation is needed in order to apply the policy 
iteration algorithm. After a fair amount of algebra, the solution is  

( ) =21,, ττtV  
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( )[ ]21 ,,0 ττVR +  for 2τ≥t  

 

This involved formula has an intuitive explanation. Consider, for instance, the formula for ages 

1τ<t , before inspections begin. The factor ( )[ ]21 ,,0 ττVR +  represents the cost of a scheduled 
replacement, that is the cost of the replacement itself plus the cost-to-go of new equipment. The 
various terms in brackets that multiply it represent the probabilities of the various ways in which 
equipment would be scheduled for replacement, all discounted appropriately. The first represents 
the probability that the equipment lasts till the scheduled replacement age 2τ , given that it has 

survived till age t , times the probability that it tests good at each age between 1τ  and 2τ . The 
second set of terms represents the probability that the equipment survives and tests good till age 

2τ<s , given that it has survived till age t , and then becomes due to fail but correctly tests bad at 
that time. The final set of terms represents the probability that the equipment survives and tests 
good till age 2τ<s  but then incorrectly tests bad at that time. The factor ( )[ ]21 ,,0 ττVRE ++  

0



 

3-10 

represents the cost of a failure and unscheduled replacement, and the terms in brackets that 
multiply it represent the probabilities of the various ways in which that type of event could 
occur. The final term represents the cost of inspections T times the expected number of 
inspections that occur, which is the sum of the probabilities that the equipment survives and tests 
good at each age 2τ<s . The formula for ages t  between 1τ  and 2τ , that is during the inspection 
period, has an analogous interpretation. 

This formula can be simplified somewhat for computation. Define 

( ) ( )tStA tα=  

( ) ( ) ( )[ ]1
1

0

+−= ∑
−

=

sSsStB s
t

s

α  with ( ) 00 =B  

( ) ( )sSptC s
G

s
t

s

α∑
−

=

=
1

0

 with ( ) 00 =C  

( ) ( ) ( )[ ]1
1

0

+−= ∑
−

=

sSsSptD s
G

s
t

s

α  with ( ) 00 =D  

Note that 

( ) ( ) ( )1111 −+−= −− tCtSptC t
G

tα  

( ) ( ) ( )[ ] ( )1111 −+−−= −− tDtStSptD t
G

tα  

Then after some additional algebra, the cost-to-go is computed as follows: 
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( ) =21,, ττtV  
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for 2τ<t  and  

( ) =21,, ττtV ( )21,,0 ττVR +  for 2τ≥t  

Now, setting 0=t , further manipulation of this formula gives  

( ) =21 ,,0 ττV  

( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ] ( ){ }ZBCCppDDpApR GGGG 11212
1

2 11112 ττττττ ττττ +−−+−+ −−−  (3-2) 

( ) ( ) ( )[ ] ( ){ }ZBDDppE BG 11211 ττττ +−−+ − ( ) ( )[ ]{ }ZCCpT G 12
1 τττ −+ −  

where 

( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ] ( ){ } 1
112122 11 1112

−−−− −−−−−−−= ττττττ ττττ BCCppDDppApZ GGGGG  

These equations are analogous to equations (2-1) and (2-2) of the previous chapter. 

Solving for the Optimal Policy Using Policy Iteration 

The optimal policy ( )*
2

*
1 ,ττ  for the optimal replacement age with testing model can be found 

using the policy iteration algorithm discussed in chapter 2. Using the hazard function of the 
previous chapter illustrated in figure 3-1, the test parameter values given in table 3-1, and the 
cost parameters given in table 5, policy iteration gives the optimal policy as *

1τ = 25 years, *
2τ > 

100 years (effectively infinite). 

Convergence of the algorithm is extremely rapid; starting with an initial trial policy of ′
1τ = 35, 

′
2τ =50, it converges in just two iterations. Note that the optimal policy without testing in this 

example is to replace at age 35; therefore, with testing it is optimal to replace equipment which 
tests bad starting at age 25, 10 years earlier. Furthermore, with testing, it is never optimal in this 
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example to replace equipment without testing, effectively delaying unconditional replacement 
indefinitely. The optimal cost-to-go is displayed in table 3-6. 

Table 3-5 
Base Case Cost Parameters 

R  Replacement cost $10,000 

E  Failure cost $5,000 

T  Test cost $500 

r  Annual discount rate  5% 

 

Table 3-6 
Optimal Cost-to-Go by Equipment Age 

Age t ( )*
2

*
1 ,, ττtV  Age t ( )*

2
*
1 ,, ττtV  

0 $10,995 55 $19,604 

5 $11,450 60 $19,604 

10 $12,108 65 $19,604 

15 $13,061 70 $19,605 

20 $14,442 75 $19,606 

25 $16,442 80 $19,613 

30 $18,157 85 $19,636 

35 $19,187 90 $19,716 

40 $19,604 95 $20,000 

45 $19,604 100 $20,995 

50 $19,604   

 

Steady-State Analysis 

After the optimal policy has been applied for a long time, the age distribution of the equipment 
population stabilizes to a steady-state, regardless of the initial age distribution. This steady state 
distribution is useful for several reasons. It enables calculating the expenditures due to equipment 
testing and replacement. It also enables determining the reliability of the equipment population. 
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Let ( ) =tπ  fraction of equipment population of age t  in the long run (assuming the optimal 
replacement policy is used) 

The probability distribution ( )tπ  satisfies the equations 

( ) ( )[ ] ( )111 −−−= ttht ππ  for 1,,1 1 −= ∗τKt  

( ) ( )[ ] ( )111 −−−= tptht Gππ  for 1,, 21 −= ∗∗ ττ Kt  
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Solving these equations gives  
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( ) ( ) ( ) ( ) 11 01 −+− ∗

= ππ τ tSpt t
G  for ∗≥ 1τt  

Figure 3-3 shows the steady-state age distributions with and without testing for the example data. 
Note that with testing, the equipment population is older than without testing; because testing 
identifies and replaces equipment that is likely to fail, equipment is replaced at older ages. 

The expected annual number of failures per unit of equipment (a measure of reliability) is 

( ) ( ) ( ) ( )∑∑
−

=

−

=

+=
11

0

*
2

*
1

*
1 τ

τ

τ

ππφ
s

G
s

ttqtth . For the example, =φ  0.0987; that is, in a population of 10,000, 

one would expect about 987 failures per five-year period or about 197 per year; without testing, 
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one would expect about1520 failures per five-year period or about 304 per year. By contrast, 

about ( ) ( )∑
−

=

1*
2

*
1

τ

τ

πλ
s

tt = 926 scheduled replacements per five-year period or about 185 per year would 

occur after a bad test outcome; without testing, about 522 per five-year period would survive till 
the scheduled replacement age, or about 104 scheduled replacements per year. 

The present value cost, including replacement, failure, and testing costs, of the optimal policy is 
$13,556 per unit or $678 annually. Without testing, the present value cost of the optimal policy is 
$14,156 per unit or $708 annually. Thus, the additional value of testing is $600 per unit (over the 
$500 cost of the test). In other words, testing is optimal as long as the cost of the test is less than 
$1,100 per unit. 
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Figure 3-3 
Steady-State Population Distribution with and without Testing 

Conclusion 

Diagnostic tests can play an important role in managing equipment assets. When equipment 
conditions are not directly observable, such as for underground cables or power transformers, 
diagnostic tests can provide some information about their condition. However, three issues can 
limit the usefulness of tests. First, tests are generally not completely accurate; that is, for 
instance, a cable segment with no insulation degradation may give a test result indicating some 
level of degradation and vice versa. However, as discussed in this report, even an inaccurate test 
may provide information useful for asset management decisions. In principle, it should be 
possible to quantify the level of test accuracy (a subject of on-going research at EPRI), but at 
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present such estimates often rely on expert judgment. Second, the relationship between test 
outcomes and equipment failure rates is not well established for many kinds of power delivery 
equipment; that is, how much more likely is a 30-year-old cable segment with moderate 
insulation degradation to fail in the next year than a cable segment of the same age with no 
insulation degradation? Again, in principle, it should be possible to quantify this relationship 
(also a subject of on-going research at EPRI), but at present such estimates rely on expert 
judgment. Finally, testing is costly (and in some cases may cause failure of the equipment). In 
fact, these three issues are linked together, raising the question of whether the value of the 
information, even if somewhat inaccurate, outweighs the cost of obtaining it. 

The decision framework discussed in this report models testing using several overall principles. 
First, whether or not to test is a decision, a part of an overall asset management policy for a 
particular class of equipment. That is, the value of test information depends on the actions one 
takes based on the test outcome and on the cost savings attainable over acting without doing the 
tests. Said another way, a test has value only if its outcome would lead to making a different 
decision, and even then, unless the value exceeds the cost of the test, one should not use the test. 
Thus, testing is included among the decision alternatives considered by the framework. Second, 
the decision framework separates specification of the test outcome from the action taken based 
upon it. This principle stands in contrast to much of the current industry practice, which is to 
state the test outcome as a recommendation for action, such as, “replace immediately” or “retest 
in 3 years.” Separating test outcome from recommended action permits optimizing the asset 
management policy as a function of test outcome, rather than pre-specifying the decision. Third, 
test outcomes are specified in terms of the condition state they diagnose; that is, test outcomes 
are reported as, for instance, “good” or “bad.” This specification is often used because it is fairly 
easy to understand, it applies across many kinds of tests, and it conforms to another industry 
practice of rating equipment condition on a qualitative scale (typically with 3- or 4-points). 
Alternatively, one could specify the test outcome as the specific numerical measurement 
produced by the test; however, it is not clear that this would improve the overall decision model, 
and it would make it much more complicated. Fourth, it is frequently more useful to represent 
test protocols, or test banks, rather than individual tests. A test protocol is a bank of related tests 
applied to an individual piece of equipment either at the same time or in succession over a 
relatively short period of time (say within 2 or 3 years). This representation conforms to current 
industry practice that takes advantage of the different kinds of information available from 
different tests. It also allows representing some of the contingent test policies utilities are using, 
such as retesting within two years to determine how rapidly degradation is progressing. Finally, 
through the use of test protocols to represent banks of related tests, the simple decision model 
discussed in this report assumes that no other dependence exists among tests done on the same 
piece of equipment at different times; that is, the model does not remember the outcome of a 
previous test bank. This assumption greatly simplifies the state dynamic equations by not 
requiring them to represent the test outcome explicitly. It is a reasonable assumption under two 
conditions: i) test intervals are fairly long relative to the speed of degradation, or ii) the action 
taken as a result of the test changes the equipment condition so that the previous condition is no 
longer relevant. However, the representation of test information over time remains an area of 
possible extension of the decision model, which may be useful for certain kinds of equipment, 
such as power transformers, that degrade gradually over time.  
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4  
INITIAL INVENTORIES AND TRANSIENT 
TRAJECTORIES 

Introduction 

Utilities today face the twin challenges of satisfying increasingly high standards for reliability 
and service quality while at the same time reducing costs and improving earnings. To meet the 
challenges, utilities are adopting asset management as their framework for allocating capital and 
operation/maintenance budgets. Simply stated, asset management consists of decision-making 
processes that have the goal of deriving the most value from utility assets within the available 
budget. 

Basic framework for decision-making 

The basic framework for decision-making that specifies the asset management policies that are 
applied to power delivery asset inventories has been presented in previous EPRI reports, 
including 1002086 [Guidelines for Intelligent Asset Replacement, Vol.1], 1002087 [Guidelines 
for Intelligent Asset Replacement, Vol.2, Wood Poles], 1002088 [Guidelines for Intelligent Asset 
Replacement, Vol.3, Underground Cable] and 1002257 [Cable Reliability Management 
Strategies]. The following are the elements of the decision framework: 

• Objective 

• State definitions and dynamics 

• Decision alternatives and policies 

• Data requirements 

Objective 

The objective in this decision framework is to minimize the lifecycle cost of maintaining the 
asset inventory, subject to serviceability requirements. The lifecycle cost comprises the total of 
the installation, inspection, treatment/maintenance, and replacement costs throughout a multi-
year time horizon, all taken on a present value basis. The serviceability requirement means that 
assets that do not meet minimum performance standards must be replaced or refurbished in some 
manner.  
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Dynamic Behavior:  Deterioration and Hazard Rates 

The dynamic behavior of power delivery system assets is based on the idea of deterioration.  
Over time, the condition of an individual piece of equipment may deteriorate as it experiences 
operational loading or overloading, environmental damage, human interaction, animal activity, 
and other factors.  The rate of deterioration depends on the type of asset, the initial installation of 
the equipment, as well as on the occurrence of these influencing factors, and it also can be 
retarded by some remedial or preventive maintenance activities.  The decision framework 
represents the dynamic process of power delivery system asset deterioration mathematically, 
using a set of equations that provide a forecast of future asset conditions.  The forecast depends 
on the present condition of the asset.  In general, information summarizing what is known about 
an asset is called its state.  This knowledge is sufficient to forecast the future behavior of the 
asset.  The state may include two kinds of information, the observable state that can be known 
with certainty and the unobservable state that is not directly observable but can be characterized 
by a probability distribution and can be inferred based on the outcomes of diagnostic tests.  

In present implementations of the methodology, the observable state of an asset may have two 
components. The first component represents the age of the asset (either the actual age or the so-
called effective age representing the effects of refurbishment).  The second component of the 
observable state is the number of previous failures of the asset.  We assume that these two 
components of the state are known at any time for all members of the asset inventory.   

Now, the decision framework represents the decisions regarding asset testing, maintenance, 
repair, refurbishment, and replacement as depending on the asset state. The specification of a 
decision for each asset state is called a policy, so the decision framework develops a state-
dependent policy that minimizes the lifecycle cost of maintaining the asset population. 

The deterioration of an asset’s condition is represented mathematically by a probability 
distribution called the hazard function.  The value of the hazard function at a particular age t , 
called the hazard rate, is the probability that a piece of equipment that has survived to that age 
does not survive to age 1+t .  The reports cited above describe hazard functions and methods 
whereby hazard functions may be estimated from observed data available at a utility.  

The essential tradeoff in asset management is between accepting the risk that an aging asset will 
fail, where that risk is specified by the increasing hazard rate and the cost of a failure, and 
repairing or replacing the asset, so that the hazard is reduced at some certain cost.   

Decision Alternatives and Inventory Policies:  Stationary and Transient Policies 

At any point in time, the observable state of the asset is known, the unobservable state of the 
cable is specified by a probability distribution, and the asset manager must make a decision about 
the asset.  The methodology permits the choice of the following alternatives:   

• do nothing, which does not change the state of the asset; doing nothing means that the 
behavior of the asset is governed by the hazard function given by the current state of the 
cable—which means that the current state is sufficiently satisfactory so that no 
intervention need be taken; 
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• maintain the asset, which changes the state of the asset; a typical maintenance alternative 
defined is rejuvenation; when an asset is rejuvenated, its unobservable condition is 
changed favorably; the user of  the methodology may define the specific changes; a 
typical outcome is that the probability that the unobservable condition is in the worst state 
is changed to zero as a result of rejuvenation; 

• test the asset, which means that further information about the unobservable state is 
needed prior to deciding what to do with the asset; the outcome of the test is a claim 
about the unobservable state; testing is not perfect, so that the test outcome revises the 
probability distribution on the unobservable state, hence the hazard rate is changed, 
which in turn changes the subsequent decision; 

• replace the asset, which means that the present state of the asset was such that the risk of 
failure was too great to accept; the asset can be replaced with a like asset or a different 
asset type. 

By convention, decisions occur at the beginning of each period up to the planning horizon 
(which may be infinite).   

A policy is a complete specification of what decisions to make for the state of the asset in each 
period up to the planning horizon. .A policy that makes the same decision for a given state 
regardless of when the decision is taken is called a stationary policy. In other words, in a 
stationary policy, the decision depends only on the asset’s state and not on time. A policy that is 
not stationary, that is, one in which the decisions do depend on time, is called a transient policy. 

In determining the least cost policy over the indefinite future, the least cost stationary policy is 
part of the solution to the asset management problem. The other part of the solution to the asset 
management problem is the transient policy.  The need for a transient policy arises because the 
stationary policy may not be feasible in the short run. For instance, it may not be possible to 
implement the stationary policy initially because of budget constraints. The transient policy 
transforms the initial asset inventory into the inventory to which the stationary policy can be 
applied.   

The long-run optimal stationary policy typically leads to a stable distribution of the asset 
population among the various states (see for instance, figure 2-6 in chapter 2). However, initially, 
the asset population inventory may be quite different than the long-run distribution. For example, 
a typical stationary policy might be to replace all assets over forty years of age.  This policy 
never changes.  After a single application of this policy, there would be no assets over forty years 
old in the inventory.  But suppose that the initial inventory contains a large number of assets over 
forty years old.  The replacement costs associated with a single application of the stationary 
policy may be too great for the utility to accept.  Therefore, a policy that more slowly steers the 
inventory toward the stationary condition, with no assets over forty years old, must be adopted.  
If there were no constraints on the inventory policy, then the stationary policy can be applied 
immediately, and the initial asset inventory would be transformed into the stationary inventory as 
quickly as possible.  If there are constraints, then the stationary policy must be modified.  This 
modification comprises the transient policy. 
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The transient policy depends on three aspects of the problem:  the stationary policy, the initial 
inventory, and the constraints on policy costs or other attributes of the policy.  The purpose of 
this report is to specify the transient policy.    

In the next chapter, an algorithm for finding the transient policy is given.  The algorithm is 
illustrated by an example.   Then follows a brief concluding chapter, a list of references, and an 
appendix that presents some of the aspects of the underlying mathematical theory that guides the 
development of both the transient policy and the optimal steady-state policy. 

The Transient Trajectory 

This chapter specifies the transient trajectory for an asset inventory.  The first step in determining 
the transient trajectory is to identify the stationary trajectory.  This can best be illustrated by 
example. 

Example:  Stationary Trajectory for a Cable Inventory 

The inputs to the analysis that determines the optimal stationary policy are the following. 

Inventory 

Consider an inventory of underground cable that consists of 20,000 cable segments, each of 
length 500 feet, that are distributed by age and by failure history as shown in Table 4-1. 

 

Table 4-1 
Underground Cable Inventory 

 

Strategic Alternatives 

The optimal stationary policy will control this inventory over the foreseeable future by choosing, 
as a function of the observable state, which is the pair (age, past failures), one of the strategic 
alternatives 

• No Action 

• Replace 

• Rejuvenate 

Failures INITIAL CABLE INVENTORY (Segments/State)
2 0 0 1000 1000 1000 1000 1000 1000 1000
1 0 1000 1000 1000 1000 1000 1000 0 0
0 1000 1000 1000 1000 1000 1000 1000 0 0

Age 0 5 10 15 20 25 30 35 40

0
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The effect of rejuvenation is to reduce the effective age of a cable segment.  The effective age of 
a cable segment that has never been rejuvenated is the actual age of the cable segment.  
Rejuvenation transforms the effective age such that the effective age after rejuvenation is 25% of 
the effective age prior to rejuvenation.  The effect of rejuvenation is to delay onset of burnout 
(see the hazard function in Figure 4-1, where the age at onset of burnout is denoted T).   

Costs 

The relevant costs are the following.   

• Replacement cost is $23,000 per segment (500 ft)  

• Rejuvenation cost is $15,000 per segment  

• Failure cost is $18,500 per occurrence, which includes both utility cost and estimated 
customer cost. 

• The discount factor is 0.05 per year. 

Hazard Rate 

Failure of cable segments is governed by a hazard function.  In this example, the hazard function 
is piecewise linear, as shown in Figure 4-1.  The piecewise linear hazard function is 
characterized by three parameters:   

• the steady-state failure rate hss = 6.90 x 10-5 failures/ft/yr = 0.3642 failures/mile/yr 

• the onset of burnout T = 14 years 

• the slope of burnout m = 0.361 failures/mile/yr, which is equivalent to setting the doubling 
time during burnout = 2.77 years. 
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Figure 4-1 
Piecewise Linear Hazard Function 

This completes the specification of the inputs. 

Example (cont’d):  Optimal Stationary Policy 

The optimal stationary policy for this example is given in Table 4-2.  Note that the optimal 
policy replaces cable segments that have not failed when the age is 25 years.  Rejuvenation is 
optimal for cable that has failed more than once and is 15 years old.  The optimal policy is 
stationary because it does not change over time.  

 

Table 4-2 
Optimal Stationary Policy 

OPTIMAL CABLE POLICY
Failures

Age 0 1 2
0 No Action
5 No Action No Action

10 No Action No Action No Action
15 No Action No Action Rejuvenate
20 No Action Replace Replace
25 Replace Replace Replace
30 Replace Replace Replace
35 Replace Replace Replace
40 Replace Replace Replace

 

The optimal stationary policy requires that all cable segments over twenty-five years of age or 
older be replaced, as well as cable segments that are twenty years old and have failed at least 
once.  The steady-state inventory that corresponds to this policy is given in Table 4-3. 

  

  

 

hss 

  T  

h(t) = h  + m(t T)   

Hazard 
Rate,  
h(t) 

t 

0
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Table 4-3 
Optimal Steady-state Inventory 

STEADY STATE INVENTORY UNDER OPTIMAL POLICY
Failures

Age 0 1 2
0 3,578
5 3,011 567

10 2,775 954 90
15 2,335 1,243 241
20 1,630 1,471 477
25 834 797 0
30 0 0 0
35 0 0 0
40 0 0 0  

The steady-state investment (replacement plus rejuvenation) cost of this policy is the sum of the 
replacement costs plus the rejuvenation costs.  In steady-state, there are 834 + 1471 + 797 + 477 
= 3578 (due to rounding) segments that are replaced each period and 241 segments that are 
rejuvenated each period.  That is a total cost of 3579($23,000) + 241($15,000) = $85.9 million.  
This cost does not include the cost of failures in steady-state.  This cost applies if the inventory 
were in the optimal steady-state as given in Table 4-3. 

In the example, the inventory does not begin in the optimal steady-state.  Instead, it is given by 
the distribution presented in Table 4-1.  If the optimal policy were applied to this inventory, the 
number of required replacements is 10,000 and the number of required rejuvenations is 1,000.  
This is because these are the numbers of segments that are in the (age, previous failure) states 
that are replaced or rejuvenated under the optimal policy given in Table 4-2.  The cost of 
replacing and retiring these units is $230 million + $15 million = $245 million, a cost that is 
nearly three times greater than the steady state cost. 

One may expect that the periodic cost is subject to a budget constraint.  One may also expect that 
this budget constraint is insufficient to permit application of the optimal steady-state policy for 
all initial inventories.  Therefore, the transient trajectory must be determined.  The transient 
trajectory transforms the inventory, given by (in this example) Table 4-1 into the optimal steady-
state inventory, given by Table 4-3, while following the optimal steady-state policy, given by 
Table 4-2, as closely as possible without violating the budget constraint.   

The following algorithm specifies the transient trajectory.  The algorithm will be applied to the 
example. 

Algorithm for Determining the Transient Trajectory 

An algorithm for determining the transient trajectory is given in the following steps. The basic 
idea of this procedure is that the optimal stationary policy specifies which assets in the 

0



 
 
Initial Inventories and Transient Trajectories 

4-8 

population should be replaced. Among these assets, a replacement priority is assigned according 
to their projected failure rates, with those having the highest failure rate assigned the highest 
priority. Then the replacement budget is used to replace these assets in this priority order. If the 
budget is sufficient to replace all assets scheduled under the optimal stationary policy, then the 
inventory moves immediately to its long-run distribution, and the stationary policy continues to 
be applied indefinitely. If, on the other hand, the budget limits replacements, those with the 
greatest risk of failure are replaced, and replacement of the remainder is deferred. The asset 
inventory thus moves closer to the long-run distribution. The prioritization procedure is repeated 
for subsequent budgets until the all the assets scheduled for replacement under the stationary 
policy have in fact been replaced, and thence the stationary policy continues to be applied 
indefinitely. 

Notation 

• Let x  denote the state of the cable.  Recall that x is at present the pair (t, f), where t is cable 
age and f is number of previous failures.  

• Let h(x) denote the hazard rate for cable in state x .   

• Let Bk denote the budget available for cable replacement at time k in the planning period.  It 
is this collection of budget values that constrains the transient trajectory.  Bo denotes the 
initial budget available.   

• Let crepl denote the cost of replacement for each unit of asset; e.g., cost per cable segment. 

• Let  (k, x) denote the fraction of the cable inventory that is in state x at time k.  The initial 
inventory distribution is  (0, x).  The total initial inventory is Io.  The total number of 
segments in each state x initially is Io  (0, x).  Note that in the present model, the total 
inventory (Io) is constant. 

Procedure 

Step 1.  Identify the Replacement (and Rejuvenation) States.   Replacement states are the 
collection of states {x} that would be replaced (or never achieved) if the optimal steady-state 
policy were adopted.  Similarly, the rejuvenation states can be identified.  (For simplicity, the 
term Replacement States will be understood to mean a state that will either be replaced or 
rejuvenated.)  

Step 2.  Order the Replacement States by decreasing hazard rate.  This yields the sequence of 
states {xj = (tj , fj ) : j = 1, 2, 3, …} such that h(xj) > h(xj+1), (with ties between states with equal 
hazard rates broken by giving priority to the older equipment and to equipment with more prior 
failures if the ages are equal).   This is the Replacement Priority. 

Step 3.  Modify the Replacement Priority if the optimal policy includes Testing.  Let “R(x)” 
denote the test outcome that indicates replacement under the optimal policy when the state is x 
(as discussed in EPRI report 1002088, the quotation marks indicate that the test outcome is a 
claim about the true condition, but because of inaccuracies in the test, this claim is not 100% 
reliable).  As discussed in chapter 3, the information about the unobservable part of the state 
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revealed by the test allows one to update the hazard rate. Denote the updated hazard rate 
conditional upon this test outcome as h(x|“R(x)”).  Revise the ordering in Step 2 such that all 
states x in which the test would be applied under the optimal policy have h(x) replaced by 
h(x|“R(x)”).  This provides the Test-modified Replacement Priority, the sequence of states {xj = 
(tj , fj ) : j = 1, 2, 3, …}. 

Step 4.  Initial Replacement.  Following the Replacement Priority (Test-modified as appropriate), 
replace until the initial budget Bo is exhausted.  If assets in state x are to be tested, subject to both 
the Replacement Priority and the budget constraint, then replace the expected number that will 
have test outcome “R(x)”,  which is Io  (0, x) p(“R(x)”), where p(“R(x)”) is the probability of 
that test outcome.  The remaining expected number of assets, Io  (0, x) [1-p(“R(x)”)], will not be 
replaced.  They will have hazard rate h(x|“R(x)”) for the first year in the planning period. 

The number of assets replaced is equal to replojj o cBxI ≤∑ =
),0(

1
π , where the sum is equal to 

the maximal number of replacements, in Replacement Priority order, that does not exceed the 
constraint. 

Step 5.  Dynamics.  If the initial budget is sufficiently large such that all assets have been 
replaced according to the Replacement Priority, then invoke the optimal policy and no further 
transient analysis is required.  (This assumes that the steady-state budget is available is no greater 
than Bo.)   

If the initial budget is not sufficiently large, then the optimal policy cannot be invoked.  In that 
case, perform the following. 

5a. Apply the failure dynamics given by the appropriate hazard rates, either h(x) or h(x|“R(x)”).   

5b. Find the new population distribution Io  (1, x). 

5c. Perform Step 4 with k=1 for budget B1. 

5d. Return to top of Step 5.  Continue for k=k+1. 

Example (cont’d):  Optimal Transient Policy and Trajectory 

The transient trajectory given by the algorithm above is optimal in the sense that it transfers the 
inventory to the optimal steady-state as quickly as possible, and at each stage of the algorithm, 
the riskiest assets are replaced (or rejuvenated).   

In the present example, suppose the periodic replacement (including rejuvenation) budget is 
$100 million, a value somewhat greater than the steady-state cost.  Thus, Bk = $100 million for 
each period k in the analysis. 

The periodic hazard rates h(x) are presented in Table 4-4. 
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Table 4-4 
Periodic Hazard Rates 

 

Age  Failures  
 0 1 2 
0 0.1584 0.1584 0.1584 
5 0.1584 0.1584 0.1584 

10 0.1584 0.1584 0.1584 
15 0.3019 0.3836 0.5485 
20 0.4886 0.6332 0.8401 
25 0.6255 0.7817 0.9434 
30 0.7257 0.8701 0.9799 
35 0.7991 0.9227 0.9929 
40 0.8528 0.9540 0.9975 

 

Step 1 of the algorithm requires that the replacement and rejuvenation states given in Table 4-2 
be identified.  These states are {x = (t, f):  (25,0), (30,0), (35,0), (40,0), (20,1), (25,1), (30,1), 
(35,1), (40,1), (20,2), (25,2), (30,2), (35,2), (40,2), (15,2)*}.   The asterisk denotes that (15,2) is a 
rejuvenation state.  There are fifteen replacement states. 

Step 2 of the algorithm orders the replacement states by decreasing hazard.  The ordering is  

 

1. (40,2) 6. (35,1) 11. (25,1) 

2. (35,2) 7. (30,1) 12. (30,0) 

3. (30,2) 8. (40,0) 13. (20,1) 

4. (40,1) 9. (20,2) 14. (25,0) 

5. (25,2) 10. (35,0) 15. (15,2) 

 

which follows from inspection of Table 4-4. 

Step 3 is not operative in this example.  Testing is not part of the optimal policy. 

Step 4 is the initial replacement.  The initial inventory Io  (0, x) is given in Table 4-1.  Note that 
there are 20,000 segments in the initial inventory.  Note also that the optimal policy applied to 
the initial inventory would result in 10,000 replacements and 1,000 refurbishments.  The cost of 
these decisions exceeds the budget constraint. 

The ratio Bo/crepl, the number of initial replacements possible, is $100 million/$23,000 = 4,347.  
Based on the replacement ordering, the initial replacements are 1000 segments in state (40,2), 
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1000 segments in state (35,2), 1000 segments in state (30,2), 0 segments in state (40,1), 1000 
segments in state (25,2), 0 segments in state (35,1), 347 segments in state (30,1).  The total 
number of replacements is 4,347, and the constraint is binding. 

Step 5.  This step requires that the failure dynamics be applied to the initial inventory that is not 
replaced. Applying Step 5a, the remaining segments experience failures given by the periodic 
hazard rates of Table 4-4.  Hence the inventory that begins the next period is given in Table 4-5.  
(For example, there are 1000 segments in state (10,1) in the initial inventory.  The hazard rate in 
this state is 0.1584.  Thus, the number of segments that fail and therefore transition to state (15,2) 
is 158.4.  The number of segments that do not fail and therefore transition to state (15,1) is 851.6.  
But also, there are 1000 segments in state (10,0) in the initial inventory, with hazard rate 0.1584.  
Therefore, the number of those segments that fail and therefore transition to state (15,1) is 158.4.  
Hence, the total number in state (15,1) at the beginning of the next period is 851.6 + 158.4 = 
1000.  Similarly, all the segments that were in state (10,2) at the beginning of the period must 
transition to state (15,2) because failures are not accumulated in the state variable beyond two.  
Therefore, the number of segments in state (15,2) at the beginning of the next period is 1000 
+158.4 = 1158 (rounded).)  Table 4-5 is the result of Step 5b, the first period inventory, or the 
population distribution  Io  (1, x). 

 

Table 4-5 
Inventory Dynamics:  First Period Inventory 

  Failures  
Age 0 1 2 

0 4347     
5 842 158   

10 842 1000 158 
15 842 1000 1158 
20 698 918 1384 
25 511 855 1633 
30 375 844 782 
35 274 811 568 
40       

 

The steps repeat from this point.  The budget for period 1 is B1= $100 million, the number of 
replacements is the same as in the initial iteration, the replacement ordering is the same.  Hence, 
upon inspecting Table 4-5, the replacements are 568 segments from state (35,2), 782 segments 
from state (30,2), 1633 segments from state (25,2), 811 segments from state (35,1), and 553 (out 
of 844) segments from state (30,1).  These comprise 4347 replacements.  The remaining 
segments behave according to the hazard rates.  The result is the second period inventory,  
Io  (2, x), as shown in Table 4-6.   
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Table 4-6 
Inventory Dynamics:  Second Period Inventory 

  Failures  
Age 0 1 2 

0 4347     
5 3658 689   
10 709 266 25 
15 708 975 317 
20 588 870 1542 
25 357 678 1965 
30 192 507 669 
35 103 310 253 
40 55 219 0 

 

Repeating the steps, the replacements are, in priority order, 253 + 669 + 219 + 1965 + 310 + 507 
+ 55 = 3978.  The next state in priority order is (20,2), but there are only 4347- 3978 = 369 
replacements that are feasible.  Therefore, the inventory in state (20,2) becomes 1542 – 369 = 
1173.  Applying the hazard function, the third period inventory is shown in Table 4-7. 

 

Table 4-7 
Inventory Dynamics:  Third Period Inventory 

  Failures  
Age 0 1 2 

0 4347     
5 3658 689   
10 3078 1159 109 
15 597 336 67 
20 494 815 691 
25 301 606 1724 
30 134 371 530 
35 53 139 0 
40 21 82 0 

 

The third period inventory replacements are 530 + 82 + 1724 + 139 + 371 + 21 + 691 + 53 + 606 
+ 130 =  4347.  The state (30,0) contains 134 – 130 = 4 segments that could not be replaced 
because of the budget constraint.  The fourth period inventory is given in Table 4-8. 
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Table 4-8 
Inventory Dynamics:  Fourth Period Inventory 

  Failures  
Age 0 1 2 

0 4347     
5 3658 689   
10 3078 1159 109 
15 2590 1463 293 
20 417 387 196 
25 253 540 516 
30 113 188 0 
35 1 3 0 
40 0 0 0 

 

It is now feasible to replace segments by applying the complete optimal policy.  The total 
number of segments replaced is 516 + 3 + 188 + 196 + 1 + 540 + 113 + 387 + 253 = 2197 and 
the total number of rejuvenations is 293.  The fifth period inventory is shown in Table 4-9.  The 
optimal policy is feasible at this stage as well.   

 

Table 4-9 
Inventory Dynamics:  Fifth Period Inventory 

  Failures  
Age 0 1 2 

0 2197     
5 3658 689   

10 3078 1159 109 
15 2590 1463 293 
20 1808 1684 561 
25 213 204 0 
30 0 0 0 
35 0 0 0 
40 0 0 0 

 

Thus, the policy has converged to the optimal policy.  The inventory will converge to the optimal 
steady-state inventory, but that will require many more iterations.   

This concludes the example and the description of the algorithm. 
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Conclusions 

This report has presented a method that will transfer any initial asset inventory to the optimal 
steady-state inventory while not violating a budget constraint imposed on the total policy 
management (replace, refurbish, and test) cost in any period.  The method is specified by the 
algorithm given in chapter 2.  The main feature of the algorithm is that the riskiest assets are 
replaced in order, until the budget is exhausted.  Therefore, the transient policy is the least-cost 
policy subject to the budget constraint.  If the budget constraint is not less than the periodic cost 
of the optimal steady-state policy, the transient policy will converge to the optimal steady-state 
policy as quickly as possible.  The greater the budget constraint, generally speaking, the more 
quickly the policy will converge. 

Technical Appendix: Dynamic Theory 

The development of the transient trajectory as a method of transferring any initial inventory of 
assets to the optimal steady-state inventory is based on an underlying mathematical model of the 
dynamic behavior of aging assets.  The aging assets problem is formulated as an optimal control 
problem on an infinite horizon.  The simplest form of this problem is the autonomous problem, 
formulated as 

 minimize dttutxe t ))(),((
0

l∫
∞

− ρ  

 subject to ))(),(()( tutxftx =&  

  oxx =)0(    

  ttutx ∀Ω×Χ∈))(),((  

The autonomous problem has an objective kernel that depends on time only through the discount 
factor e-ρ t.  The variable x is the state variable and the variable u is the control variable.  Perhaps 
the simplest way to view this problem is that the solution is a controller u(t) defined over the 
time interval [0, •) that drives the state from its initial condition xo to an arbitrary terminal state at 
t = •, subject to the constraints that the state and control values are within some set for each 
instant in the planning period, ttutx ∀Ω×Χ∈))(),((  , and that the controller directs the state 
according to the first order differential equation, while minimizing the objective functional.   

The main result of the theory of this problem is that there is an optimal steady-state, a so-called 
turnpike, the pair (x*, u*), such that f(x*, u*) = 0, that is an attractor for all optimal trajectories.  
That is, all optimal trajectories converge to the turnpike over the infinite horizon, and all optimal 
trajectories over finite time horizons, with terminal conditions given, spend an arbitrarily large 
part of the planning period in a neighborhood of the turnpike (Radner [1961], Samuelson 
[1965]).   

An important result indicates how to find the turnpike without having to solve the dynamic 
problem. 
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It is clear that for the undiscounted problem (ρ = 0), the turnpike is the steady-state that 
minimizes the kernel of the objective, the solution to the (typically nonlinear) programming 
problem 

  minimize ),( uxl  

  subject to 0),( =uxf  

   Ω×∈ Xux ),(  

The characterization of the optimal steady-state for the discounted problem is given by the so-
called implicit programming problem (Feinstein and Luenberger [1981]) 

 

minimize ),( uxl  

  subject to 0*)(),( =−− xxuxf ρ  

   Ω×∈ Xux ),(   

The unique feature of the implicit programming problem is that the state component of the 
turnpike, x*, is present in the constraint.  That is, the constraint is defined implicitly by the 
solution to the problem itself.  Note that the entire null space of f is feasible for the undiscounted 
problem, while only a subset of that null space is feasible for the implicit programming problem.  
(This is easy to see if one replaces x* in the constraint of the implicit programming problem with 
a parameter c.  The solution for each c is then (x*(c), u*(c)) and the feasible points of the implicit 
programming problem are the fixed points of the mapping c x*(c).)  Hence the optimal 
objective value of the implicit programming problem is inferior to (greater than) the 
undiscounted optimal objective value.  

This theory can be applied to the Markov decision problem with discounting.  We make the 
correspondence πTurux )(),( =l , where r(u) is the vector of state-occupancy return rates that 
apply if policy u is chosen and  is the (steady-state) probability vector; and f(x,u) = QT(u) , 
where the probabilistic state dynamics are given by ππ )(uQT=&  .  The implicit programming 
problem is then 

  minimize πTur )(  

  subject to 0*)()( =−− ππρπuQT  

    11 =πT  

The columns of the matrix QT are the various conditional probability rates that govern the next 
transition.  Each control u is a complete selection of columns, so that u determines QT.  
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Therefore, the implicit programming problem is a linear program with a special structure.  The 
solutions determine the optimal steady-states for different values of the discount rate.   

For discrete time, with periodic discount factor δ, we make the correspondence QT(u)   (PT(u)-
I) , because discrete-time dynamics are (k+1)=PT(u) (k), and ρ  (1/δ) −1.  The discrete-time 
implicit programming problem is also a linear program.   

The solution to this problem determines the optimal steady-state.  This is the problem that is 
solved in the EPRI asset management methodology (which is described in the cited EPRI 
reports).  That methodology identifies the optimal steady-state policy.   

This steady-state policy is the turnpike or the attractor for all optimal trajectories.  Such 
information is critical because it specifies where any transient trajectory converges.  Therefore, it 
is possible to identify a cost-effective, if not optimal, transient solution that transfers any initial 
inventory to the optimal steady-state inventory.  Indeed, the algorithm presented in this report 
accomplishes precisely that transfer.   
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