

Smart Distribution Applications and Technologies
Evaluation of Distribution Reconfiguration Functions in Advanced

Distribution Management Systems, Example Assessments of Distribution
Automation Using Open Distribution Systems Simulator

1020090

0

0

EPRI Project Managers

M. McGranaghan
M. Olearczyk

R. Dugan

ELECTRIC POWER RESEARCH INSTITUTE
3420 Hillview Avenue, Palo Alto, California 94304-1338 ▪ PO Box 10412, Palo Alto, California 94303-0813 ▪ USA

800.313.3774 ▪ 650.855.2121 ▪ askepri@epri.com ▪ www.epri.com

Smart Distribution Applications and Technologies
Evaluation of Distribution Reconfiguration Functions in Advanced Distribution

Management Systems, Example Assessments of Distribution Automation Using Open
Distribution Systems Simulator

1020090

Technical Update, September 2011

0

DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES
THIS DOCUMENT WAS PREPARED BY THE ORGANIZATION(S) NAMED BELOW AS AN ACCOUNT OF
WORK SPONSORED OR COSPONSORED BY THE ELECTRIC POWER RESEARCH INSTITUTE, INC. (EPRI).
NEITHER EPRI, ANY MEMBER OF EPRI, ANY COSPONSOR, THE ORGANIZATION(S) BELOW, NOR ANY
PERSON ACTING ON BEHALF OF ANY OF THEM:

(A) MAKES ANY WARRANTY OR REPRESENTATION WHATSOEVER, EXPRESS OR IMPLIED, (I) WITH
RESPECT TO THE USE OF ANY INFORMATION, APPARATUS, METHOD, PROCESS, OR SIMILAR ITEM
DISCLOSED IN THIS DOCUMENT, INCLUDING MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE, OR (II) THAT SUCH USE DOES NOT INFRINGE ON OR INTERFERE WITH PRIVATELY OWNED
RIGHTS, INCLUDING ANY PARTY'S INTELLECTUAL PROPERTY, OR (III) THAT THIS DOCUMENT IS
SUITABLE TO ANY PARTICULAR USER'S CIRCUMSTANCE; OR

(B) ASSUMES RESPONSIBILITY FOR ANY DAMAGES OR OTHER LIABILITY WHATSOEVER (INCLUDING
ANY CONSEQUENTIAL DAMAGES, EVEN IF EPRI OR ANY EPRI REPRESENTATIVE HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES) RESULTING FROM YOUR SELECTION OR USE OF THIS
DOCUMENT OR ANY INFORMATION, APPARATUS, METHOD, PROCESS, OR SIMILAR ITEM DISCLOSED IN
THIS DOCUMENT.

REFERENCE HEREIN TO ANY SPECIFIC COMMERCIAL PRODUCT, PROCESS, OR SERVICE BY ITS
TRADE NAME, TRADEMARK, MANUFACTURER, OR OTHERWISE, DOES NOT NECESSARILY
CONSTITUTE OR IMPLY ITS ENDORSEMENT, RECOMMENDATION, OR FAVORING BY EPRI.

THE FOLLOWING ORGANIZATION, UNDER CONTRACT TO EPRI, PREPARED THIS REPORT:

MelTran, Inc.

This is an EPRI Technical Update report. A Technical Update report is intended as an informal report of
continuing research, a meeting, or a topical study. It is not a final EPRI technical report.

NOTE
For further information about EPRI, call the EPRI Customer Assistance Center at 800.313.3774 or
e-mail askepri@epri.com.

Electric Power Research Institute, EPRI, and TOGETHER…SHAPING THE FUTURE OF
ELECTRICITY are registered service marks of the Electric Power Research Institute, Inc.

Copyright © 2011 Electric Power Research Institute, Inc. All rights reserved.

0

This publication is a corporate document that should be cited in the literature in the following
manner:

Smart Distribution Applications and Technologies: Evaluation of Distribution Reconfiguration
Functions in Advanced Distribution Management Systems, Example Assessments of Distribution
Automation Using Open Distribution Systems Simulator. EPRI, Palo Alto, CA: 2011. 1020090.

iii

ACKNOWLEDGMENTS
The following organization, under contract to the Electric Power Research Institute (EPRI),
prepared this report:

MelTran, Inc.
90 Clairton Boulevard, Suite A
Pittsburgh, PA 15236

Principal Investigator
T. McDermott

This document describes research sponsored by EPRI.

0

0

v

PRODUCT DESCRIPTION
In 2008, the Electric Power Research Institute (EPRI) provided its Distribution System Simulator
(DSS) software tool to the industry as open-source software called OpenDSS. One of the main
purposes for making it open source was to provide a convenient platform for users to develop
and test algorithms for advanced distribution automation (ADA) functions. This report describes
the basics of how to apply the OpenDSS program to assess ADA algorithms that might be found
in a distribution management system (DMS).

Results and Findings
Three examples are provided:

• Civinlar’s branch exchange reconfiguration example
• A substation control example
• A volt/VAR control example

These examples are useful for researchers and other users who need some assistance getting
started with ADA algorithm simulation. They would also be helpful to DMS vendors who would
like to test and debug their control algorithms. The examples are demonstrated using the familiar
Microsoft® Excel spreadsheet program via Visual Basic for Applications (VBA). This is a
commonly available tool that should allow most readers to duplicate the results easily.

Challenges and Objectives
This report is intended for researchers investigating ADA algorithms. In addition to utility
planners, this report would be especially beneficial to academics with limited knowledge of
distribution system behavior who are investigating new ideas and want to determine how the
utility distribution system will respond. The goals are to 1) demonstrate the use and value of
OpenDSS in modern grid design and 2) show end users how to customize OpenDSS for
advanced applications.

Applications, Value, and Use
ADA algorithms are implemented for testing in software outside the OpenDSS program. This
may be software such as MATLAB, Excel, C/C++, and Python. Many potential users are not
only unfamiliar with distribution systems, but also are not familiar with how to use programs
through the Windows Component Object Model (COM) automation interface. This report
demonstrates how to drive and control OpenDSS through its COM interface.

This report makes a special contribution that should accelerate the advancement of tools for
planning and analysis of various issues related to the deployment of the smart grid. The expected
outcome is that improved algorithms for ADA will be produced more quickly and will find their
way into DMS products that will benefit utilities.

Approach
The goal of this project was to demonstrate how to use OpenDSS to model ADA control
algorithms. Three example problems were selected, and computer code was developed to drive
OpenDSS. The code is documented to serve as a starting point for users of the program.

0

vi

Keywords
Advanced distribution automation (ADA)
Distribution management system (DMS)
Distribution reconfiguration
OpenDSS
Substation automation

0

vii

CONTENTS
1 INTRODUCTION .. 1-1

Problem Statement .. 1-1
Applications .. 1-1

2 FEEDER MODELS ... 2-1
Civanlar’s Reconfiguration Example .. 2-1
Substation Control Example ... 2-1
Volt/VAR Control Example ... 2-2

3 MODELING PLATFORM DEVELOPMENTS ... 3-1
Circuit Elements ... 3-1
SwtControl Class .. 3-1
Standard COM Action Codes ... 3-2
Sensors COM Interface .. 3-2
Topology COM Interface .. 3-3
CktElement COM Interface .. 3-4
Meters COM Interface .. 3-4
COM Interfaces to Existing Controller Classes .. 3-5
DSS Events COM Interface ... 3-5

4 EXAMPLES .. 4-1
Reconfiguration Example ... 4-1
Substation Volt/VAR Example .. 4-6
Feeder Volt/VAR Example ... 4-11

5 REFERENCES ... 5-1

A GETTING STARTED WITH THE COM INTERFACE ... A-1

B OPENDSS COM INTERFACE LISTING ... B-1
ActiveClass ... B-1
Bus .. B-2
Capacitors ... B-2
CapControls .. B-3
Circuit .. B-3
CktElement.. B-5
CtrlQueue .. B-6
DSS ... B-6
DSSElement.. B-7
DSSEvents .. B-7
DSSProgress .. B-7
DSSProperty ... B-8
DSS_Executive ... B-8
Error .. B-8

0

viii

Generators .. B-8
Lines.. B-9
Meters ... B-11
Monitors .. B-11
Plot .. B-12
RegControls .. B-13
Sensors ... B-14
Settings ... B-14
Solution ... B-15
SwtControls ... B-16
Text ... B-16
Topology ... B-16
Transformers ... B-17
ActionCodes .. B-18
CapControlModes ... B-18
LoadModels... B-18
LoadStatus .. B-18
MonitorModes ... B-18
Options .. B-19
SolveModes .. B-19

0

x

LIST OF FIGURES
Figure 2-1 Civanlar’s Reconfiguration Example with Three Feeders ... 2-1
Figure 2-2 Substation Model with Controlled Capacitors and Tap Changers 2-2
Figure 2-3 Feeders for Capacitor Switching Control Example ... 2-3
Figure 3-1 OpenDSS Solution Loop with DSSEvents and Solution Interfaces 3-6
Figure 4-1 SwtControl Interface Test Outputs ... 4-2
Figure 4-2 Topology Interface Test Outputs .. 4-4
Figure 4-3 Branch Exchange Iterations Using the Topology Interface 4-6
Figure 4-4 Regulator Set Point vs. Feeder Power ... 4-9
Figure 4-5 Tap vs. Regulator Set Point .. 4-10
Figure 4-6 Substation Capacitor MVAR vs. Feeder Power .. 4-10
Figure 4-7 Load Voltage vs. Feeder Power ... 4-11
Figure 4-8 Feeder Capacitor Banks for Volt/VAR Control ... 4-13
Figure 4-9 Regulators and Autoboosters for Volt/VAR Control .. 4-13
Figure 4-10 Losses and Voltage Limits with Volt/Var Control .. 4-13
Figure 4-11 Monitor Names and Sample Values ... 4-16
Figure A-1 Screen Capture of OpenDSS Interface as Exposed in Excel VBA A-2

0

0

1-1

1
INTRODUCTION
As utilities modernize their distribution systems to include wider use of advanced distribution
automation (ADA) schemes, they need to assess their distribution circuit designs and
configurations, including the associated control and protection systems. The simulation of these
ADA schemes and control systems can lead to a better understanding of the value of these
emerging capabilities and the ways they can be most effectively used.

The Distribution System Simulator (DSS) is a comprehensive simulation tool for electric utility
distribution systems. It has been in use since 1997 as a tool to investigate distribution system
analysis problems that required innovative approaches or that were difficult to solve with
conventional tools. The program was initially developed to support nearly all aspects of
distribution planning with distributed generation (DG). In September 2008, the Electric Power
Research Institute (EPRI) released the program as an open source project called OpenDSS [1].
One motive was to spur the advancement of “smart grid” efforts by providing researchers and
developers with a flexible and powerful distribution system modeling tool for investigating new
algorithms and control schemes.

Problem Statement
There are two complementary goals for this project [2]:

• Demonstrate the use and value of OpenDSS in modern grid design
• Show how end users can customize OpenDSS for advanced applications

To meet the first objective, an existing OpenDSS feeder model has been identified for the
simulation of centralized reactive power control on a feeder. This involves collection of
measurements from points on a feeder, processing by a centralized algorithm, and then dispatch
of capacitor banks and regulator taps at different points on the feeder. Simulation of
communication system bandwidth, latency, and reliability is not in the scope for this project.

To meet the second objective, Microsoft Excel was used to implement the controls and to
supervise OpenDSS. Three examples in Visual Basic for Applications (VBA) show automated
switch control for loss minimization, adaptive tap changer control in a substation, and reactive
power control on a realistic feeder model. Utilities and researchers can use these examples to
develop their own applications. Control parameters, measurement points, and algorithms can all
be optimized using this type of simulation platform.

Applications
Over the past 20 years, university researchers have developed computer-based control algorithms
for distribution circuits like the ones in the following list. In many cases, these methods have
been developed well in advance of market needs, but some have been adopted in commercial
products. With the availability of more measurement data, communication channels, and control
devices, the body of existing academic work may provide some guidance on possible smart grid
applications for the OpenDSS platform.

0

1-2

• Capacitor bank optimization – Finds the locations, sizes, and operating strategies for
capacitor banks to reduce system losses or to improve voltage profiles.

• Reconfiguration for loss reduction – Opens or closes feeder tie switches to reduce total
system losses.

• Load and phase balancing – This is a special case of switch reconfiguration for loss
reduction. The objective is to balance load currents among feeders and among individual
phases on the feeders. This also tends to improve the reserve capacity.

• Service restoration – This is another special case of switch reconfiguration in which the
system starts in a radial but unconnected state, meaning that some loads are not served. The
objective is to restore as much load as possible, subject to voltage and current constraints,
while keeping the system radial. Some components are faulted, which will preclude some
switching operations.

• Modern optimization techniques – Most of the current academic research in this area makes
use of genetic algorithms (GA), simulated annealing (SA), automated neural networks
(ANN), ant colony optimization (ACO), or some other modern optimization techniques
adapted from other research fields. Generally, this involves linking a general-purpose
optimization package to a power system model. The most significant challenge is
representing the power system characteristics and constraints (especially radial
configuration) in a form that is suitable for the optimization technique. This is especially true
for GA, but recent work with matroids has been more promising. For OpenDSS, there would
be a benefit to interfacing with widely used optimization packages in order to take advantage
of powerful techniques already developed in a larger research community. This is an
important reason for supporting MATLAB interfaces to OpenDSS.

• Agent-based methods – There have been several recent papers using agent-based methods for
distributed control of the power distribution system. Using local data and processing,
multiple software agents can act to achieve system-level objectives, if the algorithms have
been designed properly. The advantage would be much less reliance on communication
channels. OpenDSS could simulate these agents through a DLL or COM interface, providing
a test bed for their development.

In addition to these, distribution system state estimation is a key enabler for smart grid
applications, and it presents different technical challenges than the well-developed transmission
system state estimators do. Other projects funded by EPRI, the U.S. Department of Energy, the
Centre for Energy Advancement Through Technological Innovation (CEATI), and the California
Energy Commission are addressing the need for state estimation.

Interest in DG also remains high, especially from renewable energy sources. The original
purpose for OpenDSS was to provide analysis and planning functions for DG, and that work
continues. If a utility can use DG as part of a reactive dispatch scheme, that becomes a form of
ADA. Even though, according to IEEE Std. 1547, DG is not supposed to actively regulate
voltage, the utility could dispatch DG reactive power to help manage voltage profiles.

0

2-1

2
FEEDER MODELS
This section describes feeder models that were used for ADA simulation examples in OpenDSS.

Civanlar’s Reconfiguration Example
Figure 2-1 depicts a simple three-feeder test system used in a classical paper on distribution
system reconfiguration to minimize losses [3]. The substation bus voltage is 23 kV, the node
voltage outputs are on a 120-volt base, and the branch flows are in amperes (A). Loads and
capacitor banks are connected only at the numbered buses, but each line segment can be
switched in or out of service. There are no adjustable transformer taps in this model. The total
system losses are reduced by opening segment 9-11 instead of 5-11, and by opening segment 8-
10 instead of 10-14.

This example was chosen to provide a simple introduction and to encourage participation by
academic researchers. Most graduate students in distribution system modeling would already be
familiar with this test circuit and application.

Figure 2-1
Civanlar’s Reconfiguration Example with Three Feeders [3]

Substation Control Example
Figure 2-2 depicts a 138-kV/13.8-kV substation serving a low-voltage secondary network
through 29 primary feeders. All four transformers are heavily loaded. The system operators
control the substation capacitor banks manually and also manually adjust the substation
transformer load tap changers (LTC) according to the total substation power demand. Figure 2-2
includes the LTC setting schedule in tabular format, with target voltage based on the actual

0

2-2

potential transformer (PT) ratio. In addition, the LTC has line drop compensator (LDC) settings
that are fixed. A simplified version of this circuit was used for the second example, illustrating
capacitor and regulator controls. The simplifications include:

• Combining the four transformers into a parallel equivalent. The regulator current transformer
(CT) ratings are scaled up to use the actual R and X settings.

• Paralleling the 29 feeders and the network load into an equivalent on the 13.8-kV bus.
• Increasing the total available substation capacitance, allowing more compensation of the load

power factor.

Figure 2-2
Substation Model with Controlled Capacitors and Tap Changers

Volt/VAR Control Example
Figure 2-3 shows the layout of line segments for two feeders already modeled in OpenDSS for a
previous EPRI project [4]. The segment widths in the figure are weighted by current flow, and
the substation is located near the left end of the thickest blue lines as indicated. With loading set
at 30% of the connected transformer kVA, the total power delivered was 6.86 MW, with losses
of 3.9%. The customer load is all defined on service points, which are fed from service
transformers having their own kVA rating. The loads were allocated for OpenDSS using 400 A
per phase at the head of each feeder. The model includes the following components:

• 1 substation source at 12.47 kV
• 2 feeders, denoted 34232 and 34236
• 1175 transformers (some associated with 79 three-phase banks, which were not used in this

DSS model)
• 1037 service points
• 2351 line segments, including both overhead and underground
• 5 shunt capacitors, two of which are supervisory control and data acquisition (SCADA)

controlled, by phase. The sizes are 300 and 900 kilovolt amperes reactive (kVAR), and three
600-kVAR banks

• 57 switches
• 10 reclosers, two of which are SCADA controlled
• 1 sectionalizer

138 kV
I3ph = ISLGF = 40 kA

TR1 TR2 TR3 TR4

A Syn

15 Feeders

C1 C3

C2 C4

B Syn

14 Feeders2x20 MVAR

2x20 MVAR

135.3/13.8/13.8 kV
±12% Taps
93.3/46.7/46.7 MVA

Reactive Power Control

0

2-3

• 136 fuses
• 4 voltage regulators (Three of these are auto-boosters with just four taps operating in the

boost direction only from 100% to 110%. The other is a standard line regulator.)

The feeders also include six line post sensors for capacitor bank control and other monitoring
functions. A line post sensor measures real power, voltage, current, and power factor by phase,
along with total current and voltage distortion. These measurements are integrated into the
SCADA system at 15-minute intervals. Both of the SCADA-controlled capacitor banks have
line post sensors, as indicated in Figure 2-3. Neither SCADA-controlled recloser has a line
post sensor.

Figure 2-3
Feeders for Capacitor Switching Control Example [4]

0

0

3-1

3
MODELING PLATFORM DEVELOPMENTS
EPRI report Control System Simulation in the Distribution System Simulator (DSS) [2] outlined a
development plan to upgrade OpenDSS capabilities for ADA simulation. This section updates
the plan as built. More detailed documentation can be found in the Tech Notes and the Wiki at
http://sourceforge.net/projects/electricdss/ [1].

Circuit Elements
The base circuit element attributes were expanded, both to support ADA simulation and to
support common information model (CIM) interoperability testing:

• Added a long integer ID, which can serve as a device handle for external controllers in ADA
simulation. This does not have to be persistent each time OpenDSS loads a model.

• Added an optional display name, which does not have to be unique. These are used in most
commercial packages.

• Added a globally unique identifier (GUID), which is mandatory for CIM testing. The GUID
is unique not only within an OpenDSS model, but also among other software packages. It is
also persistent each time OpenDSS executes. This persistence is required for incremental
updates to work in CIM, regardless of the time between data exchanges. OpenDSS creates
GUIDs automatically, only when needed, and when a GUID does not already exist.
Commands were provided to read and write GUIDs, similar to the handling of bus
coordinates.

Transformer library support was expanded with the XfmrCode class for transformers that share
parameters. An optional XfmrBank attribute was added to collect single-phase transformers into
a bank. The bank structure is important for both CIM and MultiSpeak data transfer and may be a
useful addition to capacitors, load, switches, etc.

Line library support was expanded with a LineSpacing class that holds only X and Y wire
coordinates. It is used with the Spacing and Wires attributes of the Line object. These support a
line library of pole or structure types, with independent wire selection.

Common object model (COM) interface enumerations were added for LoadStatus, LoadModels,
CapControlModes, and ActionCodes (detailed later). These enumerations provide support for
tool-tip help in Excel VBA and other programming languages.

SwtControl Class
Any component in OpenDSS has an inherent switch in each terminal, but there is no easy way to
identify and keep track of the “real” switches. Following the established pattern of separate
control classes for capacitor banks, tap changers, and overcurrent protection, a new SwtControl
class was implemented. This allows switches to receive special handling in both algorithms and
graphical display, since the SwtControl information keeps a reference to the switched component
and terminal. The parameters include:

0

http://sourceforge.net/projects/electricdss/

3-2

• Name – The text identifier, so that SwtControl.Name is unique (inherited parameter).
• Enabled – Takes the controller in or out of the solution (inherited parameter).
• Like – Copies Action and Delay from another SwtControl (inherited parameter).
• SwitchedObj – The fully qualified name of the switched object, such as Line.Segment2.
• SwitchedTerm – The number of the switched terminal, typically 1 or 2.
• Action – Sets the switch open or closed. Since the SwtControl does not have automatic

operation on a time-current curve (TCC), this is not the same as Action for the overcurrent
protection controls, for which the Action parameter overrides the TCC operation.

• Locked – If set, no switch operations are allowed until the Lock is removed. This means that
Action parameter changes are ignored if the Lock is active.

• Delay – The time in seconds between setting the Action parameter and when the switch
actually opens or closes. This could be 1 second for automatic operation or 7200 seconds for
manual operation by a crew that has to be dispatched.

Standard COM Action Codes
Long integer IDs from the new CktElement interface can serve as device handles for the
CtrlQueue events. In addition, standard action codes are defined for these events, allowing any
controller to handle and interpret these events in a consistent way. The standard action codes
include:

• dssActionOpen, applies to SwtControl, CapControl, Relay, Recloser, Fuse
• dssActionClose, applies to SwtControl, CapControl, Relay, Recloser, Fuse
• dssActionReset, applies to any controller
• dssActionLock, applies to SwtControl
• dssActionUnlock, applies to SwtControl
• dssActionTapUp, applies to RegControl and possibly CapControl (that is, step up)
• dssActionTapDown, applies to RegControl and possibly CapControl (that is, step down)
• dssActionNone, applies to any control

EPRI may wish to assign different starting numbers to different “vendors” to avoid potential
conflicts. For example, an external controller might be operating a particular device, identified
by its handle. When inspecting the control queue, this external code might find other events
pertaining to that device handle. In that situation, we do not want different controllers using the
same action codes that mean different things. Vendor or Developer IDs could help address
this issue.

Sensors COM Interface
A complete read/write COM interface was added to support other state estimation projects. This
interface is also useful to ADA simulations that incorporate measurements and state estimation
algorithms. The sensor is typically defined where V, I, P, and/or Q are physically measured in a
circuit. The sensor accounts for PT ratio and connection, measurement error estimate, weighting,
and other parameters associated with state estimation. In some cases, the monitor is more
appropriate for modeling measurements in ADA.

0

3-3

Topology COM Interface
OpenDSS already had some functions to analyze circuit element connectivity, but these were not
exposed through the COM interface. To support reconfiguration and other switch control
applications, a new COM interface was defined. Internally, a tree-like structure of branches is
built on demand, based on the same process used to construct EnergyMeter zones. The COM
interface does not require that EnergyMeters be present in the OpenDSS model. However, the
use of EnergyMeters may offer better control over where the topology tree defines end points
and loop points. The OpenDSS user manual has more background on how meter zones are built.

The topology tree is rebuilt after switching operations or other model changes that might
invalidate the tree. In the OpenDSS executive, a new “show topology” command illustrates most
of the features described below for the loaded circuit model.

The topology properties are:

• NumLoops – Returns the number of loops in the circuit.
• NumIsolatedLoads – Returns the number of loads with no voltage.
• NumIsolatedBranches – Returns the number of branches (that is, power delivery elements,

including shunt capacitors) that are not connected.
• AllLoopedPairs – Returns a variant array of branch pair names that are connected to make a

loop. Each connection appears twice in the list, as “from-to” and again as “to-from”.
• AllIsolatedLoads – Returns a variant array of the load names that have no voltage.
• AllIsolatedBranches – Returns a variant array of the fully qualified branch names that are not

connected to the source.
• First – Sets the tree iterator to the first branch, which is always the main voltage source. Also

sets the active circuit element to that branch. Returns 1 if successful, 0 if no more branches.
• Next – Sets the next tree branch active, and sets the active circuit element to that branch.

Returns 1 if successful, 0 if no more branches.
• BranchName – A read/write property that either sets the active tree branch by fully qualified

name or gets the fully qualified name of the active branch. At present, this is the only means
of re-selecting a particular branch in the topology tree.

• BusName – A read/write property that either sets the active tree branch by the name of the
bus furthest from the source or gets the name of the active branch bus furthest from the
source.

• ActiveBranch – In this version, this read-only property returns ActiveLevel. In a future
version, this may become a read/write property that uses a numerical branch index for more
efficient repeat method calls.

• ActiveLevel – Returns the topological level of the active branch. This is the number of
branches away from the main voltage source, which is at level 0.

• FirstLoad – Sets the active circuit element to the first load connected at the topology
ActiveBranch. Returns 0 if no more.

• NextLoad – Sets the active circuit element to the next load connected at the topology
ActiveBranch. Returns 0 if no more.

0

3-4

• ForwardBranch – Sets the ActiveBranch to the next one in the tree. This branch may not
have a lower ActiveLevel; the level will decrease if the tree iterator is already at a branch
end. Returns 0 if no more.

• BackwardBranch – Sets the ActiveBranch to the parent branch in the tree. If successful, this
always moves back toward the source, and the ActiveLevel will decrease.

• LoopedBranch – Sets the active circuit element to one that is connected in a loop to the
currently active topology branch. Returns 0 if there is no loop connection here. This does not
change the topology tree’s ActiveBranch. Also, directly parallel branches are handled in a
separate method; LoopedBranch returns 0 when there is only a parallel branch.

• ParallelBranch – Sets the active circuit element to one directly connected in parallel to the
currently active topology branch. Returns 0 if there is no directly parallel branch here. This
does not change the topology tree’s ActiveBranch.

The topology processing code in OpenDSS was made more efficient for this project. In the
future, the COM interface can be further improved with numerical indexing of the tree branches.
Numerical tree indexing can also be used in future support of multiple loops and multiple
parallel branches at the same connection point.

CktElement COM Interface
The following properties were added to the CktElement interface. The first three were added to
support CIM and geographic information system (GIS) integration. The last four were added to
support ADA simulation.

• DisplayName – The new non-unique display name (read/write)
• ID – The new long integer ID (read only)
• GUID – The new GUID (read only)
• EnergyMeter – The meter (that is, feeder) that this element has been assigned to (read only)
• Controller – The fully qualified name of the CapControl, RegControl, or SwtControl as

appropriate
• HasVoltControl – True if a CapControl or RegControl manages this element
• HasSwtControl – True if a SwtControl manages this element

Meters COM Interface
The following read-only properties were added to the Meters interface. They provide some
functionality of the new Topology interface by individual EnergyMeter.

• CountEndElements – Returns the number of open end points in the active meter zone.
• AllEndElements – Returns a collection of CktElement names at the open ends, that is,

elements that have no children in a tree view of the meter zone. This can be used to identify
points where low voltage might occur.

• CountBranches – Returns the total number of (power delivery) branches in the active
meter zone.

• AllBranchesInZone – Returns a collection of branch names in the active meter zone.

0

3-5

COM Interfaces to Existing Controller Classes
Some of the circuit element classes already had their own custom COM interfaces, in addition to
CktElement. This included Lines and Generators, with Loads under development. In addition,
there were custom COM interfaces for Buses, Meters, and Monitors. This list expands as
OpenDSS continues development. For the ADA simulation examples in this project, the
following custom COM interfaces were needed and implemented immediately:

• CapControl, along with a Capacitor interface for its controlled element
• Capacitors, allowing convenient reading and setting of kVAR sizes for ADA
• RegControl, along with a Transformer interface for its controlled element
• Transformers, allowing convenient reading and setting of taps for ADA

The related SwtControl interface was new, and described earlier. All of these can be accessed
through the Circuit interface.

DSS Events COM Interface
OpenDSS provides two different ways for an external program or script to interact with time step
and control step solutions. Figure 3-1 shows the general structure of a time step solution within
OpenDSS. First, the voltages and currents are solved (“solve circuit”), and then all of the
controls are checked for any changes (“check controls” and then “control actions done?”). The
solution converges when all of the control responses have settled out in addition to a converged
solution for voltage and currents. The solution then proceeds to the next time step. A static
solution also works as depicted in Figure 3-1; time steps are taken until all control responses
have settled, even though the reported solution time does not change.

Through a COM Solution interface, OpenDSS allows an external program or script to control
each step in the solution loop through individual COM interface calls. The blue labels in Figure
3-1 illustrate that method. The external code takes responsibility for proper sequencing of the
steps, and there is no way for two different scripts to manage OpenDSS at the same time.

In this project, a second method of interaction has been implemented using a COM event source,
called DSSEvents. Three call-back function stubs have been defined, indicated with red labels in
Figure 3-1.

• InitControls – Called when OpenDSS is ready to begin a new solution. External code should
use this opportunity to initialize internal state variables, allocate or connect to other
resources, make initial settings, etc.

• CheckControls – Called when OpenDSS has finished iteration for voltage and current, but
before it has checked internal controls (currently CapControl, RegControl, and SwtControl).
External code should examine solved voltages and currents, decide on making any control
changes, and implement them into the system model through other COM interfaces.

• StepControls – Called when OpenDSS has converged for controls, voltage, and current at the
present time step. External code should update internal state variables, log results, and take
other actions necessary to prepare for the next solution time.

0

3-6

This kind of program interface has been implemented via “callback functions” on earlier
software development platforms. With COM, a program uses DSSEvents by implementing an
event sink and subscribing to events from the DSSEvents interface. The next section of this
report provides an example in Excel VBA.

There are two main advantages of the DSSEvents interface:

• OpenDSS remains in control of the solution loop. The external code has to manage less
detail, so there should be a lower learning curve, less risk of error, and less risk of breaking
changes in OpenDSS.

• Any number of COM programs may subscribe to DSSEvents. That means that different
controllers, possibly even from different software developers, can work together in the same
simulation.

The same pattern can be used for third-party power delivery or power conversion elements
interfaced to OpenDSS using COM events. To fully realize these advantages, OpenDSS would
need more functionality to find, register, and load the event sinks. Furthermore, these event-sink
models should be callable from the standalone executable version of OpenDSS, which presently
has no COM interface at all. These points should be considered in a possible re-partitioning of
OpenDSS to support non-Windows platforms, console-mode version, service or daemon version,
32-bit and 64-bit operating systems, etc.

Figure 3-1
OpenDSS Solution Loop with DSSEvents and Solution Interfaces

Initialize Loop

Solve Circuit

Check Controls

Control Actions Done?

Next Time Step

NO YES

If you set Number=1,
you can break in here

You can single-step
through this loop

InitControls

CheckControls

StepControls

Legend
• OpenDSS
• COM Solution Interface
• COM DSSEvents Interface

0

4-1

4
EXAMPLES
This section describes the implementation of ADA simulation for three examples. All
simulations were controlled from Microsoft Excel, using the OpenDSS COM interface called
from Visual Basic for Applications (VBA). Each example includes VBA code annotations that
focus on the new material. In order to follow and understand these annotations, the reader should
be familiar with available OpenDSS training materials on COM scripting [1]. Familiarity with
the Excel object model is also important; please consult the Microsoft on-line help or one of the
trade books on VBA programming or macro programming in Excel.

Most of the ADA examples use a “Preamble” function like the one following. Annotations are
provided in bold italics for this report; they are not comments in the VBA code.
Private Sub Preamble()
 gPath = Range("DataPath") Read the model file and path names from Excel sheet
 gBase = Range("BaseFile")

 Set eng = CreateObject("OpenDSSEngine.DSS") Starts OpenDSS
 eng.start (0)
 Set txt = eng.Text Load base file name using the Text interface of OpenDSS
 txt.Command = "clear"
 txt.Command = "compile " & gPath & gBase

 Set ckt = eng.ActiveCircuit Circuit interface
 Set swt = ckt.SwtControls new SwtControl interface on the active circuit
 Set cap = ckt.CapControls CapControl interface
 Set reg = ckt.RegControls RegControl interface
 Set mon = ckt.Monitors Monitors interface
 Set mtr = ckt.Meters (Energy)Meters interface
 Set topo = ckt.Topology new Topology interface
End Sub

Reconfiguration Example
This example uses the Topology and SwtControl interfaces on Civanlar’s Figure 2-1 circuit. The
base model is contained in Civanlar.DSS, with VBA code in DSS_Reports.XLS. Figure 4-1
shows test outputs from exercising the following VBA code on the base configuration. It is the
first half of a function called “SwitchingSummary,” which is called as an Excel macro.
Public Sub SwitchingSummary()
 Dim i, r As Integer
 Dim V1, V2 As Double
 Dim an As Variant, s As String

 Preamble Loads OpenDSS and the Civanlar.DSS circuit, sets up ckt object

 Set ws = ActiveWorkbook.Worksheets("Switching")

 ckt.Solution.Solve Base case solution as defined in Civanlar.DSS

 i = swt.First Start a loop over all SwtControls in the circuit
 r = 2
 While i > 0
 ws.Cells(r, 1) = swt.name write SwtControl name and status to the sheet
 ws.Cells(r, 2) = swt.SwitchedObj
 ws.Cells(r, 3) = swt.SwitchedTerm
 ws.Cells(r, 4) = swt.IsLocked
 ws.Cells(r, 5) = swt.Action

0

4-2

 ws.Cells(r, 6) = "" blank out the three voltage output columns
 ws.Cells(r, 7) = ""
 ws.Cells(r, 8) = ""
 Set elem = ckt.CktElements(swt.SwitchedObj) looks up the switched element by name
 If swt.Action = dssActionOpen Then if the switch is actually open
 V1 = elem.SeqVoltages(1) get positive sequence voltage at each end
 V2 = elem.SeqVoltages(4)
 ws.Cells(r, 6) = CStr(V1) write each switch-end voltage to the sheet
 ws.Cells(r, 7) = CStr(V2)
 On Error Resume Next ' skip NaN if one bus is isolated, DSS returns “not a number”
 ws.Cells(r, 8) = CStr(Abs(V1 - V2)) voltage difference across switch
 End If

 i = swt.Next move to next SwtControl, increment sheet row number
 r = r + 1
 Wend

Figure 4-1 lists three switches open as they are in the base case. Switch 10_14 has the largest
voltage difference magnitude and is the first candidate for branch exchange.

Figure 4-1
SwtControl Interface Test Outputs

Figure 4-2 presents output from a simple test of the new Topology interface. The code for this
test follows; it is the second half of “SwitchingSummary.” Isolated loads can be created by
opening switches, and loops can be created by closing switches. After making such changes to
the base model, you can run the macro again to see output for loops and isolated loads in Figure
4-2. The last segment of this listing shows the possible benefit of numerical indexing. When
finding the forward and backward branches, it is necessary to reset the active branch by name
instead of a number or handle. Internally, that involves a linear search of the tree by OpenDSS.

In Figure 4-2, the forward trace listing is in the same order as the numerical index. In following a
forward trace, it is possible to tell when a zone end point has been reached because the next
branch will have a lower or equal topological level. The backward trace listing always moves
one level back toward the main voltage source, which itself has no backward branch. In this
example, every branch has a SwtControl except the artificial bus-splitting branches f1, f2, and f3.

SwtControl Element Terminal Lock State V1 V2 Vdiff
1_4 line.1_4 1 FALSE 2
4_5 line.4_5 1 FALSE 2
4_6 line.4_6 1 FALSE 2
6_7 line.6_7 1 FALSE 2
2_8 line.2_8 1 FALSE 2
8_9 line.8_9 1 FALSE 2
8_10 line.8_10 1 FALSE 2
9_11 line.9_11 1 FALSE 2
9_12 line.9_12 1 FALSE 2
3_13 line.3_13 1 FALSE 2
13_14 line.13_14 1 FALSE 2
13_15 line.13_15 1 FALSE 2
15_16 line.15_16 1 FALSE 2
5_11 line.5_11 1 FALSE 1 13100.4 12881.1 219.3
10_14 line.10_14 1 FALSE 1 12960.2 13193.0 232.8
7_16 line.7_16 1 FALSE 1 13062.6 13145.9 83.4

0

4-3

 r = topo.NumLoops write number of loops to the sheet
 ws.Cells(2, 19) = CStr(r)
 If r > 0 Then for all loops in the topology, write branch names
 an = topo.AllLoopedPairs an is a variant array of strings (names)
 For i = 1 To r
 s = an(2 * i - 2) first name in a pair is “from”, write on row 2
 ws.Cells(2, 19 + i) = s
 s = an(2 * i - 1) second name in a pair is “to”, write on row 3
 ws.Cells(3, 19 + i) = s
 Next i
 End If

 r = topo.NumIsolatedLoads write number of isolated loads
 ws.Cells(4, 19) = CStr(r)
 If r > 0 Then if any isolated loads actually exist
 an = topo.AllIsolatedLoads “an” is now a variant array of load names
 For i = 1 To r
 s = an(i - 1) write each load name to the sheet
 ws.Cells(4, 19 + i) = s
 Next i
 End If

 r = topo.NumIsolatedBranches number of isolated PD branches written to sheet
 ws.Cells(5, 19) = CStr(r)
 If r > 0 Then if any isolated PD branches actually exist
 an = topo.AllIsolatedBranches “an” is now a variant array of branch names
 For i = 1 To r
 s = an(i - 1) write each branch name to the sheet
 ws.Cells(5, 19 + i) = s
 Next i
 End If

 i = topo.First start at the tree’s root, to illustrate various traces
 r = 8 tabular output starts on row 8, below the loop/isolated summary
 While i > 0
 Set elem = ckt.ActiveCktElement ckt element corresponding to topo active branch
 ws.Cells(r, 18) = topo.BranchName write the branch name and level to the sheet
 ws.Cells(r, 19) = CStr(topo.ActiveLevel)
 ws.Cells(r, 25) = CStr(elem.HasSwitchControl) tells us if this can be ADA switched

 If topo.LoopedBranch = 1 Then if looped here, write the looped branch name
 ws.Cells(r, 23) = elem.DisplayName
 Else
 ws.Cells(r, 23) = ""
 End If
 If topo.ParallelBranch = 1 Then if paralleled here, write the directly parallel name
 ws.Cells(r, 24) = elem.DisplayName
 Else
 ws.Cells(r, 24) = ""
 End If

 If topo.FirstLoad > 0 Then ws.Cells(r, 22) = elem.DisplayName name of first load here

 i = topo.Next
 r = r + 1
 Wend

 ' go back and set each topo node by name, find the forward and backward items
 r = r - 1
 For i = 8 To r loop over the topo rows just written
 s = ws.Cells(i, 18) read the branch name from sheet
 ws.Cells(i, 20) = ""
 ws.Cells(i, 21) = ""
 topo.BranchName = s set the topo active branch by name
 If topo.ForwardBranch > 0 Then ws.Cells(i, 20) = topo.BranchName forward branch?
 topo.BranchName = s step back to the active branch for this row
 If topo.BackwardBranch > 0 Then ws.Cells(i, 21) = topo.BranchName backward branch?
 Next i
End Sub

0

4-4

Figure 4-2
Topology Interface Test Outputs

Figure 4-3 presents output from the branch exchange algorithm, implemented for loss
minimization. The algorithm finds the open switch with the greatest magnitude of voltage
difference across the open contacts. Then, starting from the side with lowest voltage, it looks for
the next closed switch in a path back to the source. It is assumed that swapping the closed/open
state of the switch pair should tend to equalize the voltage difference across the open switches
and, thereby, tend to reduce losses. If all the open switches had zero volts across them, the
system losses should be the same as if completely meshed, which is known to be the minimum-
loss configuration.

In Civanlar et al. [3], refinements are described that involve summing resistance values over the
candidate switching paths. This refinement could be implemented using the Forward and
Backward methods of the Topology interface, identifying which traced elements are actually
lines and then accumulating R1 attribute values.

The exchange algorithm is “greedy” and will always try to make a switch exchange. The main
stopping criterion is when the losses increase after an exchange, meaning that the algorithm has
found and passed through a local minimum. The exchange method should never create a loop or
isolate a load. If either occurs, the loop halts under what might be considered an error condition.

In Figure 4-3, note the minimum loss condition was found at iteration 3, with the three switches
to open as listed. To prepare a switching plan, the exchanged pair could have been written for
each step. The system stayed in a radial configuration, and no branches were isolated in each

Topology Test
N loops 0.00

Iso loads 0.00
Iso branch 3.00 Line.5_11 Line.10_14 Line.7_16

Active Level Forward Backward First Load Loop Parallel Switch?
Vsource.source 0 Line.f3 FALSE
Line.f3 1 Line.3_13 Vsource.source FALSE
Line.3_13 2 Line.13_15 Line.f3 Load_13 TRUE
Line.13_15 3 Line.15_16 Line.3_13 Load_15 TRUE
Line.15_16 4 Line.13_14 Line.13_15 Load_16 TRUE
Line.13_14 3 Line.f2 Line.3_13 Load_14 TRUE
Line.f2 1 Line.2_8 Vsource.source Load_6 FALSE
Line.2_8 2 Line.8_10 Line.f2 Load_8 TRUE
Line.8_10 3 Line.8_9 Line.2_8 Load_10 TRUE
Line.8_9 3 Line.9_12 Line.2_8 Load_9 TRUE
Line.9_12 4 Line.9_11 Line.8_9 Load_12 TRUE
Line.9_11 4 Line.f1 Line.8_9 Load_11 TRUE
Line.f1 1 Line.1_4 Vsource.source Load_8 FALSE
Line.1_4 2 Line.4_6 Line.f1 Load_4 TRUE
Line.4_6 3 Line.6_7 Line.1_4 Load_6 TRUE
Line.6_7 4 Line.4_5 Line.4_6 Load_7 TRUE
Line.4_5 3 Line.1_4 Load_5 TRUE

0

4-5

step. This basic algorithm can be improved in many ways; these improvements are the subject of
many graduate student theses in power systems. This example serves as a starting point for using
OpenDSS in academic projects, with access to realistic feeder models already built for the
simulator.
Public Sub BranchExchange()
 Dim iter, c, r, i, k As Integer
 Dim done As Boolean
 Dim Vdiff, Vmax As Double
 Dim LastLoss, ThisLoss As Double
 Dim ToClose, ToOpen, LowBus As String

 Preamble
 Set ws = ActiveWorkbook.Worksheets("Switching")

 iter = 1 this is the number of branch exchange trials, limited to 10
 done = False
 LastLoss = 1E+99
 While Not done
 r = iter + 1
 ws.Cells(r, 10) = iter
 ckt.Solution.Solve solve the current system
 ThisLoss = ckt.Losses(0)
 ws.Cells(r, 11) = ThisLoss write current losses, # loops, # isolated loads to sheet
 ws.Cells(r, 12) = CStr(ckt.Topology.NumLoops) & " _ " & _
 CStr(ckt.Topology.NumIsolatedLoads)

 Vmax = 0# track the maximum voltage difference across any open switch
 ToClose = ""
 ToOpen = ""
 LowBus = ""
 c = 14 column number for output
 i = swt.First check all SwtControls
 While i > 0 ' find the open switch with biggest delta-V
 If swt.Action = dssActionOpen Then check only open switches
 ws.Cells(r, c) = swt.name
 Set elem = ckt.CktElements(swt.SwitchedObj)
 Vdiff = Abs(elem.SeqVoltages(1) - elem.SeqVoltages(4)) V1 across switch
 If Vdiff > Vmax Then if highest V1 difference so far…
 LowBus = FindLowBus which side of open switch has lowest V?
 topo.BusName = LowBus start from that bus in the topology
 Set elem = ckt.ActiveCktElement
 k = 1
 While (Not elem.HasSwitchControl) And (k > 0) trace back from low bus to src
 k = topo.BackwardBranch until we find a closed switch
 Wend
 If elem.HasSwitchControl Then if we found a switch to close…
 Vmax = Vdiff keep this as the highest voltage difference found
 ToClose = swt.name we will close this currently-open switch
 ToOpen = Mid(elem.Controller, 12) and open the switch from back-trace
 End If
 End If
 c = c + 1
 End If
 i = swt.Next
 Wend
 ws.Cells(r, 13) = CStr(Vmax)

 done = True ' unless we found a switch pair to exchange
 If Len(ToOpen) > 0 And Len(ToClose) > 0 Then found a switch pair to exchange
 swt.name = ToClose do the switch close-open via SwtControl interface
 swt.Action = dssActionClose
 swt.name = ToOpen
 swt.Action = dssActionOpen
 done = False ' try again i.e., run solution again and look for the next exchange
 End If

0

4-6

iter = r
 ' stop if too many iterations, system is non-radial, or losses go up
 If iter > 10 Or ckt.Topology.NumIsolatedLoads > 0 Or ThisLoss > LastLoss Then
 done = True met one of the three stopping criteria
 End If
 LastLoss = ThisLoss best loss total found so far
 Wend
End Sub

This function is called from the loop above
“elem” is a CktElement already set to the open branch, from the loop calling FindLowBus
Private Function FindLowBus() As String
 Dim i As Integer
 Dim v As Double

 FindLowBus = ""
 v = 9.9E+100
 For i = 0 To elem.NumTerminals – 1 loop over all element terminals
 If elem.BusNames(i) <> "0" Then
 Set b = ckt.Buses(elem.BusNames(i)) look up the Bus connected to terminal
 If b.SeqVoltages(1) < v Then track the lowest bus positive sequence voltage
 v = b.SeqVoltages(1)
 FindLowBus = elem.BusNames(i) return name of bus with lowest V1
 End If
 End If
 Next i
End Function

Figure 4-3
Branch Exchange Iterations Using the Topology Interface

Substation Volt/VAR Example
This example illustrates the RegControl and DSSEvents interfaces, using the circuit shown in
Figure 2-2. The base model is in Regulator.dss, a load duration curve in LDC_2007.dat, and
VBA code in Events.xlsm. The base model includes a CapControl to manage the substation
capacitor bank under reactive power control. The VBA code reads and sets the RegControl R and
X from a worksheet and does not change them. Those elements are not covered in detail here.

The VBA event handling code, which is the main focus of this example, follows. First, one of the
main VBA code modules, called Module1 by default, must have a global declaration of the event
handling class and initialize after starting the DSS engine. The following code lines (not shown
in context) handle these steps. These are the only steps needed to “hook up” the event handler to
OpenDSS.
Dim Evt As New DSSEventHandler

Set eng = CreateObject("OpenDSSEngine.DSS")
eng.start (0)
Set Evt.Evt = eng.Events note: Evt subscribes to eng.Events, not the other way around

A second VBA “class module,” called DSSEventHandler, must also appear in the VBA project.
In the development sequence, this class module must actually be written before it is referenced.
The first line of the class module code must be written as shown, using the keywords

Iteration Losses Loops/Iso Max Vdiff Open Switches
1 488945.67 0 _ 0 232.77 5_11 10_14 7_16
2 464241.59 0 _ 0 191.21 8_10 5_11 7_16
3 447937.91 0 _ 0 188.76 8_10 9_11 7_16
4 657613.59 0 _ 0 475.18 8_9 8_10 7_16

0

4-7

“WithEvents” and “As DSSEvents.” Once that has been done, the combo boxes in Excel’s VBA
editor will be able to insert code templates for the three event-handling procedures. In this
example, helper functions WriteTrace, WriteOutput, and SetControls do the actual work.
iControl is a flag set from the main VBA code to enable or disable the controller. In
Evt_InitControls, it is important to set the Circuit interface or any other helper variables. When
the main VBA code invokes ckt.Solution.Solve, the OpenDSS solution loop will call
Evt_InitControls before the call to ckt.Solution.Solve returns. In the Preamble code for all these
examples, the ckt interface variable is not set until ckt.Solution.Solve returns. Therefore, it needs
to be set in the InitControls handler as well.

Basically, the controls should be set whenever Evt_InitControls or Evt_CheckControls is called
from OpenDSS. Save some output for plotting whenever Evt_StepControls is called, since the
solution has converged. If iTrace is positive, also log each call to the event handlers.
Public WithEvents Evt As DSSEvents

Private Sub Evt_CheckControls()
 WriteTrace ("Check")
 If iControl > 0 Then Call SetControls
End Sub

Private Sub Evt_InitControls()
 Set ckt = eng.ActiveCircuit is typically called before ckt.Solution.Solve returns
 WriteTrace ("Init")
 If iControl > 0 Then Call SetControls
 Call WriteOutput
End Sub

Private Sub Evt_StepControls()
 WriteTrace ("Step")
 Call WriteOutput
End Sub

The above code provides the complete template for a class handling DSSEvents. The actual work
for this example is done in three helper functions.

In WriteTrace, a debug log of event type, solution time, and solution mode is written onto a
worksheet accessed through the wsTrace variable. The variable iTrace serves as a flag and row
index for the log. Examination of this log shows that the first solution at light load, about 30
MW, required 12 control iterations. The capacitor bank ratchets down one step at a time,
according to its reactive power control. The next solution, at about 99 MW, required four control
iterations. The remaining solutions required only one control iteration, except for one solution
that used two control iterations.
Private Sub WriteTrace(Label As String)
 If iTrace > 0 Then this merely writes a debugging trace output onto one of the worksheets
 wsTrace.Cells(iTrace, 1) = Label
 wsTrace.Cells(iTrace, 2) = CStr(ckt.Solution.dblHour)
 wsTrace.Cells(iTrace, 3) = CStr(ckt.Solution.Mode)
 iTrace = iTrace + 1
 End If
End Sub

WriteOutput places numerical values onto a separate sheet for plotting. The variable iPlot serves
as a flag and row index for these outputs. Only the first capacitor, line, and transformer are
important because the circuit is very simple. The ForwardVreg output is especially important in
order to verify that the controller sets the regulator in each time step to match the actual load.

0

4-8

Private Sub WriteOutput()
 Dim elem As CktElement, i As Integer
 If iPlot > 0 Then this writes numerical output onto a sheet for plotting
 wsPlot.Cells(iPlot, 1) = CStr(ckt.Solution.dblHour)
 i = ckt.Capacitors.First first capacitor is the substation bank
 Set elem = ckt.ActiveCktElement
 wsPlot.Cells(iPlot, 2) = CStr(0.001 * elem.SeqPowers(3)) ' Q cap
 i = ckt.Lines.First first line is the primary feeder equivalent
 Set elem = ckt.ActiveCktElement
 wsPlot.Cells(iPlot, 3) = CStr(0.001 * elem.SeqPowers(2)) ' P feeder
 wsPlot.Cells(iPlot, 4) = CStr(0.001 * elem.SeqPowers(3)) ' Q feeder
 i = ckt.Transformers.First first transformer is the substation equivalent
 wsPlot.Cells(iPlot, 5) = CStr(ckt.Transformers.Tap) ' Tap
 i = ckt.RegControls.First only one RegControl in this example
 wsPlot.Cells(iPlot, 6) = CStr(ckt.RegControls.ForwardVreg) ' Vset
 i = ckt.Loads.First only one Load in this example
 Set elem = ckt.ActiveCktElement
 wsPlot.Cells(iPlot, 7) = CStr(elem.SeqVoltages(1)) ' Vload
 wsPlot.Cells(iPlot, 8) = CStr(0.001 * elem.SeqPowers(2)) ' Pload
 wsPlot.Cells(iPlot, 9) = CStr(0.001 * elem.SeqPowers(3)) ' Qload
 iPlot = iPlot + 1 increment the row counter
 End If
End Sub

The SetControls function will be called at the beginning of the time step loop and after each
voltage and current solution has converged. The control quantity is the power into the 13.8-kV
substation bus. In SetControls, this is the magnitude of positive sequence power in terminal 2 of
the substation transformer. Since power flows out of this terminal, SeqPowers(8) is negative, and
the absolute value is taken. In WriteOutputs above, the same value is obtained from positive
sequence power in terminal 1 of the feeder line. A sequence of If statements implements the
lookup table as displayed in Figure 2-2, and the looked-up value is finally applied to the first
RegControl.

Within OpenDSS, that assignment to ForwardVreg occurs before the internal control check is
done. If the new ForwardVreg value causes a tap change, then OpenDSS does a new control
iteration. If there is no tap change, possibly because ForwardVreg has the same value as before,
then this RegControl will not force another control iteration. However, the CapControl could
independently force a control iteration, as happened many times in the initial solution.
Private Sub SetControls()
 Dim elem As CktElement, i As Integer, p As Double, vset As Double
 i = ckt.Transformers.First the first transformer is in the substation
 ' ckt.Transformers.name = "sub" another way of selecting the transformer by name
 Set elem = ckt.ActiveCktElement
 p = Abs(elem.SeqPowers(8) * 0.001) positive sequence power [MW] through terminal 2
 vset = 110.83 implement a lookup table for Vset vs. P
 If p > 50# Then vset = 111.67
 If p > 100# Then vset = 112.5
 If p > 150# Then vset = 113.33
 If p > 200# Then vset = 114.17
 If p > 250# Then vset = 115#
 If p > 300# Then vset = 115.83
 i = ckt.RegControls.First select the first RegControl, and update ForwardVreg
 ckt.RegControls.ForwardVreg = vset
End Sub

0

4-9

As implemented, this example does not use the CtrlQueue COM interface, which effectively
means that its ForwardVreg assignments preempt any other control action. However, the inherent
RegControl time delay still applies, so it coordinates properly with the CapControl. There could
be other applications where CtrlQueue is necessary for time coordination.

Figure 4-4 shows the regulator set point versus feeder power over the simulated load duration
curve. The voltage setting properly tracks the lookup table. A tap change may occur either
because the voltage setting changed or by action of the line drop compensator R and X settings.
Figure 4-5 shows that one or three taps are actually used at each set point.

Figure 4-4
Regulator Set Point vs. Feeder Power

110.50
111.00
111.50
112.00
112.50
113.00
113.50
114.00
114.50
115.00
115.50

0.0 50.0 100.0 150.0 200.0 250.0 300.0

Vset vs. Pfeeder

0

4-10

Figure 4-5
Tap vs. Regulator Set Point

Figure 4-6 shows the substation capacitor bank’s reactive power versus feeder power. For a load
power factor of 0.88, the CapControl switches 200 MVAR in 10 steps to approximately
compensate the load, using the reactive power control mode. There is some linear variation of Q
vs. P, due to changes in bus voltage at the substation.

Figure 4-6
Substation Capacitor MVAR vs. Feeder Power

Figure 4-7 shows the load voltage versus feeder power on a 120-volt base. There is a different
linear segment for each tap change and a slope due to voltage drop along the feeder impedance.

0.9500

0.9600

0.9700

0.9800

0.9900

1.0000

1.0100

1.0200

1.0300

110.00 111.00 112.00 113.00 114.00 115.00 116.00

Tap vs. Vset

-250.00

-200.00

-150.00

-100.00

-50.00

0.00

0.0 50.0 100.0 150.0 200.0 250.0 300.0

Qcap vs. Pfeeder

0

4-11

Figure 4-7
Load Voltage vs. Feeder Power

Feeder Volt/VAR Example
This example uses the two-feeder system in Figure 2-3 to illustrate the CapControl, RegControl,
and Monitor interfaces. The base model is in Southern_Co.dss, which includes other files, and
the VBA code is in DSS_Reports.xls. The function VoltVarSummary is listed below. It simulates
regulator voltage reduction by remote control. At least two regulator vendors offer this feature.
Typically, there are three settings that may be programmed from 0% to 10% voltage reduction.
The settings are activated by local control from a panel or by pulse signals to terminals on the
regulator.

Figure 4-8 shows the resulting CapControl list. The two banks with the “use” flag set to 1,
c45102 and 45103, have SCADA control. The other three banks have local control only. Figure
4-9 shows the resulting RegControl list; only those with “Volt Red” set to 1 participate in the
automatic voltage reduction. Figure 4-10 summarizes the total power, losses, and voltage range
for a snapshot load flow. With no voltage reduction (that is, all regulators fixed at 125 volts), the
load increases to 6565.39 kW with 3.94% losses and nearly the same voltage range. Therefore,
this voltage reduction has reduced the load by 2.9%. Actual response will depend on the load
conservation voltage reduction (CVR) factors. The various helper functions called from
VoltVarSummary are documented below.

114.000

114.500

115.000

115.500

116.000

116.500

117.000

0.0 50.0 100.0 150.0 200.0 250.0 300.0

Vload vs. Pfeeder

0

4-12

Public Sub VoltVarSummary()
 Dim i, r As Integer
 Dim Vmin As Double, Vmax As Double, Pload As Double

 Preamble start DSS engine and load the base system model, set interface variables

 Set ws = ActiveWorkbook.Worksheets("VoltVar")

 ' set the solution options from the spreadsheet
 ckt.Solution.LoadMult = CDbl(ws.Cells(8, 18)) adjustable load scaling
 SetVoltageReduction selected RegControls placed on voltage reduction

 ckt.Solution.Solve re-solve the circuit with voltage reduction

 i = cap.First list all CapControl bank sizes and control modes
 r = 2
 While i > 0
 ws.Cells(r, 1) = cap.name
 ckt.Capacitors.name = cap.Capacitor
 ws.Cells(r, 2) = ckt.Capacitors.kvar
 ws.Cells(r, 3) = cap.Mode

 i = cap.Next
 r = r + 1
 Wend

 i = reg.First list all RegControl set points
 r = 2
 While i > 0
 ws.Cells(r, 6) = reg.name
 ws.Cells(r, 7) = reg.ForwardVreg
 i = reg.Next
 r = r + 1
 Wend

 i = mon.First list all Monitors; these implement line post sensors
 r = 2
 While i > 0
 ws.Cells(r, 10) = mon.name
 ws.Cells(r, 11) = mon.Mode
 i = mon.Next
 r = r + 1
 Wend

 i = mtr.First list all EnergyMeters
 r = 2
 While i > 0
 ws.Cells(r, 14) = mtr.name
 i = mtr.Next
 r = r + 1
 Wend

 Pload = GetLoadPower
 ws.Cells(1, 18) = Format(0.001 * ckt.Losses(0), "0.000")
 ws.Cells(2, 18) = Format(0.001 * ckt.Losses(1), "0.000")
 Call GetExtremeVoltages(Vmin, Vmax)
 ws.Cells(3, 18) = Format(Vmin, "0.0000")
 ws.Cells(4, 18) = Format(Vmax, "0.0000")
 ws.Cells(5, 18) = Format(Pload, "0.000")

 mon.SampleAll
 mon.SaveAll
 ShowMonitors 11, 17
End Sub

0

4-13

Figure 4-8
Feeder Capacitor Banks for Volt/VAR Control

Figure 4-9
Regulators and Autoboosters for Volt/VAR Control

Figure 4-10
Losses and Voltage Limits with Volt/Var Control

The SetVoltageReduction function reads new regulator set points from the worksheet. If the
“Use” flag has been set to 1, those values are written to the RegControl objects.

CapControl CapSize Mode Use
c81 600 1 0

c45102 600 1 1
c80 300 1 0
c79 600 1 0

45103 900 1 1

RegControl Vreg Volt Red
85b 118.0 1
85c 118.0 1
85a 118.0 1
r88a 125.0 0
r88c 125.0 0
r88b 125.0 0
156b 125.0 0
156a 125.0 0
156c 125.0 0

w155c 125.0 0
w155a 125.0 0
w155b 125.0 0

Base Loss P [kW] 257.981
Base Loss Q [kVAR] 601.51
Base Vmin 0.9112
Base Vmax 1.1218
Base Load P [kW] 6374.60
Loss % of Total 3.89%
Reduce Voltage 118.00
Load Multiplier 0.30

0

4-14

Private Sub SetVoltageReduction()
 Dim Vnew As Double
 Dim r As Integer, use As Integer, name As String

 Vnew = CDbl(ws.Cells(7, 18)) reads the AVR set-point from highlighted cell in Fig 4-10
 r = 2
 name = ws.Cells(r, 6)
 While Len(name) > 0 read down the RegControl list in Fig 4-9
 use = CInt(ws.Cells(r, 8))
 If use > 0 Then if this RegControl uses AVR, change its ForwardVreg value
 reg.name = name
 reg.ForwardVreg = Vnew
 End If

 r = r + 1
 name = ws.Cells(r, 6)
 Wend

End Sub

The GetLoadPower function enumerates over all power conversion elements in the circuit and
accumulates their power values. The load terminal powers come through the COM interface as a
variant array, alternating P and Q values. Because this model has a mixture of single-phase and
three-phase loads, the variant array size is not known in advance. If the model includes
generators, this function should be modified to either exclude them or output the total generated
power separately.
Private Function GetLoadPower() As Double
 Dim i As Integer, j As Integer, n As Integer, ap As Variant
 Dim p As Double

 p = 0# accumulate power in this variable
 i = ckt.FirstPCElement
 While i > 0 loop over all power conversion elements
 ap = ckt.ActiveCktElement.Powers ap is a variant array of doubles
 n = ckt.ActiveCktElement.NumPhases
 For j = 0 To n
 p = p + ap(2 * j) select real power from even indices; reactive power in odd indices
 Next j
 i = ckt.NextPCElement
 Wend
 GetLoadPower = p
End Function

The GetExtremeVoltages function enumerates over all buses in the circuit, obtaining a variant
array of their terminal voltages. This variant array alternates real and imaginary parts of the
terminal voltages, and the array size depends on the number of phases actually present at the bus.
This function returns two values, Vmin and Vmax, as a VBA subroutine. These values can serve
as constraints on simulated voltage reduction.

0

4-15

Private Sub GetExtremeVoltages(Vmin As Double, Vmax As Double)
 Dim i As Integer, ni As Integer, j As Integer, nj As Integer
 Dim v As Double, vr As Double, vi As Double, av As Variant

 Vmin = 1E+99 retain Vmin and Vmax over all bus terminals
 Vmax = 0#
 ni = ckt.NumBuses - 1
 For i = 0 To ni
 Set b = ckt.Buses(i) a Bus has ready access to puVoltages
 nj = b.NumNodes - 1
 av = b.puVoltages
 For j = 0 To nj loop over all Bus nodes (terminals)
 vr = av(2 * j) real part of voltage from even indices
 vi = av(2 * j + 1) imaginary part of voltage from odd indices
 v = Sqr(vr * vr + vi * vi) magnitude of this node voltage
 If v < Vmin And v > 0# Then Vmin = v track Vmin and Vmax over all nodes
 If v > Vmax Then Vmax = v
 Next j
 Next i
End Sub

The ShowMonitors function enumerates over Monitors in the circuit, and outputs their solved
values. In this example, each line post sensor encapsulates two Monitors in the model. One
measures P and Q by phase, while the other measures V and I by phase. The Monitor name
consists of the line post sensor name, followed by _s for a PQ monitor or _vi for a VI monitor.
OpenDSS provides Monitor data in binary form, which VBA can handle with Variant and Byte
variables.

A Windows kernel function called RtlMoveMemory copies binary data from COM into the VBA
variables. This function must be declared as follows, before using it in VBA.
Private Declare Sub CopyMemory Lib "KERNEL32" Alias "RtlMoveMemory" (hpvDest As Any, _
 hpvSource As Any, ByVal cbCopy As Long)

The ShowMonitors function code is a recipe for extracting binary Monitor data in VBA. Figure
4-11 shows the resulting list of Monitor names and values. This function provides one way of
extracting sensor values for use in ADA simulations, when the sensors are represented with
Monitors in OpenDSS.
Private Sub ShowMonitors(row As Integer, col As Integer)
 Dim i As Integer, j As Integer, count As Integer, k As Integer
 Dim str As Variant, ba() As Byte
 Dim mSig As Long, mVer As Long, mRec As Long, mMode As Long, mCond As Long
 Dim mHour As Single, mSec As Single
 Dim mRe As Single, mIm As Single
 Dim idx As Long, samp As Long, baLen As Long, reqLen As Long

 i = mon.First
 While i > 0 loop over all monitors
 ws.Cells(row, col) = mon.name

 ' read the monitor
 count = mon.SampleCount
 str = mon.ByteStream
 ba = str

 CopyMemory mSig, ba(0), 4
 CopyMemory mVer, ba(4), 4
 CopyMemory mRec, ba(8), 4
 CopyMemory mMode, ba(12), 4

 ' this should hold 16 byte header (above), 256-byte buffer, and
 ' then 8 (for time) + 4 * mRec * SampleCount

0

4-16

 baLen = UBound(ba)
 reqLen = 16 + 256 + 8 + 4 * mRec - 1

 If reqLen > baLen Then GoTo Skip
 idx = 16 + 256
 For j = 1 To count
 CopyMemory mHour, ba(idx), 4
 CopyMemory mSec, ba(idx + 4), 4
 idx = idx + 8

 For k = 1 To mRec / 2
 CopyMemory mRe, ba(idx), 4
 CopyMemory mIm, ba(idx + 4), 4
 If mMode = 0 Then mode 0 is polar format, we want magnitude only
 ws.Cells(row, col + k) = CStr(mRe)
 Else mode 1 is rectangular format, we output both (P and Q)
 ws.Cells(row, col + k) = CStr(mRe)
 ws.Cells(row, col + mRec / 2 + k) = CStr(mIm)
 End If
 idx = idx + 8
 Next k
 Next j
Skip:
 i = mon.Next
 row = row + 1
 Wend
End Sub

Figure 4-11
Monitor Names and Sample Values

Monitor Values V and I Magnitude, or P and Q
fdr2_vi 7289.17 7444.59 7463.69 81.17 37.85 33.10
fdr2_s -580.05 -275.36 -225.97 -116.50 59.92 99.75
fdr6_vi 7288.76 7444.38 7463.47 378.36 207.44 206.27
fdr6_s -2511.70 -1518.34 -1520.98 -1138.64 -281.95 -237.84
c45102_vi 7265.96 7452.00 7464.91 90.56 42.35 32.08
c45102_s 658.00 315.57 239.46 28.80 29.18 26.95
c45103_vi 6670.08 7480.87 7334.20 312.21 160.84 159.76
c45103_s 2082.44 1203.20 1171.70 29.64 25.68 25.24
x7168_vi 7245.67 7452.25 7461.29 85.42 42.09 27.68
x7168_s 618.90 313.67 206.56 28.74 29.25 26.89
xc941_vi 7092.26 7419.37 7455.06 45.70 40.06 10.13
xc941_s 324.15 297.23 75.50 27.90 28.87 26.00
q3495_vi 7249.38 7452.73 7460.11 0.00 0.00 0.00
q3495_s 0.01 0.01 0.01 -97.07 -87.50 -85.93
q3180_vi 7147.31 7445.78 7433.17 38.37 30.59 12.65
q3180_s 274.27 227.75 94.04 28.47 28.02 27.66
g3373_vi 6938.95 7458.80 7385.36 335.96 175.12 181.73
g3373_s 2331.24 1306.18 1342.17 21.64 5.57 5.71
fay45404_vi 6886.74 7465.50 7429.09 127.68 76.81 59.22
fay45404_s 879.26 573.42 439.98 24.08 18.87 15.88

0

5-1

5
REFERENCES

1. OpenDSS [Online]. Available: http://sourceforge.net/projects/electricdss/.
2. Control System Simulation in the Distribution System Simulator (DSS). EPRI, Palo Alto,

CA: 2009. 1016035.
3. S. Civanlar, J. J. Grainger, Y. Yin, S. S. Lee, “Distribution Feeder Reconfiguration for

Loss Reduction,” IEEE Trans. on Power Delivery, Vol. 3, no. 3. July 1988, pp.
1217–1223.

4. Program on Technology Innovation: Distribution Common Information Model (CIM)
Modeling of Two North American Feeders. EPRI, Palo Alto, CA: 2009. 1018281.

0

http://sourceforge.net/projects/electricdss/

0

A-1

A
GETTING STARTED WITH THE COM INTERFACE
The Microsoft® Windows Component Object Model (COM) interface provides a convenient
method for automating, or controlling, one program from another. COM is exploited in
OpenDSS for a number of purposes. For example, there is no looping in the scripting language.
Users who wish to write custom algorithms that require looping are expected to control the
looping in another program through the COM interface.

COM may be implemented in basically two forms:

1. An in-process server, in which the server is implemented in a DLL and becomes part of
the process memory space when it is loaded.

2. An out-of-process server, in which the interface is on a separate program that runs in a
different process space. An example of this is automating Word or Excel programs.

The OpenDSS COM server is currently implemented only as a 32-bit in-process server. This is
expected to change in the future as the software is updated to support more platforms. This
server is registered as OpenDSSEngine.DSS when the program is installed. This is the only COM
interface that is registered. There are actually many interfaces that make up the OpenDSS COM
interface, each with multiple properties, methods, and constants. These are created by the DSS
interface when it is initialized.

The interfaces can be confusing to new users. Also, as evidenced by this report, there are new
features added frequently to meet the needs of particular studies, and the on-line documentation
is generally not completely up to date. Users who would like to write custom algorithms are
encouraged to acquire a type library tool that is capable of exposing the interfaces in a
convenient manner. Nearly all software development environments designed for the Windows
environment have some sort of type library (TLB) tool. There are also several TLB
documentation tools available from the Internet.

While you can drive OpenDSS with many programs and computer languages, one of the easiest
to use and most widely available is Microsoft® Office tools with Visual Basic for Applications
(VBA). That is why it was chosen for the examples in this report. The Object Browser in VBA
does an excellent job of showing you the elements in the COM interface. Also, the code editor
will automatically help you develop the code by prompting you with the choices that can be
entered at any time.

Figure A-1 shows an example of the display that the Object Browser in VBA shows the
programmer. Even when using other programming tools, such as MATLAB, it is often advisable
to keep the VBA Object Browser visible to assist with the programming.

0

A-2

Figure A-1
 Screen Capture of OpenDSS Interface as Exposed in Excel VBA

On the right side of Figure A-1 are the members of the main DSS interface. This points to the top
level of the other interfaces. It is usually convenient to assign local variables to these interfaces
after the program is started and initialized. For example, you might do something like this in
VBA:
Set DSSobj = New OpenDSSEngine.DSS ‘ sets to DSS interface
DSSobt.Start(0)

Set DSSText = DSSObj.Text
Set DSSCircuit = DSSObj.ActiveCircuit
Set DSSSolution = DSSCircuit.Solution

0

A-3

This example loads the OpenDSS in-process COM server named OpenDSSEngine.DSS and
starts it. This creates all the interfaces. Then it assigns three variables to different interfaces for
convenience and efficiency in coding.

Nearly all interface classes employ the philosophy of acting on the active element, whether that
element is the entire circuit or a selected electrical or control element in that circuit. In each
class, there are two or more ways of selecting an object in that class, which is subsequently the
object that is acted upon by the other properties and methods in that class.

A brief listing of all interface classes and their properties and methods are given in Appendix B.
The reader will notice that many of the properties return Variant values. Languages like VBA
handle this transparently. This enables the user to easily exploit one of the strengths of OpenDSS
in which many things are expressed in terms of arrays. For example, one may obtain all the per
unit node voltage magnitudes in a variant array with one statement:

Dim MyVoltages as Variant

[… other code …]

MyVoltages = DSSCircuit.AllBusVmagPu

The MyVoltages variable is then processed as an array of doubles (double-precision floating-
point values).

Other examples may be obtained from the Wiki site and the Examples folder of the open source
sharing site. See:

 http://sourceforge.net/apps/mediawiki/electricdss/index.php?title=OpenDSS_Links

0

http://sourceforge.net/apps/mediawiki/electricdss/index.php?title=OpenDSS_Links

0

B-1

B
OPENDSS COM INTERFACE LISTING
This appendix contains a listing of the OpenDSS COM interface for Version 7.4.1. The
descriptions of the Properties and Methods are provided in text, similar to what would be used in
a VBA program.

Many of the classes employ a similar scheme for selecting a particular instance of a class:

• The Name property can be used to either set or retrieve the name of the active object.
• The First..Next properties can be used in a loop to iterate through all objects in a particular

class. These properties return 0 when there are no more objects.

For example, this code snippet demonstrates iterating through the Lines class collection to extract
the R and X matrices for inserting into an Excel worksheet:
 iRow = 2
 ' cycle through the Lines elements
 i = DSSLines.First ' sets first Load active
 Do While i > 0
 ' Name goes in first column
 WorkingSheet.Cells(iRow, 1).Value = DSSLines.Name
 ' Load the R and X matrixes
 Rmat = DSSLines.Rmatrix
 Xmat = DSSLines.Xmatrix
 ' Put the sum of all conductors at first terminal (only one) into Cells
 ' Use Lbound and UBound because you don't know the actual range
 iCol = 2
 For j = LBound(Rmat) To UBound(Rmat)
 WorkingSheet.Cells(iRow, iCol).Value = Rmat(j)
 WorkingSheet.Cells(iRow, iCol + 1).Value = Xmat(j)
 iCol = iCol + 2
 Next j
 iRow = iRow + 1
 i = DSSLines.Next ' go to next Line
 Loop

Some collections classes such as Loads also allow you to select object by an integer index, idx.

ActiveClass
This class can be used to set a particular circuit element class to be the active class or obtain a
pointer to the active OpenDSS class. See also the SetActiveClass method in the Circuit class.

Properties:

• Property ActiveClassName As String [r/o]
• Property AllNames As Variant [r/o]
• Property Count As Long [r/o]
• Property First As Long [r/o]
• Property Name As String [r/w]
• Property Next As Long [r/o]
• Property NumElements As Long [r/o]

0

B-2

Bus
This class operates on the active bus. The bus is selected by either the ActiveBus, SetActiveBus,
or SetActiveBusi properties and the methods of the Circuit class. The x,y coordinates can be set
for the active bus. All other properties are read only. Note: Bus objects do not exist until either
the circuit is solved or the MakeBusList command has been issued.

Properties:

• Property Coorddefined As Boolean [r/o]
• Property CplxSeqVoltages As Variant [r/o]
• Property Distance As Double [r/o]
• Property Isc As Variant [r/o]
• Property kVBase As Double [r/o]
• Property Name As String [r/o]
• Property Nodes As Variant [r/o]
• Property NumNodes As Long [r/o]
• Property puVoltages As Variant [r/o]
• Property SeqVoltages As Variant [r/o]
• Property Voc As Variant [r/o]
• Property Voltages As Variant [r/o]
• Property x As Double [r/w]
• Property y As Double [r/w]
• Property YscMatrix As Variant [r/o]
• Property Zsc0 As Variant [r/o]
• Property Zsc1 As Variant [r/o]
• Property ZscMatrix As Variant [r/o]

Methods:

• Function GetUniqueNodeNumber(ByVal StartNumber As Long) As Long
• Function ZscRefresh() As Boolean

Capacitors
This is a collection class for Capacitor objects in the circuit. Note that only a few of the
properties of Capacitor objects are exposed through this interface. Use the Text interface to set or
get other properties using OpenDSS script.

Properties:

• Property AllNames As Variant [r/o]
• Property Count As Long [r/o]
• Property First As Long [r/o]
• Property IsDelta As Boolean [r/w]
• Property kV As Double [r/w]
• Property kvar As Double [r/w]
• Property Name As String [r/w]
• Property Next As Long [r/o]
• Property NumSteps As Long [r/w]

0

B-3

CapControls
This is a collection class for CapControl objects in the circuit.

Properties:

• Property AllNames As Variant [r/o]
• Property Capacitor As String [r/w]
• Property Count As Long [r/o]
• Property CTratio As Double [r/w]
• Property DeadTime As Double [r/w]
• Property Delay As Double [r/w]
• Property DelayOff As Double [r/w]
• Property First As Long [r/o]
• Property Mode As CapControlModes [r/w]
• Property MonitoredObj As String [r/w]
• Property MonitoredTerm As Long [r/w]
• Property Name As String [r/w]
• Property Next As Long [r/o]
• Property OFFSetting As Double [r/w]
• Property ONSetting As Double [r/w]
• Property PTratio As Double [r/w]
• Property UseVoltOverride As Boolean [r/w]
• Property Vmax As Double [r/w]
• Property Vmin As Double [r/w]

Circuit
This is the top-level interface class for the presently defined circuit. It is used frequently and
contains the means to obtain values for the entire circuit as well as references to the collections
classes for navigating through the various objects in the circuit. Use this interface to set the
active bus, the active circuit element, etc.

Properties:

• Property ActiveBus As Bus [r/o]
• Property ActiveCktElement As CktElement [r/o]
• Property ActiveClass As ActiveClass [r/o]
• Property ActiveDSSElement As DSSElement [r/o]
• Property ActiveElement As CktElement [r/o]
• Property AllBusDistances As Variant [r/o]
• Property AllBusNames As Variant [r/o]
• Property AllBusVmag As Variant [r/o]
• Property AllBusVmagPu As Variant [r/o]
• Property AllBusVolts As Variant [r/o]
• Property AllElementLosses As Variant [r/o]
• Property AllElementNames As Variant [r/o]
• Property AllNodeDistances As Variant [r/o]
• Property AllNodeDistancesByPhase(ByVal Phase As Long) As Variant [r/o]
• Property AllNodeNames As Variant [r/o]
• Property AllNodeNamesByPhase(ByVal Phase As Long) As Variant [r/o]
• Property AllNodeVmagByPhase(ByVal Phase As Long) As Variant [r/o]

0

B-4

• Property AllNodeVmagPUByPhase(ByVal Phase As Long) As Variant [r/o]
• Property Buses(ByVal Index As Variant) As Bus [r/o]
• Property Capacitors As Capacitors [r/o]
• Property CapControls As CapControls [r/o]
• Property CktElements(ByVal Idx As Variant) As CktElement [r/o]
• Property CtrlQueue As CtrlQueue [r/o]
• Property Generators As Generators [r/o]
• Property LineLosses As Variant [r/o]
• Property Lines As Lines [r/o]
• Property Loads As Loads [r/o]
• Property Losses As Variant [r/o]
• Property Meters As Meters [r/o]
• Property Monitors As Monitors [r/o]
• Property Name As String [r/o]
• Property NumBuses As Long [r/o]
• Property NumCktElements As Long [r/o]
• Property NumNodes As Long [r/o]
• Property RegControls As RegControls [r/o]
• Property Sensors As Sensors [r/o]
• Property Settings As Settings [r/o]
• Property Solution As Solution [r/o]
• Property SubstationLosses As Variant [r/o]
• Property SwtControls As SwtControls [r/o]
• Property SystemY As Variant [r/o]
• Property Topology As Topology [r/o]
• Property TotalPower As Variant [r/o]
• Property Transformers As Transformers [r/o]

Methods:

• Function Capacity(ByVal Start As Double, ByVal Increment As Double) As Double
• Sub Disable(ByVal Name As String)
• Sub Enable(ByVal Name As String)
• Function FirstElement() As Long
• Function FirstPCElement() As Long
• Function FirstPDElement() As Long
• Function NextElement() As Long
• Function NextPCElement() As Long
• Function NextPDElement() As Long
• Sub Sample()
• Sub SaveSample()
• Function SetActiveBus(ByVal BusName As String) As Long
• Function SetActiveBusi(ByVal BusIndex As Long) As Long
• Function SetActiveClass(ByVal ClassName As String) As Long
• Function SetActiveElement(ByVal FullName As String) As Long
• Sub UpdateStorage()

0

B-5

CktElement
This interface always points to the active circuit element, which is the most recent circuit
element referenced by any command or action in the program. Use this interface to obtain
specific solution values for the active circuit element. There are methods for opening and closing
the terminals (see also SwtControl). However, you can also accomplish this by reassigning the
BusNames for the terminals using this interface (construct and pass a variant array of Unicode, or
wide, strings).

Properties:

• Property AllPropertyNames As Variant [r/o]
• Property BusNames As Variant [r/w]
• Property Controller As String [r/o]
• Property CplxSeqCurrents As Variant [r/o]
• Property CplxSeqVoltages As Variant [r/o]
• Property Currents As Variant [r/o]
• Property DisplayName As String [r/w]
• Property EmergAmps As Double [r/w]
• Property Enabled As Boolean [r/w]
• Property EnergyMeter As String [r/o]
• Property GUID As String [r/o]
• Property Handle As Long [r/o]
• Property HasSwitchControl As Boolean [r/o]
• Property HasVoltControl As Boolean [r/o]
• Property Losses As Variant [r/o]
• Property Name As String [r/o]
• Property NormalAmps As Double [r/w]
• Property NumConductors As Long [r/o]
• Property NumPhases As Long [r/o]
• Property NumProperties As Long [r/o]
• Property NumTerminals As Long [r/o]
• Property PhaseLosses As Variant [r/o]
• Property Powers As Variant [r/o]
• Property Properties(ByVal Indx As Variant) As DSSProperty [r/o]
• Property Residuals As Variant [r/o]
• Property SeqCurrents As Variant [r/o]
• Property SeqPowers As Variant [r/o]
• Property SeqVoltages As Variant [r/o]
• Property Voltages As Variant [r/o]
• Property Yprim As Variant [r/o]

Methods:

• Sub Close(ByVal Term As Long, ByVal Phs As Long)
• Function IsOpen(ByVal Term As Long, ByVal Phs As Long) As Boolean
• Sub Open(ByVal Term As Long, ByVal Phs As Long)

0

B-6

CtrlQueue
This interface provides properties and methods for dealing with the internal control queue for
delayed control actions.

Properties:

• Property Action(ByVal Long) [w/o]
• Property ActionCode As Long [r/o]
• Property DeviceHandle As Long [r/o]
• Property NumActions As Long [r/o]
• Property PopAction As Long [r/o]

Methods:

• Sub ClearActions()
• Sub ClearQueue()
• Sub Delete(ByVal ActionHandle As Long)
• Function Push(ByVal Hour As Long, ByVal Seconds As Double, ByVal ActionCode As Long,

ByVal DeviceHandle As Long) As Long
• Sub Show()

DSS
This is the only class that is registered in the Windows Registry. It will be listed as
OpenDSSEngine.DSS. After the class is loaded, the Start method is invoked to initialize
everything else. There are properties for returning miscellaneous values as well as pointers to
some key high-level interface classes such as Text, ActiveCircuit, and Plot.

Properties:

• Property ActiveCircuit As Circuit [r/o]
• Property ActiveClass As ActiveClass [r/o]
• Property AllowForms As Boolean [r/w]
• Property Circuits(ByVal Idx As Variant) As Circuit [r/o]
• Property Classes As Variant [r/o]
• Property DataPath As String [r/w]
• Property DefaultEditor As String [r/o]
• Property DSSProgress As DSSProgress [r/o]
• Property Error As Error [r/o]
• Property Events As DSSEvents [r/o]
• Property Executive As DSS_Executive [r/o]
• Property NumCircuits As Long [r/o]
• Property NumClasses As Long [r/o]
• Property NumUserClasses As Long [r/o]
• Property Plot As Plot [r/o]
• Property Text As Text [r/o]
• Property UserClasses As Variant [r/o]
• Property Version As String [r/o]

0

B-7

Methods:

• Sub ClearAll()
• Function NewCircuit(ByVal Name As String) As Circuit
• Sub Reset()
• Function SetActiveClass(ByVal ClassName As String) As Long
• Sub ShowPanel()
• Function Start(ByVal code As Long) As Boolean

DSSElement
This is a general interface class that acts on the active element, whether it is a circuit element or
not. You can work with general library objects as well. The names of all the properties and their
values (as DSSProperty types) can be conveniently obtained through this interface.

Properties:

• Property AllPropertyNames As Variant [r/o]
• Property Name As String [r/o]
• Property NumProperties As Long [r/o]
• Property Properties(ByVal Indx As Variant) As DSSProperty [r/o]

DSSEvents
This interface class manages the events related to the control simulations.

Events:

• Event CheckControls()
• Event InitControls()
• Event StepControls()

DSSProgress
This interface invokes the progress bar form in OpenDSS, which can be used for long solution
processes.

Properties:

• Property Caption(ByVal String) [w/o]
• Property PctProgress(ByVal Long) [w/o]

Methods:

• Sub Close()
• Sub Show()

0

B-8

DSSProperty
Values and the names of the properties of the active DSS element can be retrieved or set using
this interface.

Properties:

• Property Description As String [r/o]
• Property Name As String [r/o]
• Property Val As String [r/w]

DSS_Executive
This interface will return the names of the current OpenDSS commands and options along with
the help string associated with each. This might serve as a means to automatically generate
documentation for new revisions.

Properties:

• Property Command(ByVal i As Long) As String [r/o]
• Property CommandHelp(ByVal i As Long) As String [r/o]
• Property NumCommands As Long [r/o]
• Property NumOptions As Long [r/o]
• Property Option(ByVal i As Long) As String [r/o]
• Property OptionHelp(ByVal i As Long) As String [r/o]
• Property OptionValue(ByVal i As Long) As String [r/o]

Error
Check this interface after a command or other action has been executed to determine if an error
has occurred.

Properties:

• Property Description As String [r/o]
• Property Number As Long [r/o]

Generators
This interface class manages a collection of the Generator objects in the circuit and exposes
selected properties.

Properties:

• Property AllNames As Variant [r/o]
• Property Count As Long [r/o]
• Property First As Long [r/o]
• Property ForcedON As Boolean [r/w]
• Property kV As Double [r/w]
• Property kvar As Double [r/w]
• Property kW As Double [r/w]
• Property Name As String [r/w]

0

B-9

• Property Next As Long [r/o]
• Property PF As Double [r/w]
• Property Phases As Long [r/w]
• Property RegisterNames As Variant [r/o]
• Property RegisterValues As Variant [r/o]

Lines
This class is frequently used to retrieve or set values for Line objects for various analyses. For
radial feeders, you can use the Parent property to trace back through the circuit if there is an
EnergyMeter object at the head of the feeder. Note that you can obtain or set line impedance
values in either matrix form (variant array of doubles) or symmetrical component values. The
matrix values always give the values used in the simulation. If symmetrical component values
were not used to define the Line object, the values retrieved will probably not make sense.

Properties:

• Property AllNames As Variant [r/o]
• Property Bus1 As String [r/w]
• Property Bus2 As String [r/w]
• Property C0 As Double [r/w]
• Property C1 As Double [r/w]
• Property Cmatrix As Variant [r/w]
• Property Count As Long [r/o]
• Property EmergAmps As Double [r/w]
• Property First As Long [r/o]
• Property Geometry As String [r/w]
• Property Length As Double [r/w]
• Property LineCode As String [r/w]
• Property Name As String [r/w]
• Property Next As Long [r/o]
• Property NormAmps As Double [r/w]
• Property NumCust As Long [r/o]
• Property Parent As Long [r/o]
• Property Phases As Long [r/w]
• Property R0 As Double [r/w]
• Property R1 As Double [r/w]
• Property Rg As Double [r/w]
• Property Rho As Double [r/w]
• Property Rmatrix As Variant [r/w]
• Property Spacing As String [r/w]
• Property TotalCust As Long [r/o]
• Property X0 As Double [r/w]
• Property X1 As Double [r/w]
• Property Xg As Double [r/w]
• Property Xmatrix As Variant [r/w]
• Property Yprim As Variant [r/w]

Methods:

• Function New(ByVal Name As String) As Long

0

B-10

Loads
This class is frequently used to retrieve or set values for Load objects for various analyses.

Properties:

• Property AllNames As Variant [r/o]
• Property AllocationFactor As Double [r/w]
• Property Cfactor As Double [r/w]
• Property Class As Long [r/w]
• Property Count As Long [r/o]
• Property CVRcurve As String [r/w]
• Property CVRvars As Double [r/w]
• Property CVRwatts As Double [r/w]
• Property daily As String [r/w]
• Property duty As String [r/w]
• Property First As Long [r/o]
• Property Growth As String [r/w]
• Property Idx As Long [r/w]
• Property IsDelta As Boolean [r/w]
• Property kV As Double [r/w]
• Property kva As Double [r/w]
• Property kvar As Double [r/w]
• Property kW As Double [r/w]
• Property kwh As Double [r/w]
• Property kwhdays As Double [r/w]
• Property Model As LoadModels [r/w]
• Property Name As String [r/w]
• Property Next As Long [r/o]
• Property NumCust As Long [r/w]
• Property PctMean As Double [r/w]
• Property PctStdDev As Double [r/w]
• Property PF As Double [r/w]
• Property Rneut As Double [r/w]
• Property Spectrum As String [r/w]
• Property Status As LoadStatus [r/w]
• Property Vmaxpu As Double [r/w]
• Property Vminemerg As Double [r/w]
• Property Vminnorm As Double [r/w]
• Property Vminpu As Double [r/w]
• Property xfkVA As Double [r/w]
• Property Xneut As Double [r/w]
• Property Yearly As String [r/w]

0

B-11

Meters
This class is used to retrieve or set values for EnergyMeter objects.

Properties:

• Property AllBranchesInZone As Variant [r/o]
• Property AllEndElements As Variant [r/o]
• Property AllNames As Variant [r/o]
• Property AllocFactors As Variant [r/w]
• Property CalcCurrent As Variant [r/w]
• Property Count As Long [r/o]
• Property CountBranches As Long [r/o]
• Property CountEndElements As Long [r/o]
• Property DIFilesAreOpen As Boolean [r/o]
• Property First As Long [r/o]
• Property MeteredElement As String [r/w]
• Property MeteredTerminal As Long [r/w]
• Property Name As String [r/w]
• Property Next As Long [r/o]
• Property Peakcurrent As Variant [r/w]
• Property RegisterNames As Variant [r/o]
• Property RegisterValues As Variant [r/o]
• Property Totals As Variant [r/o]

Methods:

• Sub CloseAllDIFiles()
• Sub OpenAllDIFiles()
• Sub Reset()
• Sub ResetAll()
• Sub Sample()
• Sub SampleAll()
• Sub Save()
• Sub SaveAll()

Monitors
This interface class is a collections class that is used mostly to extract values from Monitor
objects. Monitors are file streams kept in memory. The ByteStream property is a copy of the file
stream. Note that in many programming languages, such as MATLAB, which have excellent
facilities for handling CSV files, it is generally simpler to export the monitor data from
OpenDSS and read it into the controlling program.

Properties:

• Property AllNames As Variant [r/o]
• Property ByteStream As Variant [r/o]
• Property Count As Long [r/o]
• Property FileName As String [r/o]
• Property First As Long [r/o]
• Property Mode As Long [r/w]

0

B-12

• Property Name As String [r/w]
• Property Next As Long [r/o]
• Property SampleCount As Long [r/o]

Methods:

• Sub Reset()
• Sub ResetAll()
• Sub Sample()
• Sub SampleAll()
• Sub Save()
• Sub SaveAll()
• Sub Show()

Plot
This interface class provides access to the plotting functions implemented in the OpenDSS
program via the DSSGraph DLL.

Properties:

• Property CenterMarkerCode(ByVal Long) [w/o]
• Property CurveMarkerCode(ByVal Long) [w/o]
• Property DataColor(ByVal Long) [w/o]
• Property KeepAspect(ByVal Boolean) [w/o]
• Property LineWidth(ByVal Long) [w/o]
• Property MarkCenter(ByVal Boolean) [w/o]
• Property MarkCurves(ByVal Boolean) [w/o]
• Property MarkNodes(ByVal Boolean) [w/o]
• Property NodeMarkerCode(ByVal Long) [w/o]
• Property NodeMarkerWidth(ByVal Long) [w/o]
• Property pctRim(ByVal Double) [w/o]
• Property PenStyle(ByVal Long) [w/o]
• Property PlotCaption(ByVal String) [w/o]
• Property TextAlign(ByVal Long) [w/o]
• Property TextColor(ByVal Long) [w/o]
• Property TextSize(ByVal Long) [w/o]
• Property WindowCaption(ByVal String) [w/o]
• Property XLabel(ByVal String) [w/o]
• Property YLabel(ByVal String) [w/o]

Methods:

• Sub AddCentered15(ByVal x As Double, ByVal y As Double, ByVal Txt As String)
• Function AddLabel(ByVal x As Double, ByVal y As Double, ByVal Txt As String) As Long
• Sub DrawRectangle(ByVal XLowerLeft As Double, ByVal YLowerLeft As Double, ByVal

XUpperRight As Double, ByVal YUpperRight As Double)
• Sub DrawToXY(ByVal x As Double, ByVal y As Double)
• Sub GetGraphProperties(ByRef Xmin As Double, ByRef Xmax As Double, ByRef Ymin As

Double, ByRef Ymax As Double, ByRef ChartColor As Long, ByRef WindowColor As Long,
ByRef Isometric As Boolean, ByRef Gridstyle As Long)

0

B-13

• Sub GetRange(ByRef Xlow As Double, ByRef Xhigh As Double, ByRef Ylow As Double, ByRef
Yhigh As Double)

• Sub GetWindowParms(ByRef Width As Long, ByRef LRim As Long, ByRef RRim As Long,
ByRef Height As Long, ByRef TRim As Long, ByRef Brim As Long)

• Sub LockInLabel(ByVal TxtIndex As Long)
• Sub MarkAtXY(ByVal x As Double, ByVal y As Double, ByVal MarkerCode As Byte, ByVal

MarkerSize As Byte)
• Sub MoveToXY(ByVal x As Double, ByVal y As Double)
• Sub NewCircle(ByVal Xc As Double, ByVal Yc As Double, ByVal Radius As Double)
• Sub NewCurve(ByVal Xarray As Variant, ByVal Yarray As Variant, ByVal Name As String)
• Function NewGraph() As Long
• Sub NewLine(ByVal X1 As Double, ByVal Y1 As Double, ByVal X2 As Double, ByVal Y2 As

Double, ByVal Name As String)
• Sub NewMarker(ByVal x As Double, ByVal y As Double, ByVal MarkerCode As Byte, ByVal

MarkerSize As Byte)
• Sub NewText(ByVal X1 As Double, ByVal Y1 As Double, ByVal S As String)
• Sub SetFontStyle(ByVal Bold As Boolean, ByVal Italic As Boolean, ByVal Underline As

Boolean, ByVal Strikeout As Boolean)
• Sub SetForClickOnDiagram()
• Sub SetForNoScales()
• Sub SetGraphProperties(ByVal Xmin As Double, ByVal Xmax As Double, ByVal Ymin As

Double, ByVal Ymax As Double, ByVal ChartColor As Long, ByVal WindowColor As Long,
ByVal Isometric As Boolean, ByVal Gridstyle As Long)

• Sub SetLabelBold(ByVal LblIndex As Long)
• Sub SetLabelLeft(ByVal LblIndex As Long)
• Sub SetRange(ByVal Xlow As Double, ByVal Xhigh As Double, ByVal Ylow As Double, ByVal

Yhigh As Double)
• Sub Show()

RegControls
This interface class is a collections class that manages selected properties of RegControl objects.

Properties:

• Property AllNames As Variant [r/o]
• Property Count As Long [r/o]
• Property CTPrimary As Double [r/w]
• Property Delay As Double [r/w]
• Property First As Long [r/o]
• Property ForwardBand As Double [r/w]
• Property ForwardR As Double [r/w]
• Property ForwardVreg As Double [r/w]
• Property ForwardX As Double [r/w]
• Property IsInverseTime As Boolean [r/w]
• Property IsReversible As Boolean [r/w]
• Property MaxTapChange As Long [r/w]
• Property MonitoredBus As String [r/w]
• Property Name As String [r/w]
• Property Next As Long [r/o]
• Property PTratio As Double [r/w]
• Property ReverseBand As Double [r/w]
• Property ReverseR As Double [r/w]

0

B-14

• Property ReverseVreg As Double [r/w]
• Property ReverseX As Double [r/w]
• Property TapDelay As Double [r/w]
• Property TapWinding As Long [r/w]
• Property Transformer As String [r/w]
• Property VoltageLimit As Double [r/w]
• Property Winding As Long [r/w]

Sensors
This interface class manages selected properties of Sensor objects.

Properties:

• Property AllNames As Variant [r/o]
• Property Count As Long [r/o]
• Property Currents As Variant [r/w]
• Property First As Long [r/o]
• Property IsDelta As Boolean [r/w]
• Property kVARS As Variant [r/w]
• Property kVBase As Double [r/w]
• Property kVS As Variant [r/w]
• Property kWS As Variant [r/w]
• Property MeteredElement As String [r/w]
• Property MeteredTerminal As Long [r/w]
• Property Name As String [r/w]
• Property Next As Long [r/o]
• Property PctError As Double [r/w]
• Property ReverseDelta As Boolean [r/w]
• Property Weight As Double [r/w]

Methods:

• Sub Reset()
• Sub ResetAll()

Settings
Selected options may be set directly through this interface. Otherwise, send a Set command
through the Text interface.

Properties:

• Property AllocationFactors(ByVal Double) [w/o]
• Property AllowDuplicates As Boolean [r/w]
• Property AutoBusList As String [r/w]
• Property CktModel As Long [r/w]
• Property ControlTrace As Boolean [r/w]
• Property EmergVmaxpu As Double [r/w]
• Property EmergVminpu As Double [r/w]
• Property LossRegs As Variant [r/w]
• Property LossWeight As Double [r/w]

0

B-15

• Property NormVmaxpu As Double [r/w]
• Property NormVminpu As Double [r/w]
• Property PriceCurve As String [r/w]
• Property PriceSignal As Double [r/w]
• Property Trapezoidal As Boolean [r/w]
• Property UEregs As Variant [r/w]
• Property UEweight As Double [r/w]
• Property VoltageBases As Variant [r/w]
• Property ZoneLock As Boolean [r/w]

Solution
This interface class provides access to selected properties of the solution process in OpenDSS.
Since the Solve and Set commands are essentially the same, you can set several global options
with this interface as well. Use this class to write custom solution algorithms.

Properties:

• Property AddType As Long [r/w]
• Property Algorithm As Long [r/w]
• Property Capkvar As Double [r/w]
• Property ControlActionsDone As Boolean [r/w]
• Property ControlIterations As Long [r/w]
• Property ControlMode As Long [r/w]
• Property Converged As Boolean [r/w]
• Property dblHour As Double [r/w]
• Property DefaultDaily As String [r/w]
• Property DefaultYearly As String [r/w]
• Property EventLog As Variant [r/o]
• Property Frequency As Double [r/w]
• Property GenkW As Double [r/w]
• Property GenMult As Double [r/w]
• Property GenPF As Double [r/w]
• Property Hour As Long [r/w]
• Property Iterations As Long [r/o]
• Property LDCurve As String [r/w]
• Property LoadModel As Long [r/w]
• Property LoadMult As Double [r/w]
• Property MaxControlIterations As Long [r/w]
• Property MaxIterations As Long [r/w]
• Property Mode As Long [r/w]
• Property ModeID As String [r/o]
• Property MostIterationsDone As Long [r/o]
• Property Number As Long [r/w]
• Property pctGrowth As Double [r/w]
• Property Random As Long [r/w]
• Property Seconds As Double [r/w]
• Property StepSize As Double [r/w]
• Property StepsizeHr(ByVal Double) [w/o]
• Property StepsizeMin(ByVal Double) [w/o]
• Property SystemYChanged As Boolean [r/o]
• Property Tolerance As Double [r/w]

0

B-16

• Property Totaliterations As Long [r/o]
• Property Year As Long [r/w]

Methods:

• Sub BuildYMatrix(ByVal BuildOption As Long, ByVal AllocateVI As Long)
• Sub CheckControls()
• Sub CheckFaultStatus()
• Sub DoControlActions()
• Sub InitSnap()
• Sub SampleControlDevices()
• Sub Sample_DoControlActions()
• Sub Solve()
• Sub SolveDirect()
• Sub SolveNoControl()
• Sub SolvePflow()
• Sub SolvePlusControl()
• Sub SolveSnap()

SwtControls
This is a collections class for SwtControl objects.

Properties:

• Property Action As ActionCodes [r/w]
• Property AllNames As Variant [r/o]
• Property Count As Long [r/o]
• Property Delay As Double [r/w]
• Property First As Long [r/o]
• Property IsLocked As Boolean [r/w]
• Property Name As String [r/w]
• Property Next As Long [r/o]
• Property SwitchedObj As String [r/w]
• Property SwitchedTerm As Long [r/w]

Text
This class provides a direct interface to OpenDSS script processing. A line of text is sent to the
OpenDSS command processor using the Command property. If the command results in an error
or a value, it will appear in the read-only Result property immediately after executing the
command. Any OpenDSS command can be executed through this interface.

Properties:

• Property Command As String [r/w]
• Property Result As String [r/o]

Topology
This is an interface for iterating backward or forward through branches in the circuit. It is useful
for switching algorithms such as the branch exchange method.

0

B-17

Properties:

• Property ActiveBranch As Long [r/o]
• Property ActiveLevel As Long [r/o]
• Property AllIsolatedBranches As Variant [r/o]
• Property AllIsolatedLoads As Variant [r/o]
• Property AllLoopedPairs As Variant [r/o]
• Property BackwardBranch As Long [r/o]
• Property BranchName As String [r/w]
• Property BusName As String [r/w]
• Property First As Long [r/o]
• Property FirstLoad As Long [r/o]
• Property ForwardBranch As Long [r/o]
• Property LoopedBranch As Long [r/o]
• Property Next As Long [r/o]
• Property NextLoad As Long [r/o]
• Property NumIsolatedBranches As Long [r/o]
• Property NumIsolatedLoads As Long [r/o]
• Property NumLoops As Long [r/o]
• Property ParallelBranch As Long [r/o]

Transformers
This is a collections class for Transformer objects. Many of the properties available through this
interface are read/write (r/w), allowing you to perform analyses that might require numerous
parameter modifications.

Properties:

• Property AllNames As Variant [r/o]
• Property Count As Long [r/o]
• Property First As Long [r/o]
• Property IsDelta As Boolean [r/w]
• Property kV As Double [r/w]
• Property kva As Double [r/w]
• Property MaxTap As Double [r/w]
• Property MinTap As Double [r/w]
• Property Name As String [r/w]
• Property Next As Long [r/o]
• Property NumTaps As Long [r/w]
• Property NumWindings As Long [r/w]
• Property R As Double [r/w]
• Property Rneut As Double [r/w]
• Property Tap As Double [r/w]
• Property Wdg As Long [r/w]
• Property XfmrCode As String [r/w]
• Property Xhl As Double [r/w]
• Property Xht As Double [r/w]
• Property Xlt As Double [r/w]
• Property Xneut As Double [r/w]

0

B-18

ActionCodes
These are constants for SwtControl objects:

• dssActionNone As Long=0
• dssActionOpen As Long=1
• dssActionClose As Long=2
• dssActionReset As Long=3
• dssActionLock As Long=4
• dssActionUnlock As Long=5
• dssActionTapUp As Long=6
• dssActionTapDown As Long=7

CapControlModes
These are constants for CapControl object types:

• dssCapControlVoltage As Long=1
• dssCapControlKvar As Long=2
• dssCapControlCurrent As Long=0
• dssCapControlPF As Long=4
• dssCapControlTime As Long=3

LoadModels
These are constants for the Model property of Load objects:

• dssLoadConstPQ As Long=1
• dssLoadConstZ As Long=2
• dssLoadMotor As Long=3
• dssLoadCVR As Long=4
• dssLoadConstI As Long=5
• dssLoadConstPFixedQ As Long=6
• dssLoadConstPFixedX As Long=7

LoadStatus
These are constants for the Status property of Load objects. Load objects are variable by default.

• dssLoadVariable As Long=0
• dssLoadFixed As Long=1
• dssLoadExempt As Long=2

MonitorModes
These are constants for the Mode property of Monitor objects:

• dssVI As Long=0
• dssPower As Long=1
• dssSequence As Long=16
• dssMagnitude As Long=32
• dssPosOnly As Long=64
•

0

B-19

• dssTaps As Long=2
• dssStates As Long=3

Options
These are constants for general circuit options:

• dssPowerFlow As Long=1
• dssAdmittance As Long=2
• dssNormalSolve As Long=0
• dssNewtonSolve As Long=1
• dssStatic As Long=0
• dssEvent As Long=1
• dssTime As Long=2
• dssMultiphase As Long=0
• dssPositiveSeq As Long=1
• dssGaussian As Long=1
• dssUniform As Long=2
• dssLogNormal As Long=3
• dssAddGen As Long=1
• dssAddCap As Long=2

SolveModes
These are constants for the built-in solution modes:

• dssSnapShot As Long=0
• dssDutyCycle As Long=6
• dssDirect As Long=7
• dssDaily As Long=1
• dssMonte1 As Long=3
• dssMonte2 As Long=10
• dssMonte3 As Long=11
• dssFaultStudy As Long=9
• dssYearly As Long=2
• dssMonteFault As Long=8
• dssPeakDay As Long=5
• dssLD1 As Long=4
• dssLD2 As Long=12
• dssAutoAdd As Long=13
• dssHarmonic As Long=15
• dssDynamic As Long=14

0

0

0

Electric Power Research Institute
3420 Hillview Avenue, Palo Alto, California 94304-1338 • PO Box 10412, Palo Alto, California 94303-0813 • USA

800.313.3774 • 650.855.2121 • askepri@epri.com • www.epri.com

Export Control Restrictions

Access to and use of EPRI Intellectual Property is granted
with the specific understanding and requirement that
responsibility for ensuring full compliance with all applicable
U.S. and foreign export laws and regulations is being
undertaken by you and your company. This includes an
obligation to ensure that any individual receiving access
hereunder who is not a U.S. citizen or permanent U.S.
resident is permitted access under applicable U.S. and
foreign export laws and regulations. In the event you are
uncertain whether you or your company may lawfully obtain
access to this EPRI Intellectual Property, you acknowledge
that it is your obligation to consult with your company’s legal
counsel to determine whether this access is lawful.
Although EPRI may make available on a case-by-case
basis an informal assessment of the applicable U.S. export
classification for specific EPRI Intellectual Property, you and
your company acknowledge that this assessment is solely
for informational purposes and not for reliance purposes.
You and your company acknowledge that it is still the
obligation of you and your company to make your own
assessment of the applicable U.S. export classification and
ensure compliance accordingly. You and your company
understand and acknowledge your obligations to make a
prompt report to EPRI and the appropriate authorities
regarding any access to or use of EPRI Intellectual Property
hereunder that may be in violation of applicable U.S. or
foreign export laws or regulations.

The Electric Power Research Institute Inc.,
(EPRI, www.epri.com) conducts research and
development relating to the generation, delivery
and use of electricity for the benefit of the public.
An independent, nonprofit organization, EPRI
brings together its scientists and engineers as well
as experts from academia and industry to help
address challenges in electricity, including
reliability, efficiency, health, safety and the
environment. EPRI also provides technology, policy
and economic analyses to drive long-range
research and development planning, and supports
research in emerging technologies. EPRI’s
members represent more than 90 percent of the
electricity generated and delivered in the United
States, and international participation extends to 40
countries. EPRI’s principal offices and laboratories
are located in Palo Alto, Calif.; Charlotte, N.C.;
Knoxville, Tenn.; and Lenox, Mass.

Together…Shaping the Future of Electricity

© 2011 Electric Power Research Institute (EPRI), Inc. All rights reserved.
Electric Power Research Institute, EPRI, and TOGETHER…SHAPING THE
FUTURE OF ELECTRICITY are registered service marks of the Electric
Power Research Institute, Inc.

1020090

0

	INTRODUCTION
	Problem Statement
	Applications

	2 FEEDER MODELS
	Civanlar’s Reconfiguration Example
	Substation Control Example
	Volt/VAR Control Example

	3 MODELING PLATFORM DEVELOPMENTS
	Circuit Elements
	SwtControl Class
	Standard COM Action Codes
	Sensors COM Interface
	Topology COM Interface
	CktElement COM Interface
	Meters COM Interface
	COM Interfaces to Existing Controller Classes
	DSS Events COM Interface

	4 EXAMPLES
	Reconfiguration Example
	Substation Volt/VAR Example
	Feeder Volt/VAR Example

	5 REFERENCES
	A GETTING STARTED WITH THE COM INTERFACE
	B OPENDSS COM INTERFACE LISTING
	ActiveClass
	Properties:
	Bus
	Properties:
	Methods:
	Capacitors
	Properties:

	CapControls
	Properties:

	Circuit
	Properties:
	Methods:

	CktElement
	Properties:
	Methods:

	CtrlQueue
	Properties:
	Methods:

	DSS
	Properties:
	Methods:

	DSSElement
	Properties:

	DSSEvents
	Events:

	DSSProgress
	Properties:
	Methods:

	DSSProperty
	Properties:

	DSS_Executive
	Properties:

	Error
	Properties:

	Generators
	Properties:

	Lines
	Properties:
	Methods:

	Loads
	Properties:

	Meters
	Properties:
	Methods:

	Monitors
	Properties:
	Methods:

	Plot
	Properties:
	Methods:

	RegControls
	Properties:

	Sensors
	Properties:
	Methods:

	Settings
	Properties:

	Solution
	Properties:
	Methods:

	SwtControls
	Properties:

	Text
	Properties:

	Topology
	Properties:

	Transformers
	Properties:

	ActionCodes
	CapControlModes
	LoadModels
	LoadStatus
	MonitorModes
	Options
	SolveModes

