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Abstract 
As the wind industry grows and matures, many of the larger wind 
turbines (2 MW and above) are being outfitted with sophisticated 
condition-monitoring systems (CMSs), supplied either by the 
original equipment manufacturer or through a third party to reduce 
failures, decrease maintenance downtime, and improve reliability. 
Such systems use vibration sensors in key positions and lubrication 
oil analysis, with costs of the hardware relatively high, and suffer 
from spurious alarms. The lifetime cost-benefit ratio of CMSs for 
large turbines located in remote locations and especially for offshore 
wind farms is high; however, for wind turbines below 2 MW  
(>180 GW installed capacity worldwide), the added expense of 
installing or retrofitting an enhanced CMS is considered in many 
instances marginally economic. Yet, CMSs can be just as effective for 
these sub-2 MW turbines as they are for larger models. 

All modern utility-scale wind turbines are equipped with supervisory 
control and data acquisition (SCADA) systems, which are primarily 
used to operate turbines and collect operating data, such as wind 
conditions, turbine’s power production, turbine’s faults, alarms, and 
downtime. SCADA systems also acquire and record other 
parameters, which, if properly sampled and mined, can indicate 
impending component failures. 

The SCADA data mining of operational signals can provide a  
cheap, globally effective condition-monitoring (CM) solution for 
smaller wind turbines. For large wind turbines, a multiparameter 
approach based on comparison of independent signals should 
increase the confidence in fault signal interpretation and alarms 
generated by the conventional CMS, potentially reducing the risks 
and costs of false alarms. 

In addition to CM application, SCADA systems are being developed 
to provide cost-effective ways to improve the overall performance of 
wind turbines and wind farms, which will translate into significant 
increase in revenues. 

Keywords 
Asset management Supervisory control and data 
Condition monitoring (CM)     acquisition (SCADA) system 
Data mining Wind turbine 
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Section 1: Executive Summary 
As the wind industry grows and matures, many of the larger wind turbines 
(2 MW and above) are being outfitted with sophisticated condition monitoring 
systems (CMS), supplied either by the original equipment manufacturers 
(OEM), or through a third party, to reduce failures, decrease maintenance 
downtime, and improve reliability. Such systems use vibration sensors in key 
positions, and lubrication oil analysis, with costs of the hardware relatively high 
and suffer from spurious alarms. The lifetime benefit-cost ratio of CMS for large 
turbines located in remote locations and especially for offshore wind farms is 
high; however, for wind turbines below 2 MW (>180GW installed capacity 
worldwide) the added expense of installing or retrofitting an enhanced CMS is 
considered in many instances marginally economic. Yet, CMS can be just as 
effective for these sub-2 MW turbines as it is for larger models. 

All modern utility scale wind turbines are equipped with supervisory control and 
data acquisition (SCADA) systems, which are primarily used to operate turbines 
and collect operating data such as wind conditions, turbines power production, 
turbines faults, alarms, and down time. SCADA systems also acquire and record 
other parameters that, if properly sampled and mined, may indicate impending 
component failures. 

The SCADA data mining (SDM) of operational signals may provide a cheap, 
globally effective condition monitoring (CM) solution for smaller wind turbines. 
For large wind turbines, a multi-parameter approach based on comparison of 
independent signals should increase the confidence in fault signal interpretation 
and alarms generated by the conventional CMS, potentially reducing the risks 
and costs of false alarms. 

In addition to CM application, SCADA systems are being developed to provide 
cost-effective ways to improve the overall performance of wind turbines and wind 
farms that will translate into significant increase in revenues. 

SDM software models can typically be incorporated into existing enterprise 
SCADA system architecture as these allow add-ins and third-party algorithm 
development. Since many data historians are already widely used in the wind 
industry, SDM should not require any additional hardware, and SDM-based 
condition-monitoring and performance-monitoring can be offered completely 
remotely by a third party. Since data-mining algorithms are adaptive, as the 
turbine population being monitored grows, so will the confidence and predictive 
power of the application.  
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In this study, three probabilistic cost benefit analyses were run to show the 
potential change in cost of energy (CoE) and Net Present Value (NPV) for  
(1) a 750 kW turbine retrofitted with SDM software and with 15 years of 
remaining life, (2) a 2.5 MW turbine with conventional CMS and SDM and 
with 20 years of remaining life, and (3) a 2.5 MW turbine with conventional 
CMS and SDM and with the potential for extended life (20+ years) as a benefit 
of SDM. CoE is estimated using the EPRI-TAG method. The Palisade 
software program, @Risk, was employed to execute a stochastic simulation of the 
cost model to obtain the uncertainty in the results.  

The 750 kW base case turbine was created such that its characteristics are 
generally representative of a typical 5-8 year old turbine. The 2.5 MW base case 
turbine was created such that its characteristics are generally representative of a 
1-2 year old onshore wind turbine. These characteristics include, amongst others, 
capital costs, O&M costs, total availability, downtime due to maintenance, 
capacity factor, etc. 

There are a number of benefits of using SDM for the purposes of CM and power 
performance improvement, four of which were quantified in terms of economics:  

1. Increased power performance due to optimization of power curve 

2. Increased lifetime energy capture due to longer life, as a result of CM and 
preventive maintenance approach 

3. Reduced O&M costs due to optimized maintenance planning and reduced 
failure rates 

4. Increased turbine availability due to reduced downtime for maintenance, 
assuming fewer component failures 

This report has estimated that an investment in SDM technology appears to have 
economic merit across all three scenarios evaluated in the study. Although the 
impacts of SDM may vary from project to project, it is clear that it should be 
explored as an option for operators trying to achieve high availability and optimal 
production through the design life of the turbine and beyond.  

The value of this technology may be most relevant to projects that no longer have 
OEM involvement since they are not likely to benefit from OEM driven 
improvements such as GE’s SDA service – offered exclusively as a bundle with 
their extended service agreements. For these projects, remote CM and 
performance monitoring could be effectively provided by third-party suppliers of 
SDM services. 

The cost of operating a 24/7 remote monitoring center was estimated to be 
roughly $1.2MM per year. It is possible to estimate the number of turbines 
required to fund such an operation. Assuming a 5-year payback period, the range 
of P90 values estimated for the annual service fee (charged on a per turbine basis) 
is just under $6,000 for all three scenarios. A remote monitoring center would  
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therefore need at least 200 turbines under contract in order to cover its 
operational expenses. IRR values for the three scenarios vary from 24% to  
35% over the life of the projects, assuming a payback period of five years. 

All three scenarios considered apply to onshore applications. However, the 
benefits of reduced component failures would be even more profitable for 
offshore wind plants as well as for tall towers because of the higher costs and 
downtime associated breakdown and the challenges associated with the offshore 
environment and higher hub heights, respectively.  
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Section 2: Introduction 
Wind Power Overview 

Wind power is one of the fastest growing generation resources in the United 
States (U.S.) and elsewhere in the world. The worldwide potential for new wind 
project development remains quite large. The industry expects wind to become a 
significant component of future power generation portfolios, both to reduce 
dependence on foreign energy sources as well as to reduce greenhouse gas 
emissions. As of December 2010 the installed wind capacity was over 40 GW  
in the U.S. and over 195 GW worldwide; and it is forecast to nearly triple to  
100 GW and 450 GW by 2014. The industry considers the major wind turbine 
components to be mature commercial technology. However, failures of 
gearboxes, blades, electrical controls, and other components continue to impact 
the reliability and productivity of wind power plants and drive up operations and 
maintenance (O&M) costs.  

As the industry moves forward, the ability to reliably predict and detect 
component failures in wind turbines, as well as continued efforts to optimize 
their power performance, will be critical to reducing O&M costs as well as 
increasing the reliability and profitability of wind turbines and wind plants. 

Wind Industry Targets 

The remote monitoring and SCADA data mining technologies evaluated in this 
report are discussed in context with targets for wind turbine technology 
improvements established by the International Energy Agency (IEA) and the 
U.S. Department of Energy (DOE). These targets are expected to be achieved 
over the next several decades. With respect to total investment costs, the IEA in 
its 2009 Technology Roadmap for Wind Energy [1] assumes a 23% reduction as 
a result of technology development, deployment, and economies of scale for 
onshore installations by 2050, and a 38% reduction for offshore installations. The 
DOE, in its report outlining a path to achieve 20% wind energy by 2030 [2], 
predicts that reaching that goal will result in a 10% reduction in capital cost for 
onshore installations, and 12.5% reduction for offshore by 2030. Targets for 
O&M cost reductions are also established. The IEA report sets a target of 17% 
reduction in O&M costs by 2030 and 23% by 2050 for onshore installations. For 
offshore projects IEA predicts a 25% reduction by 2030, and 35% reduction by 
2050. The DOE anticipates a reduction in O&M costs of 14% by 2030 onshore 
and 20% for offshore. 
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In addition to the IEA and DOE targets, advanced remote monitoring and data 
mining can also contribute to meeting wind industry availability, failure rate and 
downtime targets such as those issued by the European Commission’s ReliaWind 
project [3], including:  

 Operational availability: 

- Offshore target: 97-98%  
- Onshore target: 98-99%  

 Mean Time between Failures (MTBF): 

- Offshore target: 20% increase 
- Onshore target: 10% increase 

 Mean Time to Repair (MTTR): 

- Offshore target: 50% reduction 
- Onshore target: 20% reduction 

It is worth noting that these ReliaWind targets are based on the European 
experience. Reviews of U.S. onshore wind project data have shown that North 
American wind plants have had significantly lower average availability (around 
2%-5% lower) [4] but also higher average wind speeds and therefore higher 
capacity factors as compared to Europe. Therefore a different set of targets may 
be needed in the U.S. to account for higher loading of turbines.  

Improvements in turbine availability over the first few years of operation are 
largely expected to be driven by factors relating to turbine design, technology, 
and site conditions. However, advances in fault detection, performance 
optimization, and maintenance of wind plants can have a significant impact on 
reducing O&M costs and turbine downtime, especially later in the project 
lifecycle when large part failures with high replacement costs and long downtimes 
become more frequent. 

Wind Turbine Maintenance Costs 

Wind project maintenance can be separated into two categories (scheduled and 
unscheduled maintenance) as well as two time periods (warranty and post-
warranty periods). During the warranty period (typically 2 to 5 years), turbine 
maintenance is typically covered by a manufacturer’s warranty. EPRI’s 2009 
Technical Assessment Guide (TAG) presents O&M cost estimates for three 
representative utility-scale wind plants with rated capacities of 50, 200, and 
500 MW [5]. As with capital costs, larger projects typically experience economies 
of scale with O&M costs. The $/kW-year O&M costs of the 50 MW project are 
10% higher than those of the 200 MW project; those of the 500 MW project are 
5% lower than those of a 200 MW project. Figure  2-1 shows the annual O&M 
costs over a 20-year project life for a representative 200 MW wind plant. 
Immediately after the initial warranty period (here assumed to be 2 years), 
turbine O&M costs typically are lower than the warranty costs but are then 
expected to double over the life of the project which reflects increasing wear on 
the turbine and a greater probability of part failures. 
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Figure 2-1 
Estimated Operations and Maintenance Costs per Turbine for a 200 MW Wind 
Project (December 2009 $) 

A 2008 National Renewable Energy Laboratory (NREL) report presents the 
results of an O&M cost model development for commercial wind turbine 
generator (WTG) facilities [6]. Data for this project were taken from a variety of 
sources, including manufacturer publications, published case studies, 
expenditures and service logs from operating wind farms, and conversations and 
interviews with project managers and technicians.  

The O&M model results show total costs associated with scheduled 
maintenance, unscheduled maintenance, and levelized replacement costs (LRC). 
The last category is commonly used to estimate reserves that will be required for 
major component overhauls or replacements.  

The O&M cost estimates in this study demonstrate that the major contributor to 
overall O&M costs over the project life is parts replacement, followed by labor 
costs. Figure  2-2 shows that in the first 5 years, parts costs are estimated to be 
30% of the total cost, and by the end of the project life, they exceed 65% of the 
total cost.  
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Figure 2-2 
O&M Costs per Turbine, 5-Year Averages [3] 

The O&M cost data shown in Figure  2-2 highlight the impact that unplanned 
failures leading to unscheduled maintenance and replacement of parts can have 
on project maintenance costs over the life of the project. In a further examination 
of this potential cost impact, the NREL study found that for a generic 1.5 MW, 
variable speed, electric pitch WTG with an 80-m hub height, parts replacement 
costs are dominated by replacement of large parts that require the use of a crane 
(Figure  2-3 and Figure  2-4).  
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Figure 2-3 
Annual Turbine O&M Costs [3] 

 

Figure 2-4 
Parts Replacement Cost Breakdown [3] 

A closer examination of parts replacement costs reveals where the highest costs 
are incurred. The NREL study reports that the gearbox (including lubrication), 
the rotor system (including blades) and the generator make up the largest cost 
drivers (Figure  2-5).  
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Figure 2-5 
Parts Costs Over 20-Year Project Life, by System [3] 

Wind Turbine Availability and Component Failure Rates 

A recent study by the Fraunhofer Institute for Wind Energy and Energy System 
Technology (IWES) [7] concludes that wind turbines experience on average 
about one week of downtime every year due to unscheduled failures. 
Approximately 35% of that downtime is caused by failures to drive train 
components (gearbox), 24% is caused by structural failures (mainly blades), and 
41% by electrical component failure (namely the generator and power 
electronics). These results are presented in more detail in Figure  2-6 below. 
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Figure 2-6 
Annual Downtime – Contributions by Sub-Assemblies [6] 

Overall, wind turbine availability is generally considered to average approximately 
95% to 97% with industry estimates ranging from 93% [4] to 99% [7]. It is 
commonly accepted that WTG availability of 97% can be expected in the first 
few years of operation. However, as wind turbines age, failure rates of 
components such as blades, gearboxes, and generators increase. Since the repair 
and replacement of these large parts are typically accompanied by significant 
downtime, turbine availability of 97% should not be expected in the second 
decade of a wind plant operation without adequately accounting for increased 
efforts in preventive maintenance including turbine health monitoring as well as 
developing cost-effective methods for predicting and detecting component 
failures.  

Conventional Condition Monitoring Systems 

The CMS currently used by the wind industry were imported from other rotating 
machine power generation industries (mostly combustion turbines) where the 
technology has been successfully applied for many years. However, wind turbines 
differ from these machines in that they rotate at a slower speed and have rapidly 
varying torque and as a result CMS technology such as vibration, temperature, 
and oil analysis have not proven as effective in wind as they have in other 
industries. These techniques are also not ideally suited for detecting and 
monitoring all wind turbine fault and failure types. For instance, lubrication oil 
analysis is proving capable of detecting gearbox tooth failures but cannot detect 
failures outside the gearbox. Vibration monitoring instrumentation is also limited 
in what mechanical failures it can detect. Finally, none of these systems are 
geared towards detecting electrical faults which, as mentioned earlier, account for 
a majority of wind turbine faults. For these reasons, a SCADA data mining 
approach based on monitoring the wind turbine power output signal could 
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provide an inexpensive, globally effective CM solution for smaller wind turbines 
as well as for larger turbines which may not have CMS installed. This technology 
could also be used to increase the confidence in fault signal interpretation and 
alarms generated by the conventional CMS for large wind turbines where those 
systems are installed, potentially reducing the risks and costs of false alarms. 
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Section 3: SCADA Data Mining 
Technology Review 

Overview 

SCADA data mining (SDM) was formally established as a field of science in the 
mid-1990s with the first applications being in the combustion turbine and 
aerospace sectors. Today, it is generally considered a mature and versatile 
technology capable of modeling and analyzing almost any process. In the wind 
industry this technology is still relatively new and is being explored primarily by 
academia (universities and research institutes) and some of the larger OEMs such 
as Vestas and General Electric (GE).  

Today’s wind turbine CMS require the installation of vibration sensors in key 
positions and lubrication oil analysis systems, with relatively high hardware costs. 
The average cost of installing CMS instrumentation on a turbine is 
approximately $10,000 but can vary depending on system complexity and 
capability. The lifetime benefit-cost ratio of CMS for large turbines located in 
remote locations, and especially for offshore wind farms, is high. This is due to 
the increased time and cost of mobilizing and transporting parts and labor in a 
remote location. Not only is the repair work more expensive but failures in 
remote locations often have longer MTTR resulting in longer downtimes and 
lower project revenue. Being able to better detect, track and possibly even predict 
component failures give these projects the ability to better coordinate 
maintenance activities so that costs and downtimes can be minimized. However, 
for smaller machines (<2 MW rating) especially those that have been in 
operation for a few years, the added expense of retrofitting a CMS is considered, 
in many instances, marginally economical. Yet CM can be just as important for 
these sub-2 MW turbines as it is for larger models. The market for these 
machines is significant with an estimated 25 GW installed capacity in the U.S. 
and 180 GW worldwide. 

All utility scale wind turbines are equipped with SCADA systems, which are 
primarily used to operate turbines and collect operating data such as wind 
conditions, turbine power production, turbine faults, alarms and down time. 
SCADA systems also acquire and record other parameters that, if properly 
sampled and mined, may indicate impending component failures. This section  
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provides an overview of the current state of the technology needed to perform 
SDM on modern wind turbines with a particular focus on mining and analyzing 
data from the three-phase total power output signal.  

SCADA System Technology Review 

Multiple types of SCADA systems are available for wind project owners and 
operators, each with their own advantages and disadvantages. In very general 
terms, these SCADA systems can be grouped into two broad categories: those 
offered by the turbine manufacturers, and those offered as third-party systems. 
This section outlines typical characteristics associated with OEM SCADA and 
third-party SCADA systems both of which have a role to play in the 
development of SDM technology.  

OEM SCADA Systems 

Individual utility scale projects almost always utilize the SCADA system 
provided by the turbine manufacturer as this is a prerequisite of turbine warranty 
agreements. These SCADA systems typically have the capacity to display data in 
tabular and graphical format. Available displays normally include an overall 
layout of the project with indicators for the status of each turbine, meteorological 
conditions, indicators for aggregate power output, total delivered MW-hours, 
and event and alarm logs. Often the user can access information at the individual 
turbine level such as temperature of the gearbox or pitch position. Figure  3-1 
shows a screen shot from Vestas’ SCADA system detailing real-time 
performance data on a single turbine. 

 

Figure 3-1 
Example Screen Shot of Manufacturer SCADA Display (from Vestas) 
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The OEM SCADA systems are optimized to support real-time project O&M. 
Turbine manufacturers’ SCADA systems are generally very good at performing 
the day-to-day tasks of running a wind farm: safely starting and stopping 
turbines, providing details on the current state of all of the turbines and what 
faults or other problems are present, and other routine tasks. Because the OEM 
SCADA may be more deeply integrated into turbine operations than third-party 
systems, it may not be possible to easily access all functionality of the turbines 
without using the OEM SCADA. A wind turbine SDM system would therefore 
require access to the OEM SCADA in order to extract real-time energy output 
data. 

Wind turbine controllers update at a rate around 20 Hz, but OEM SCADA 
systems usually poll the data at a much slower rate, on the order of seconds. 
Historical data – such as wind speed and power output – are stored as the  
10-minute average, minimum, maximum, and standard deviation over a specified 
period (e.g., daily, monthly, annual periods). However, many OEM systems can 
also log events such as turbine faults independently of the 10-minute data. 
Although some systems allow storage of selected parameters at a higher rate most 
OEM systems will only allow project owners to access the averaged data. 
Figure  3-2 shows an example of the level of data mining possible using only an 
OEM SCADA system. In this example, Siemens’ Wind Power Supervisor 
(WPS) system shows a plot of 2 months of historical data for gearbox bearing 
temperature, generator revolutions per minute (RPM) as well as internal and 
internal temperature readings.  

 

Figure 3-2 
Plot of Historical Data from Siemens Web Wind Power Supervisor SCADA System 
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Third-Party SCADA 

Because of the limitations of OEM-provided SCADA systems, some owners  
are supplementing, and in some cases replacing, these systems with third-party 
SCADA options. A single company may own and/or operate multiple wind 
farms, which may run different turbine types and SCADA systems. In this case  
it is typical to connect the wind farms to a control center. The central SCADA 
system can communicate with the various wind farm nodes using OPC (open 
connectivity) or some other industry standard communication protocol to track 
and display real-time wind and performance data.  

In addition, owner/operators with large WTG fleets from different 
manufacturers may elect to invest in third-party enterprise-scale SCADA or 
other data collection systems. A number of vendors provide enterprise SCADA 
systems to the wind industry; one of the most widely-used systems is PI (from 
OSIsoft) which was being applied by 13 of the top 15 wind plant operators 
worldwide as of late 2008.  

A third-party SCADA system can either run in parallel with manufacturer 
SCADA as an enterprise data system or in place of the OEM system as a third-
party SCADA. These systems can support and complement SDM technology in 
several ways: 

 Third-party systems often provide better data storage and analysis tools. 
Although often not as well-suited for real-time site operations as OEM 
SCADA systems, third-party systems will generally offer more options for 
analysis of project operations. Some first-party SCADA systems use database 
engines with limited capacities. As a result, projects with large number of 
turbines may need to archive and delete project data on a regular basis, 
sometimes as often as monthly. This makes analysis of longer periods of data 
difficult and time-consuming. Third-party enterprise-scale systems can 
remove this limitation and facilitate the mining and analysis of large amounts 
of archived data. This would allow an SDM system to use algorithm-based 
pattern-recognition software to analyze trends of turbine power performance 
or faults over long time periods. 

 Third-party systems are often programmable and flexible. The ability to 
produce customized views, reports, analysis tools, and data products allows 
users to make third-party SCADA systems do almost anything they want, 
within the constraints of the data being gathered and the time and effort 
required for the programming. While this effort can be significant in some 
cases, most systems provide relatively user-friendly tools that allow for the 
creation of fairly powerful reports and analyses without requiring extensive 
knowledge or training. Much of the academic research being done on SDM 
for wind turbines has made use of existing third-party SCADA platforms 
such as PI which allow the user to program algorithms for mining and 
analyzing archived data.  
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 Many different turbine types and other equipment can be integrated 
into a single third-party SCADA system. While OEM systems will only 
allow an owner or operator to work with that turbine manufacturer’s 
machines (and in some cases only a limited subset of turbine models) and a 
few, pre-defined other devices such as project meteorological towers, there 
are no limitations on the types of systems that can be combined in a third-
party enterprise-scale system. For owners/operators who operate multiple 
projects with many different turbine models – or if multiple turbine models 
are present at the same project – being able to combine data across all of 
these turbines can be essential to the successful application of SDM 
technology.  

 Integration with other measurement devices. Wind projects may have 
many measurement devices other than the turbines, including meteorological 
towers, substation meters, and CMS. Many OEM systems have limited 
flexibility to incorporate data from these systems, while most third-party 
enterprise SCADA systems can be customized to include all project data. 

 Integration with CMS. Large owners and operators are increasingly using 
enterprise SCADA data systems to incorporate some aspects of CMS. The 
SCADA data from entire fleets are being transmitted to remote monitoring 
centers, where the operations of individual wind plants and wind turbines is 
being analyzed and diagnosed. The trending of various parameters, such as 
bearing temperatures and drive train vibration, is used to identify major 
components that require inspection and possibly maintenance. The 
consolidation of the SCADA data and operational analyses at remote 
monitoring centers allows resources, including tools and expertise, to be 
shared by multiple projects. The same could be done for data mining of the 
electric power output signal of each wind turbine within an owner or 
operator’s portfolio. A third-party SCADA system could consolidate data 
streams from several OEM SCADA systems allowing for remote monitoring 
of numerous projects without the need for typical CM instrumentation.  
IEC 61400-25 is an international standard that addresses the issue of 
proprietary communication systems across OEMs by providing uniform 
information exchange for monitoring and control of wind turbines. This 
standard is intended to improve interoperability and enhance the capacity to 
link machines of different makes using a single third-party system. Several 
OEMs have developed, or are in the process of developing, IEC 61400-25-
compliant interfaces to improve the operational management of wind plants 
with turbines and sensors from various manufacturers. One example is 
Repower’s REguard Interface B IEC 61400-25 which can be directly 
integrated into control systems of operational wind turbines. 
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Examples of third-party SCADA systems are listed below and include systems 
developed by renewable energy consultancies, software developers, electrical 
equipment providers and wind turbine operating companies [19]. 

 GH SCADA and SgurrTREND are developed by renewable energy 
consultancies in collaboration with wind turbine manufacturers, wind farm 
operators, developers and financiers to meet the needs of all those involved in 
wind farm operation, analysis, and reporting. 

 CONCERTO developed by AVL is not specialized for SCADA data 
analysis. It is a generic data post processing tool focusing on quick and 
intuitive signal analysis, validation, correlation and reporting for any kind of 
acquired data. 

 SIMAP is based on artificial intelligence techniques. The new and positive 
aspects of this predictive maintenance methodology have been tested on wind 
turbines. SIMAP has been applied to a wind farm owned by a Spanish Wind 
Energy Company called Molinos del Ebro, S.A. 

 INGESYS Wind IT was developed by IngeTeam, an electrical equipment 
provider. The system aims to integrate wind power plants into a single 
system and then optimize wind-farm management. INGENSYS Wind IT 
also provides an advanced reporting service for power curve analysis, faults, 
alarms, and customer reports. 

 Gateway System is developed by another electrical equipment provider called 
Mita-Teknik. It is a PC-based software package, designed to collect, handle, 
analyze and illustrate the data from the Wind Turbine Controller with 
simple graphics and text. 

 Other products such as BaxEnergy WindPower Dashboard (BaxEnergy 
GmbH), CitectSCADA (Schneider Electric), ICONICS for Renewable 
Energy (ICONICS Inc), InduSoft Wind Power (InduSoft), reSCADA 
(Kinetic Automation), WindCapture (SCADA Solutions), Wind Systems 
(SmartSignal), MATRIKON’s Wind Asset Monitoring Solution, 
Cosworth’s PI Diablo system, and Emerson’s Ovation SCADA platform are 
integrated SCADA systems all developed by industrial software companies, 
which aim to provide reliable, flexible and high performance applications for 
wind turbine automation, monitoring and control. 

In summary, the ability to analyze project performance, monitor turbine health, 
and improve operations depends on the data that have been recorded from the 
project. Data mining can perform real-time data processing when integrated with 
an OEM SCADA system as well as long-term trending of data from various 
projects and a diversity of turbine models when coupled to a modern third-party 
SCADA system. This report will detail how both of these functionalities can add 
to the effectiveness of SDM.  
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Basic Principles of SCADA Data Mining 

The general process for performing SDM on any machine or process, including 
wind turbines, can be summarized as follows: 

1. Acquire Data. Data should be at highest sampling rate that computing 
power can handle but for practical purposes it should also be at the lowest 
rate needed to solve the problem.  

2. Screen Data. What are the key parameters needed to solve the problem? 
Once identified those key parameters should be isolated from the data 
stream. 

3. Develop Model. Once the key parameters have been isolated an algorithm 
(or model) can be created to analyze the data stream for that parameter. This 
can be in the form of pattern-recognition software or a model looking for 
specific pre-defined threshold values.  

4. Validate Model. The model must be validated against empirical data (that 
is, the model should be run on historical data where the outcome is already 
known in order to assess its capacity to predict a specific outcome on an 
operational turbine). 

5. Generate Product. Once the model has been validated, a product can be 
created (and marketed) for a specific application (for example, remote 
monitoring and fault-detection of wind turbines).  

Ideally, the following data are required for developing the algorithms needed to 
mine and analyze wind turbine power signals: 

 Full range of power output data. 

 Data on all faults (including rare faults). 

 Power data immediately prior to a failure, as well as power data during a 
failure, are needed to develop predictive algorithms.  

One year of SCADA data would provide sufficient input for a developer to 
produce an SDM model for the specific turbine model from which the data are 
drawn. 

The application of SDM technology to wind turbines is typically focused on 
achieving one of the following: improving power performance or providing 
condition monitoring.  

Power performance can be optimized through data mining by analyzing each 
individual turbine’s power output data in order to build machine-specific power 
curves. These power curves can then be used to identify underperformance issues, 
optimize performance and improve forecasting. SDM can also be used for the 
purposes of condition monitoring and improving reliability as it has shown a 
strong capacity for predicting and detecting impending turbine faults (both 
electrical and mechanical). Using SDM to predict potential failures allows for  
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better planning of repair activities and can help prevent a minor fault from 
turning into a major (and much more costly) failure. These two applications of 
SDM and the potential benefits they provide are discussed in detail in Chapter 4.  

Performance optimization is perhaps the more difficult application of data 
mining since it involves a 2-way transfer of information. In order to improve 
power performance one needs to be able to optimize wind turbine controls. This 
requires higher frequency data (on the order of 10 seconds) which typically means 
having access to OEM protocols or the actual OEM SCADA data stream. On 
the other hand, data mining for the purposes of CM requires only a one-way 
flow of data and can often be achieved with lower-frequency data – such as 
typical 10-minute data provided to project owners by the OEMs.  

SCADA Data Mining – Academic Research 

Universities and research bodies across the U.S., Europe, and Asia are actively 
involved in the development and testing of SDM technology for application in 
the wind industry and include institutions such as the University of Iowa (Iowa 
City, U.S.), Durham University (Durham, UK), University of Manchester 
(Manchester, UK) and Seoul National University (Seoul, Republic of Korea).  

The following section provides an overview of a representative sub-set of the 
SDM research being conducted at these academic institutions with the objective 
of improving remote monitoring, fault detection, and power performance 
improvement of wind turbines and is based on the available published literature.  

“Dynamic Control of Wind Turbines” [8] and “Adaptive Control of a 
Wind Turbine with Data Mining and Swarm Intelligence” [11] 

Dr. Andrew Kusiak of the University of Iowa, along with Zijun Zhang, Wenyan 
Li, and Zhe Song, has investigated a data-mining approach to building adaptive 
control algorithms that would optimize the power production and minimize the 
turbine loads, characterized for a specific turbine after a period of machine 
learning. This section looks at the results published in two articles [8][11] and 
the master’s thesis of Wenyan Li [18]. 

In the article “Dynamic control of wind turbines”[8] from the 2009 issue of the 
journal Renewable Energy, written with Li and Song, a dynamic algorithm for 
controlling a wind turbine in order to optimize turbine performance is presented. 
Specifically, the algorithm seeks to meet the following criteria: maximize the 
active power output and minimize the rate of change in the power output, the 
rate of change in the rotor speed, the rate of change in the generator torque, and 
the rate of change in the pitch angle of the blades. 

The input variables used to weigh these objectives are the 10-second wind speed, 
the turbulence intensity (calculated from the standard deviation of the preceding 
six 10-second wind speed values), and the current level of power demand. In this 
case, power demand was a simulated signal, but it may be roughly knowable in 
practice. Eight scenarios were simulated: high and low wind speed, high and low 
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turbulence intensity, and high and low power demand. Weights for each scenario 
were picked by hand. The algorithm used real data to build the relationships, and 
then simulated optimal controls for those wind conditions for both low- and 
high-demand scenarios. This process seems robust and could be useful if possible 
to implement. 

In addition to revisiting this adaptive control algorithm in Chapter 5, Li’s thesis 
“Predictive Engineering in Wind Energy: a Data-Mining Approach” [18] has a 
section in Chapter 3 describing the creation of a generalized model of the wind 
turbine being studied using data from 10 random-selected turbines. 10-second 
data were analyzed looking at power output, generator torque, generator speed, 
wind speed, bearing temperature, pitch angle, nacelle position, and rotor speed. 
Models for estimating power output (y1) and rotor speed (y2) were developed as 
functions of wind speed (v) and of the controllable parameters blade pitch angle 
(x1) and generator torque (x2). It evaluates the computational models Boosting 
Tree and Neural Network and the impact of including past states. 

The article “Adaptive Control of a Wind Turbine with Data Mining and Swarm 
Intelligence” [11] by Kusiak and Zhang was published for the IEEE Transaction 
on Sustainable Energy. The approach used in this paper was similar to that in 
[8], in using data mining to optimize controls based on current conditions 
(specifically, wind speed, generator torque, blade pitch angle, and power 
generated). 

This article focused on two of the five criteria of the other approach: maximize 
the power production and minimize the torque ramp rate (the change of 
generator torque with respect to time). Limits were set to prevent a change in the 
pitch angle by more than 2° up or down and the torque by more than 20% of the 
maximum torque. Absolute limits were set on the blade angle of -0.57° and 
90.61°. 

Neural network models were used to create the power production predictions and 
a particle swarm fuzzy algorithm was used to weight the two objectives. The 
power production is predicted based on the previous five 10-second samples and 
the power demand is generated from a normal distribution with mean demand 
based on time of day.  

In order to operate as adaptive controls of a turbine, the calculation must use  
10-second sampling to predict and modify the torque and pitch angle in order to 
make changes in time. This methodology was able to calculate the new control 
values in 3 seconds. 
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“Analysis of Wind Turbine Vibrations Based on SCADA Data” [9] 

Kusiak’s group also has worked on approaches to predict turbine faults before 
they occur.  

“Analysis of Wind Turbine Vibrations Based on SCADA Data” [9] was written 
by Kusiak and Zhang and was published in the Journal of Solar Energy 
Engineering in August 2010. This article looks at characterizing the signature of 
increased vibrations (as drive train acceleration or tower acceleration) based on 
other external or controllable parameters (generator torque, pitch angle, and wind 
speed).  

The paper also looked at vibration data in the frequency domain in addition to 
the time domain, in order to observe any resonant frequencies caused by power 
train malfunctions, but given the low sampling rate of 0.1 Hz, no conclusive 
information was gained from this process.  

The model performed quite well at predicting the drive train acceleration and 
tower acceleration (about 97% and 93% accuracy respectively). It is not clear if or 
how this technique could be used in condition monitoring, but it appears that it 
could be used to determine the impact of controls on measured vibrations and 
taking that into account in building methods for turbine controls. 

“A Data-Driven Approach for Monitoring Blade Pitch Faults in Wind 
Turbines” [12] 

Andrew Kusiak and Anoop Verma present a prediction model that aims to 
identify blade pitch faults ahead of time (using data sampled at 5-second periods) 
in the IEEE Transaction on Sustainable Energy. Faults caused by blade angle 
asymmetry (pitch angle at the three blades are not the same) and blade angle 
implausibility (pitch angle setpoint and the actual measured pitch angle diverge) 
were analyzed by using, six different measures derived from SCADA data. Blade 
angle deviation from its own setpoint (for all three blades) and the blade angle 
deviation from the other two blades (for all three pairs of blades) along with 
tower deflection, nacelle revolution, and rotor speed, were used to generate 
Genetic Programming models where the computer model learns empirically 
which parameter signatures tend to indicate impending faults, in periods of 
5 seconds to 10 minutes before a fault. The authors claim accuracy in the range 
of 69% to 87% as the time interval decreases. Although the results are promising, 
the paper did not provide an estimate of the calculation time required to make 
the prediction or suggestions for adaptive controls to prevent the occurrence of 
faults once they have been predicted. 

“The Prediction and Diagnosis of Wind Turbine Faults” [10] 

Andrew Kusiak and Wenyan Li contributed this article to the 2010 issue of the 
journal Renewable Energy, and Li revisits this subject in Chapter 6 of his thesis 
[18]. The approach uses the status/fault alarm log along with 5-minute averages 
of wind, energy, vibration, and temperature parameters, but builds the model to 
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predict faults at three levels based on only wind speed and power output at time 
(t - n) as the model input parameters. Data sampling was used to create data sets 
evenly split between timestamps with and without faults or status events. Three 
levels of prediction were modeled. 

For Level 1, predicting whether or not a fault or status of any kind will occur at 
time t, a Neural Network Ensemble (NN-ensemble) approach was used by 
building thirty NNs and the best five were selected, with an accuracy of 75% (the 
rate of correct predictions), a sensitivity of 84% (the ratio of true fault events to 
predicted fault events), and a specificity of 66% (the ratio of true normal events to 
predicted normal events). The model was able to continue this level of prediction 
up to timestamp t - 9 or 45 minutes beforehand. 

For Level 2, prediction of the fault or status category (Categories 1 to 4 or 
Normal, with the lowest number being most severe), a Standard Classification 
and Regression Tree (CART) algorithm was used, as it had over 95% accuracy 
for Normal and Category 4 statuses and had over 50% accuracy for Category 1 to 
3 faults. Other methods attempted were unable to predict all three categories of 
faults. These levels of accuracy roughly stayed the same up to timestamp t -12 or 
1 hour before. 

For Level 3, predicting a specific fault event, in this case using status code 296 
“malfunction of diverter” (the most frequent status code at Turbine 4), a 
Boosting Tree Algorithm (BTA) was used, resulting in an accuracy of 70%, a 
sensitivity of 87%, and a specificity of 63%. This sensitivity stayed relatively high 
(above 2/3) up to timestamp t -6 or 30 minutes beforehand. 

This approach continues to look very promising, though a couple of areas need 
further investigation or explanation: 

 An investigation of a Level between 1 and 2, looking at the ability to predict 
any fault in Category 1 to 3 versus a Normal or Category 4 status. This is 
because Category 4 is events that are either completely benign or caused by 
human-intervention, a condition that would not be visible in the data. This 
would be a more consequential version of Level 1 and would likely not 
appear to be as sensitive to predicting faults as the version presented. 

 Which faults can be avoided? To make this prediction algorithm truly useful, 
analysis would need to be done on a fault code that is both severe and 
preventable. How long do the calculations take relative to the time available 
for action? 

“Research on a Simple, Cheap but Globally Effective Condition 
Monitoring Technique for Wind Turbines” [13] 

This article (by Wenxin Tang, P.J Tavner, and C.J. Crabtree of Durham 
University and Michael Wilkinson of Garrad Hassan) looks at time series data 
on generator torque, rotor speed, and power output to identify signatures in the 
frequency domain of mechanical or electrical faults. The authors used two small  
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test rigs designed to emulate the essential features of the wind turbine generator, 
using both a synchronous generator and an induction generator. These test rigs 
were used in many of the experiments discussed below. 

The paper demonstrates the results of a physical rotor mass imbalance using the 
synchronous generator as well as of an electrical phase imbalance using the 
induction generator. The signals shown are quite subtle (especially in the first 
case), but the results to seem to provide useful information for the purposes of 
fault detection in wind turbines. 

“Cost Effective Condition Monitoring for Wind Turbines” [14] 

As wind turbines increase in size and machines are placed in more remote 
locations (e.g., offshore) cost-effective wind turbine CM will have increasingly 
more importance. This paper by Yang, Tavner, Crabtree, and Wilkinson 
describes a wind turbine CM technique that uses an algorithm to analyze the 
generator output power signal and rotational speed for the purposes of fault 
detection. While conventional CM techniques, such as vibration, lubrication oil, 
and generator current signal analysis, require the deployment of a variety of 
sensors and computationally intensive analysis techniques, the detection 
algorithm presented in this paper uses an adaptive filter to track the energy in 
prescribed time-varying fault-related frequency bands within the power signal. 
The central frequency of the filter is controlled by the generator speed, and the 
filter bandwidth is adapted to the speed fluctuation. Using this technique, both 
mechanical and electrical fault features can be extracted, with low calculation 
times, from direct or indirect-drive fixed- or variable-speed wind turbines.  

The proposed technique has been validated experimentally by the authors on a 
wind turbine drive train test rig. A synchronous generator was successively 
installed on the test rig, and both mechanical and electrical fault like 
perturbations were successfully detected when applied to the test rig. 

“Wind Turbine Condition Monitoring and Fault Diagnosis using 
Wavelet Transforms” [15] 

Some large wind turbines use a synchronous generator directly coupled to the 
turbine. This paper by Yang and Tavner considers CM and diagnosis of 
mechanical and electrical faults in such a variable speed machine. The application 
of wavelet transforms is investigated because of the disadvantages of conventional 
spectral techniques in processing instantaneous turbine signals. In order to 
further simplify and reduce the cost of wind turbine CM and fault diagnosis, this 
paper proposes a new CM technique which removes the negative influence of 
variable wind in machine CM and investigates the possibility of detecting wind 
turbine mechanical faults by analysis of the power signal. The effectiveness of the 
technique is validated by the successful detection of generator winding and rotor 
imbalance faults on a test rig.  
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“Condition Monitoring of a Wind Turbine DFIG by Current or Power 
Analysis” [16] 

As wind energy assumes greater importance in remote and offshore locations, 
effective and reliable CM techniques are required. This paper by Crabtree, 
Djurovic, Tavner and Smith proposes a method for analyzing electrical signals 
from the stator terminals of the wound rotor induction generators commonly 
used in wind turbines. Analytical equations were derived for the frequency 
content of line current and total instantaneous power for healthy and faulty 
wound rotor induction generators and these equations were used to analyze 
signals from test rigs in the steady state. Analysis at constant speed yielded a set 
of equation constants which describe the frequencies of highest interest as 
observed from the test rig environments. Once a consistent group of fault 
frequencies was discovered the data were then demonstrated at variable speed to 
show the variability of those fault frequencies with speed. The paper concludes 
that tracking these speed-dependent fault frequencies can be an effective way to 
monitor the health of a wound rotor induction generator in a wind turbine. 

“Condition Monitoring of the Power Output of Wind Turbine 
Generators Using Wavelets” [17] 

This paper by Watson, Xiang, Yang, Tavner and Crabtree looked at monitoring 
the power output of a variable-speed wind turbine generator and processing the 
data using a wavelet transform in order to extract the strength of particular 
frequency components that are characteristic of faults. This was done for doubly 
fed induction generators (DFIG), commonly used in modern variable-speed 
wind turbines. The technique was first validated on a test rig under controlled 
fault conditions and then applied to two operational wind turbine DFIGs where 
generator shaft misalignment was detected. For one of these turbines, the 
technique detected a problem 3 months before a bearing failure was recorded. 
Wavelet transforms were successfully used for the purposes of CM, and the paper 
suggests that additional data logging at a frequency of approximately 30 Hz 
would likely be needed in addition to the more traditional 10-minute SCADA 
data currently logged at most wind power sites. However, the technique 
described in the paper is significant in that it could be applied to any variable-
speed wind turbine using an induction generator and would require very little 
additional instrumentation beyond a standard OEM SCADA system. 

Commercialization and Operational Experience 

Data mining has seen most of its industrial development occur in complex, 
capital-intensive industries (such as oil and gas, chemical, steel, paper, aerospace, 
and the military) as well as high-value, long service-life product manufacturers 
facing a pressing demand to minimize unplanned maintenance and achieve 
higher asset uptime. In these industries mature SDM have been developed with 
the purpose of improving logistics, predicting failures and minimizing 
maintenance-related costs and disruptions to their operations. In addition to 
products developed by OEMs, some of the third-party developers of commercial 
data mining products include SAS Analytics, Rockwell Collins, and SmartSignal. 
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Several challenges exist in transferring these data mining applications to the wind 
industry but a number of OEMs and third-party suppliers are in the process of 
developing or, in some cases, field-testing wind-specific SDM software.  

Contemporary Applications of SDM in Wind 

Centralized remote monitoring centers are becoming a common feature of many 
well-established OEMs as well as some of the larger owner/operators. In most 
cases, these remote monitoring centers make use of conventional CMS data 
gathered from instrumented turbines. Some of these OEMs and operators are 
also adding SDM to their remote monitoring operations as a supplement to 
conventional CMS data in order to increase automation in data-heavy processes 
such as alarm management and fault prediction. GE, Vestas, and Iberdrola have 
all published papers and presented high-level results at conferences on the 
effectiveness of using SDM both as a stand-alone tool and a complementary tool 
for performance improvement and CM. All have remote monitoring centers 
equipped with the analytical software for mining both conventional CMS data as 
well as continually monitoring individual turbine power output signals.  

Because wind parks are geographically dispersed and often in remote locations, 
cost considerations make it necessary to combine on-site diagnostic specialists 
with a centralized remote monitoring center – it is not cost-effective for each 
individual power plant to have its own CM capabilities. However, centralized 
monitoring separates the on-site specialists from expertise at the remote 
monitoring center. Clear procedures must therefore be implemented for accurate 
and consistent feedback between these two stakeholders in order to ensure 
appropriate machine inspections or service actions are performed. 

One of the latest North American remote monitoring centers is Iberdrola’s U.S. 
National Control Center in Portland, Oregon. This control center monitors 
nearly 4 GW of energy from more than 40 power plants. Each wind turbine has a 
control box containing a programmable logic controller (PLC), power converter, 
control boards, and an I/O device at the top. Sensors collect and transfer data to 
the PLC for factors such as wind speed, wind direction, and shaft rotation speed. 
Each local area network (LAN) is connected to a remote control station that 
manages and collects data and adjusts the turbine settings. It also provides 
intelligent alarm, troubleshooting, and reporting capabilities. The central control 
station is equipped with a third-party SCADA system that acts as a data 
historian and data management system for the wind farms. It connects the 
individual turbines, substations, and meteorological stations to the central control 
room. That enables the operators to supervise the behavior of all the wind farms 
both individually and as an integrated system.  

Since Iberdrola has wind farm operators using multiple types of turbines each 
with distinct OEM SCADA systems and protocols, a third-party SCADA 
system was essential to configure these various data streams and route the 
acquired data back to the National Control Center. The facility has also recently 
been connected to CORE, the Renewable Energies Operation Centre in Spain.  
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Of the many OEMs surveyed in this study only Vestas, Siemens, and GE are 
known to currently be employing in-house SDM tools. GE specifically has 
published initial field-testing results for their SCADA Data Anomaly Detection 
Service (SDA) implemented on a Duke Energy site in February 2010. Currently 
GE’s SDA product is included when a customer purchases GE’s Bently CMS 
equipment and services – for the term of the warranty or services. Both CMS and 
SDA are included in a GE Full Service Agreement which in practice is 
equivalent to an extended warranty [28]. 

Many third-party suppliers are also actively developing SDM systems for wind 
turbines. Some examples of these products are discussed below. 

1. Cosworth’s Output Maximization System (OMS): This system combines 
comprehensive capture and logging of control and environmental data with 
Cosworth’s proprietary torsional vibration sensing, neural network and 
predictive analysis capabilities. The result is an analysis that is intended to 
provide CM support and power performance improvement based on 
intelligent technology that anticipates problems before they occur. According 
to Cosworth, the OMS solution will be based on their existing Pi Diablo 
software which has been used for a number of years as a control and CM 
system for wind tunnels. This will be incorporated into new data acquisition 
hardware developed specifically for wind turbines. Modifications to the 
Diablo software platform will allow for the incorporation of signature finding 
and neural network technology. As with many other software developers, 
Cosworth’s main challenge is access to turbines as well as real-time SCADA 
data for development and testing. As of the writing of this paper, Cosworth 
had an agreement in principle from a UK operator to install the system on  
25 turbines as a development project. However, this project is on hold 
pending an agreement on real-time access to the SCADA data from the 
turbine OEM.  

2. Rockwell Collins’ Pattern-based Predictive Technology: Rockwell Collins is 
relatively new to wind but is leveraging its experience in other industries to 
develop algorithms intended to realize improved accuracy in forecasting wind 
conditions and impending faults. This is not a stand-alone system but rather 
a set of mathematical models that can utilize most third-party SCADA 
systems to maximize capacity factor and improve fault detection and 
prediction. At this stage, we are not aware of any field-testing of the 
Rockwell Collins pattern-based predictive technology on an operational  
wind site.  

3. SmartSignal: Another example SDM technology being developed for the 
wind industry is the predictive analytic software built by SmartSignal. The 
diagnostic software works with SCADA data from existing sensors on a wind 
turbine. It compares these data to software models customized for individual 
pieces of equipment to provide early warning of emerging problems. 
SmartSignal has seen perhaps the most extensive use of any third-party SDM 
software applied to wind turbines and has been applied by BP Wind Energy, 
Iberdrola Renewables, Duke Energy, enXco, and Invenergy among many 
others. Discussions with some of these owners and operators have shown 
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that the software is a useful tool for detecting a wide variety of failures, 
specifically blade pitch and yaw motor failures, gearbox failures, as well as 
voltage and current failures. In addition the software has the potential to 
detect performance problems in individual turbines through comparison 
across a wind plant. When paired to the PI SCADA and data historian 
system some operators have claimed annual fleet-wide benefits nearing 
$750,000 [21]. 

SDM as a Third-Party Service: Barriers to Commercialization 

Despite a recent development push, remote monitoring using SDM of the 
turbine power output signal is not yet commercially widespread in the wind 
industry as a third-party service. The potential benefits of this technology are 
well-understood and subsequent chapters will explore in more detail the degree 
to which SDM can help improve a wind project’s performance and reliability. 
However, significant barriers to commercialization of a service-based SDM 
offering still exist.  

Some of the challenges currently facing the wide-spread commercialization of 
this technology as a third-party service include: 

 Third-party access to OEM SCADA data and protocols: Generally OEMs 
are reluctant to divulge real-time project data to project owners, especially 
data relating to faults and failures. OEM warranty and service agreements 
often specify that monthly reports containing averaged, typically 10-minute, 
data will be provided to project owners. This type of low-frequency data 
severely limits the capabilities of a technology such as SDM which thrives on 
large volumes of representative data especially for the purposes of pattern 
recognition and failure prediction. To be successful, a third-party system 
requires the capacity to communicate with the OEM system and any CMS 
instrumentation (if available) in order to make full use of the potential value 
of the post-warranty O&M market.  

 Developing machine-specific algorithms: Unique software models and 
algorithms will need to be developed and tailor-made for each OEM data 
historian and each turbine model. Although some base algorithms may be 
transferable from one machine to another, the coefficients and parameters 
used in the equations would need to be calibrated for each specific turbine 
model. The development and specification of these coefficients and 
parameters are essential to the process. A third-party developer would need 
to consider the cost, coordination, and data required to develop such 
machine-specific models and algorithms.  

 Condition of SCADA hardware: Older wind projects may not have adequate 
SCADA communication speeds and the requisite system reliability to 
effectively contribute to SDM. These projects may require SCADA system 
upgrades allowing for faster and more reliable data transfer which may 
include improvements in cable networks, servers and other hardware. Some  
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older projects are investing in upgrades to wireless point-to-point and point-
to-multipoint communication connections which are available with speeds of 
up to 300 Mbps and the necessary bandwidth for data transfer to a remote 
monitoring center.  

 Product development: Although this technology has been examined and 
tested by academics, turning academic research into a commercial product 
requires the involvement of a commercial software developer. Most 
importantly, however, this should not be just a product but rather a service 
with the product being supported by experienced personnel with the 
appropriate know-how. One major challenge to the commercialization of 
this technology is the time required to developing in-house SDM knowledge 
and expertise as few of these experts are available in the industry.  

 Cost-justification: This is critical to the commercial success of any new 
technology. For instance, the benefit of SDM in offshore wind lies in its 
ability to detect faults and thereby confirm/deny fault alarms. Pitch systems, 
electrical systems and controls are notorious for causing false alarms and 
many cannot be remotely reset. This is usually not a big problem onshore but 
can be very costly offshore if, in order to get a turbine running again, a 
technician has to be sent to the turbine for a diagnosis and reset. Identifying 
the business case for onshore SDM applications is an important first step in 
its commercialization as a third-party service in the U.S. 
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Section 4: SCADA Data Mining – Costs 
and Capabilities 

SDM for Improving Power Performance  

Historically, the wind industry has placed a great deal of emphasis on turbine 
availability; however, the power performance of the turbine when it is up and 
running is also critical to overall project profitability. Underperformance has a 
direct impact on a project’s revenue stream (kW-hours produced) but it can also 
be indicative of component degradation or failure. This section will discuss how 
SDM can be used to improve a wind plant’s profitability through performance 
monitoring, power curve analysis, and improved power forecasting.  

Power Performance Optimization 

Most operators manage their wind turbines ‘in abstract’ using ideal power curves. 
However, the reality is that within a project power curves vary from one 
individual machine to another – even across machines of the same model. Data 
mining can help optimize the operation of a wind turbine by developing a power 
curve for individual machines based on constant monitoring of available SCADA 
data. This power curve can then be adjusted over the life of the project as the 
machine ages and its power profile changes. This approach has already been 
applied successfully to combustion turbines with several commercially available 
data-mining products [20].  

There are a number of potential causes for wind turbine underperformance. 
These include environmental factors such as icing or turbulence, which can 
degrade the aerodynamic performance of the turbine, as well as causes intrinsic  
to the turbine such as control system faults, sensor faults, generator faults, or even 
structural issues in the turbine main-body. Power performance optimization or 
“performance monitoring” refers to the use of a wind plant’s SCADA data 
stream to identify these causes of underperformance and optimize the output of 
individual turbines within a project. It is important to decouple a turbine’s power 
performance from availability as a turbine can be severely underperforming and 
yet still register as 100% available (see Figure  4-1). 
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Figure 4-1 
Example Turbine Underperformance [23] 

Performance monitoring is a purely statistical exercise, and uses the SCADA 
data that are already routinely recorded to investigate the relationships that 
describe how one parameter – such as output power – varies in response to 
another – such as input wind speed. The observed relationships are tracked over 
time as the wind varies and each turbine responds to this variation in a manner 
characteristic of its age and condition.  

Figure  4-2 below shows a typical case of turbine underperformance. In extreme 
cases, where several turbines on a single project experienced such levels of 
underperformance, losses were estimated to be on the order of 
US$150,000/month [22]. Whereas a manual exercise in SCADA data analysis 
could very well yield a similar estimate, such a process requires time, skill, and 
expertise and can be quite expensive. In order to perform routine performance 
monitoring using real-time data it is essential to automate the process using an 
SDM software-based approach. Another valuable aspect of SDM is its ability to 
visualize results in a variety of graphical forms allowing the operator to quickly 
and accurately evaluate the relationship between parameters and support rapid 
assessments of a project’s overall performance.  
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Figure 4-2 
Power Curve Analysis Showing Turbine Underperformance 

Actual power performance data may deviate from the nominal power curve for  
a variety of reasons. Inherent variation in the system is prevalent even under 
normal circumstances; therefore, being able to differentiate normal from 
abnormal power performance and turbine behavior across thousands or even 
millions of data-points becomes critical to identifying underperformance. 
Checking turbine performance data against the nominal power curve requires, 
first and foremost, a fitting of each discrete data point to the nominal power 
curve. This initial step is essential to data-driven diagnostics and several methods 
of fitting the data have been developed with varying degrees of success [25]. 

Performance monitoring can be done independently of, or as a complement to, 
condition monitoring. As performance monitoring makes use of data that are 
already acquired, no additional hardware needs to be installed and therefore the 
investment is seen as lower risk than CMS which are much more hardware-
dependent. In addition, because it does not require any physical modifications to 
the turbine itself, SDM can be compatible with warranty terms and should not 
incur any downtime at installation.  

Algorithms capable of using a turbine’s historical performance trends against 
error and alarm codes can identify, for instance, where curtailment events 
coincide with specific alarms. When used in combination with CM, this can 
strengthen the argument for preventive maintenance. In the absence of 
instrumented CMS, such evidence may offer initial clues that something may be 
wrong. Academic researchers have estimated that using SDM for the purposes of 
power performance improvement could yield revenue improvements of anywhere 
from 1% to 5%. The University of Iowa’s department of mechanical and 
industrial engineering claims to have demonstrated nearly a 10% increase in 
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power output for one particularly underperforming turbine by using a high-
frequency SDM approach. However, it is not likely that these types of 
performance optimization results are achievable for a majority of commercial 
wind projects. It may be possible to increase power output by 5%-10% for specific 
turbines that have significant undiagnosed operating problems (e.g., bad pitch 
settings, operating off yaw, and so on.), but for the majority of operational 
turbines it is much more reasonable to expect an average of 1% to 2% 
improvement on aggregate for an entire wind farm. This assumes that nothing 
significant is done to physically alter the wind turbines.  

Improving Power Forecasting 

Wind power forecasts are used as input for a variety of purposes. Short-term 
forecasts (1 to 12 hours in advance) are used for day-to-day purposes and on-site 
management decisions whereas long-term models (up to 84 hours in advance) 
inform higher-level strategic decision-making and operations management. 
Accurate power forecasting is essential to a wind project whether that asset is 
committed to predetermined production levels under a power purchase 
agreement (PPA) or selling power on the open market. 

Physics-based and statistical modeling approaches have been widely used to 
forecast wind speed and expected wind plant power production. The two 
methods have advantages and disadvantages but both are challenged by the 
stochastic nature of wind - this is true for both short-term and long-term 
predictions. Even assuming that an accurate wind speed prediction exists, wind 
farm power forecasting cannot be guaranteed, as the status of each wind turbine 
determines the ultimate power output. Data mining and performance monitoring 
can help increase the accuracy of production forecasts by better relating how each 
turbine will translate projected inflow conditions into kilowatt-hours.  

Data mining approaches to forecasting wind plant performance are based on 
adaptive algorithms that can be made more accurate as weather-related and 
operational data are made increasingly available. For instance, trending the 
seasonal performance of turbines is dependent on having at least one year of data 
showing monthly variations in performance upon which predictive algorithms 
can draw. The effectiveness of using SDM for power forecasting is therefore 
dependent on both the quantity and quality of available SCADA data [24].  

SDM for Condition Monitoring  

Conventional CMS play a pivotal role in establishing a preventive maintenance 
approach. Such an approach can be much more effective at maintaining desired 
turbine availability and controlling turbine O&M costs than a corrective or 
reactive maintenance plan. However, CMS requires the deployment of a variety 
of sensors as well as computationally-intensive and labor-intensive analysis 
techniques – a typical CMS costs approximately $10,000 per turbine [26]. This 
section discusses the advantages of instead using SDM for the purposes of CM.  
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SDM has a proven history of aiding in both the diagnosis and prognosis of 
turbine faults and component failures. Efficient fault prediction and fault 
detection algorithms can be developed to provide early warnings of mechanical 
and electrical defects and prevent major component failures as well as knock-on 
effects on other components. This allows a project operator to better plan for 
unscheduled maintenance events, such as optimizing crane logistics and 
minimizing downtime.  

Finally, applying fault detection and fault prediction algorithms in data mining 
software effectively removes much of the human element from the data analysis 
process. Although experts can and should be used to complement the analysis 
when needed, for instance through the support of a 24-hour remote monitoring 
center, there is usually so much data that the level of automation provided by 
SDM allows for more effective and efficient fault detection and fault prediction 
capabilities.  

Impacts on Plant Reliability 

Fault detection algorithms evaluate measured process data in order to isolate 
incipient faults at a very early stage before they become optically, acoustically or 
otherwise detectable. A data mining approach can therefore detect many faults 
while the defective component is still operational. Necessary repair actions can 
then be planned in time and need not be taken at the time of failure. This is 
especially critical for remote and offshore wind plants where difficult conditions 
can restrict access and thus delay repair actions. 

One way to achieve this is to build fault detection and fault prediction algorithms 
on the basis of prescribed performance parameters, incorporating into these 
algorithms all the likely causes of detection and failure, and then devising an 
intelligent alarm or indicator to alert the operator of an impending fault.  

Three-phase total power monitoring has been applied to wind turbines as a CM 
and fault detection tool but has not yet achieved widespread commercial use. 
This technique’s advantages include [14] [15]: 

 Unlike conventional CMS, which requires complex and lengthy collaboration 
between operators and manufacturers in the field, this technique, is easily 
validated on a test turbine with a simple fault setup. 

 Conventional CMS mainly employs Fourier transform-based techniques to 
process wind turbine signals. While efficient, this algorithm has limitations 
in dealing with non-stationary signals, leading to frequent (and expensive) 
false alarms. SDM tools monitoring the generator total power signal have 
been successfully tested using continuous-wavelet-transform (CWT) based 
methods which reduce calculation times and are more efficient at detecting 
faults in variable-speed turbines. 

 The technique can be applied to any wind turbine for tracking any fault 
whether mechanical or electrical as long as that fault has a detectable 
frequency component in the three-phase total power output signal.  
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One example of an SDM tool being used for the purposes of condition 
monitoring and developing preventive maintenance tasks is SIMAP [27]. This 
software application was developed for the Spanish wind energy company 
Molinos del Ebro, S.A. SIMAP makes use of a variety of wind turbine sensor and 
power readings typically used for turbine control purposes but whose data streams 
can also be used to feed the development of a preventive maintenance plan. Both 
health CM and fault detection are based on normal behavior modeling where real 
operational data are used to characterize the normal dynamics of representative 
variables of a turbine’s operation. A subsequent module is used to detect 
anomalies in the turbine’s operation by comparing measured values with expected 
values from the normal behavior model in order to: 

1. Diagnose root causes of the detected symptoms 

2. Assess current health/condition of components 

3. Forecast remaining life of components 

4. Develop a dynamic preventive maintenance plan 

The advantages of applying a preventive maintenance plan include: 

 Maintenance intervals are frequently better adapted to the real needs of the 
wind turbine than when using a reactive or planned maintenance strategy 
with fixed maintenance intervals, because the real-time condition of the 
turbine is taken into account. 

 Turbine life cycle is optimized by applying a maintenance strategy that 
effectively delays or reduces component degradation – this has the potential 
to extend the life of wind power project. 

 The actual effectiveness of applied maintenance actions is increased as 
effective root-cause diagnosis can identify the most appropriate mitigations. 

One of the most successful and well-documented applications of SIMAP is in 
the condition monitoring of gearboxes. Because the power produced by the wind 
turbine generator is proportional to the wind speed (up to rated power) and 
consequently to the rotor speed (for variable speed turbines), the health of the 
gearbox depends mainly on a selection of working and environmental conditions. 
For instance gearbox temperature can be estimated by tracking the following 
variables: generated power, nacelle temperature and the status of the cooling 
system, which can be measured by digital signals from the cooler fans.  
Figure  4-3 shows the typical relationships among all these variables as monitored 
over a 2 week period.  

Once the normal behavior of the gearbox can be established in relation to these 
measurable variables, it then becomes possible to perform remote monitoring of 
the gearbox and detect selected deviations and faults. The gearbox is one of the 
most critical components in the maintenance of a wind turbine and is responsible 
for around 15–20% of its maintenance costs and unscheduled downtime. 
However, similar fault detection and CM techniques have been developed for  
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almost all major components in a wind turbine. Algorithms for the diagnosis and 
prognosis of the following mechanical and electrical faults have been documented 
in the literature: 

 Generator stator winding fault 

 Full short circuit fault 

 Rotor imbalance fault 

 Drive train mechanical fault 

Preventive maintenance plans developed using these techniques can help reduce 
the likelihood of these unscheduled maintenance events and minimize the cost of 
repair and replacement should a failure occur [27].  

 

Figure 4-3 
Temporal Evolution of Gearbox Main Variables [27] 

Impact on O&M Costs and Turbine Availability 

The application of SDM for the purposes of CM and fault detection has been 
shown to have a significant benefit to wind farm operations.  

The main objectives of remote CM are avoiding or delaying the replacement of 
major components, thereby reducing unscheduled maintenance costs, optimizing 
utilization of resources (cranes, labor, etc.), limiting collateral damage, 
minimizing downtime, and reducing inventory costs. The potential savings 
resulting from the remote CM of gearboxes can be used as an example. With no 
remote monitoring of the gearbox damage occurs without warning, often 
resulting in catastrophic failure requiring unplanned replacement of the 
component. This requires shutting down the turbine and hiring a crawler-type 
crane to remove the rotor and replace the gearbox, costing up to $250,000 
(including crane costs), and four to eight weeks of downtime. With CM in place 
indicators for gearbox damage can help diagnose problems at an earlier stage. At 
the very least, if component replacement is still necessary, maintenance can be  
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scheduled around the wind, with cost savings of up to 50% per event and a 
downtime of one or two weeks. At best, the diagnosis can alert the operator to a 
potential corrective action that can prevent or delay the damage altogether.  

Another potential for cost savings involves end of warranty (EOW) inspections. 
It is common industry practice to perform full visual inspections of all gearboxes 
at EOW; however, not all gearbox subcomponents can be adequately inspected 
in the limited time reserved for EOW inspections. With CM the inspection 
focus on the gearboxes that show indicators for wear/damage and these in turn 
can be inspected in a more thorough manner. 

Finally, for turbines that already have conventional CMS, SDM tools can also 
help by confirming or denying faults and alarms. This is valuable for turbines in 
remote locations (and especially for projects in the offshore environment) where 
visual confirmation and re-start is not possible or difficult to perform. In 
addition, conventional CMS is limited in what it can measure. The addition of 
SDM can help identify and monitor an entirely different set of faults, namely 
electrical faults, which are among the most frequent failure types in wind turbines 
(see Figure  2-6).  

A limited number of data points exist providing the actual cost savings recorded 
by wind projects as a result of implementing SDM tools for the purposes of 
condition monitoring. GE’s SDA service provides in-house data-mining software 
support and utilizes algorithms developed by GE Aviation Systems and GE 
Wind for the purposes of performance and CM of wind turbines. GE is currently 
monitoring upwards of 8,000 turbines using this software, which has helped GE 
avoid over $8MM in GE warranty costs in the 12-month period between mid-
2009 and mid-2010. At the project level, a GE case study on the implementation 
of their CMS and SDA services at the Campbell Hill Wind Farm revealed 
O&M cost savings of over 20% (see Figure  4-4) as well as increased project 
revenue [28].  

 

Figure 4-4 
Expected Annual O&M Cost Reduction – GE Campbell Hill Case Study [28] 
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The decrease in costs was driven primarily through avoided damage to 
components, a reduction in down tower repairs and optimization of crane and 
labor schedules, maintenance resources, and on-site parts inventory. The increase 
in revenue was achieved primarily through the resulting increase in availability as 
well as performance optimization. It is clear from GE’s experience that net 
benefits in availability are proportional to the level of O&M cost reduction 
achieved over a specific time period. The ability to better manage unplanned 
failures has a very similar impact on turbine downtime as it does on O&M costs.  

Table  4-1 provides a summary of the estimated benefits of using SDM for the 
purposes of CM, fault diagnosis and preventive maintenance. These potential 
impacts are based on a combination of 1) the expected benefits suggested by 
academic research and 2) what can be gathered from recent OEM experience 
testing in-house SDM tools. Two different turbine categories are considered 
here:  

1. Sub-MW turbine that has been in operation for at least 5 years – this turbine 
does not have a conventional CMS installed 

2. Modern, multi-MW turbine – this turbine comes with pre-installed CMS 

In both cases, it is assumed that the project is located onshore in the U.S. and 
that time-based availability prior to implementing SDM is 95%.  

Table 4-1 
Summary of Expected Benefits from SDM for Condition Monitoring 

 
Years 1-5 Years 6-20 

O&M Cost 
Reduction Availability 

O&M Cost 
Reduction Availability 

Base Case - 95% - 95% 

Sub-MW 
Turbines - 95% 20% 96% 

Multi-MW 
Turbines 5% 95.3% 10% 95.5% 

 
A 5-year old sub-MW machine typically has no CMS installed and as such has 
the greatest potential for improvement. It is expected that, if implemented at year 
6 of operation, SDM could reduce O&M costs by 20% per year. A proportional 
decrease in turbine downtime can be expected. Assuming 95% time-based 
availability (5% downtime) in years 1 through 5 this would equate to a 20% 
reduction of downtime starting year 6 yielding a time-based availability of 96%. 
Retrofitting sub-MW turbines with a $10,000 CMS is typically not economically 
feasible. First, these turbines have been operational for years and thus have a 
shorter lifespan from which to draw a benefit from CMS. Second, because CMS 
is installed on a per-turbine basis they are more costly on a per-MW basis than 
larger turbines. 
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Modern, multi-MW machines typically already benefit from CMS and therefore 
have potentially less to gain from SDM. However, as mentioned, SDM is unique 
in its ability to diagnose and forecast electrical faults in addition to acting as an 
independent check for the CMS. As such, it is estimated that implementing 
SMD could reduce O&M costs by 5% annually in years 1 through 5 and 10% 
annually after year 6. This assumption is based on the fact that the value of 
condition monitoring increases as the turbine ages and component wear leads to 
higher failure rates. Assuming a base case of 95% availability, 5% and 10% 
reductions in downtime would yield a time-based availability of 95.3% and  
95.5% respectively. 

SDM Costs 

There are several costs associated with the development of a SDM system for 
wind power plants, including: 

 Initial Capital Investment (CAPEX): 

- Development of machine-specific algorithms 
- Model validation 
- Hardware (Server, data connection, and so on) 

The costs of providing a third-party remote monitoring service using SDM tools 
were also estimated and include:  

 Operational Cost of Remote Monitoring Center (OPEX): 

- Labor (3 shifts of 2 technicians/engineers, plus a supervisor) 
- Overhead (building, administrative, travel) 

The total cost for the development of a turbine-specific SDM software model is 
estimated to be approximately $350,000, with a typical range from $330,000 to 
$455,000 including the costs described below and summarized in Table  4-2. The 
cost of running and operating a 24-hour remote monitoring center is estimated 
to be approximately $100,000 per month, with a typical range from $95,000 to 
$130,000. These cost estimates are for a typical onshore project in the U.S. but 
costs may vary from site to site depending on the quality of available SCADA 
data as well as variety of other project-specific factors. For all of these cost 
estimates we conservatively estimate a triangular distribution of -5% / +30%.  
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Table 4-2 
Summary of SDM Capital Costs and Operational Costs 

Cost Typical Low High Comment 

Model 
Development $150,000 $142,500 $195,000 

Assumes 2 software 
engineers full-time for 
3 months  

Model 
Validation $150,000 $142,500 $195,000 

6 months of 
monitoring 

Hardware $50,000 $47,500 $65,000 
Cost for purchase of 
hardware included. 
2TB server 

Total CAPEX $350,000 $332,500 $455,000  

OPEX: Labor $40,000 $38,000 $52,000 Per month 

OPEX: 
Overhead $60,000 $57,000 $78,000 Per month 

Total OPEX $100,000 $95,000 $130,000 Per Month 

 
Model Development Costs 

Developing an SDM software model involves writing of a number of algorithms 
for the detection of faults and analysis of power curves. Although the underlying 
architecture of the algorithm is transferable from turbine to turbine, each turbine 
model requires its own sets of parameters and machine-specific inputs. Academic 
researchers have undertaken the development of these software packages and 
turbine-specific algorithms in order to execute the research described in the 
literature review. Their experience has shown that on average it takes two 
software engineers three months full-time to develop the algorithms for a 
workable SDM software model.  

When estimating the cost of developing a commercial application of this 
technology, we assume two full-time software engineers hired for three months 
at an hourly rate of $150. The cost of hiring a third-party supplier to develop a 
machine-specific SDM model is therefore assumed to be $150,000 (-5%/+30%). 

Model Validation Costs 

Once the model has been finalized it needs to be validated against operational 
project data. Generally, the academic community is given very little access to 
operational projects and as such many of the algorithms discussed in the 
literature review were not validated. Conservative estimates suggest that a 
thorough validation of the model should allow at least 6 months. In a 6-month 
period it is likely that any one wind power project will experience enough faults, 
component failures, and seasonal variations in performance to test and validate  
all functionalities of an SDM model.  
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The machine-specific model is expected to be validated in the context of an 
operating project and as such is expected to yield some benefit for that project. 
We assume the third-party software developer will bear no more than 50% of 
validation costs. Assuming one dedicated engineer for 6 months at an hourly rate 
of $150, the cost of hiring a third-party supplier to validate a machine-specific 
SDM model is assumed to be $150,000 (-5%/+30%). 

Hardware 

This software is expected to require significant computational processing 
capacity. We assume that a 2 Terabyte server will be required for both the 
development and operations of the SDM software. The one-time purchase and 
installation cost of a 2 TB server is assumed to be $50,000 (-5%/+30%). 

Operational Costs of a Remote Monitoring Center 

The cost of running a 24-hour remote monitoring center to support and service 
wind projects with installed SDM software is assumed to total $100,000 monthly 
or $1.2 million annually (-5%/+30%). This estimate is based on three rotating 
shifts of 2 engineers per shift and a supervisor. In addition, overhead costs such as 
building fees, travel expenses, administrative costs and general upkeep and 
maintenance of all computers, the main server and a high-bandwidth data 
connection are assumed in the total. 
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Section 5: Economic Assessment of SDM 
Applications 

Introduction 

Despite promising academic research and successful field testing by OEMs, 
SDM for the purposes of power performance improvement and CM is not yet 
commercially widespread as a third-party service.  

The commercial case for remote monitoring services by a third party is straight-
forward. Major operators such as Iberdrola and OEMs like Vestas and GE have 
already demonstrated the benefits of centralized 24/7 remote monitoring of wind 
turbines by investing in their own centralized control centers [28][29]. However, 
these groups benefit from economies of scale of thousands of wind turbines as 
well as access to the human and financial capital necessary to develop and operate 
these centers. Smaller operators and OEMs new to the wind market have found 
that in order to benefit from the same level of continuous monitoring, third party 
service-providers are their best option. 

Generally, the further removed a project is from the OEMs, the more use that 
project has for third-party services. This is evidenced by the growing trend of 
turbine CM being outsourced to specialists. China’s fourth largest wind turbine 
manufacturer, Guohua, recently hired SKF to install their WindCon turbine 
monitoring system across nearly 300 turbines. Those turbines will be monitored 
remotely at SKF’s Intelligent Centre Wind (ICW) facility in Hamburg, 
Germany. Schenk Balancing and Diagnostics Systems (Schenk) is another third-
party provider of remote monitoring services. Schenk offers expertise to 
supplement installed CMS instrumentation for 24/7 monitoring of turbines. 
They provide notifications in case of irregularities, explanation of measurements, 
trend curves and recommended actions. This third-party service model has been 
effectively implemented for conventional condition monitoring systems. In this 
chapter we examine their applicability to SDM technology.  

SCADA Data Mining Economic Analysis 

SDM software models can typically be incorporated into existing enterprise 
SCADA system architecture (such as OSIsoft’s PI software or Emerson’s 
Ovation platform) as these typically allow add-ins and third-party algorithm 
development. Because these data historians are already widely used in the wind 
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industry and SDM does not require any additional hardware, SDM-based 
condition-monitoring and performance-monitoring can be offered completely 
remotely by a third party. Since data-mining algorithms are adaptive, as the 
turbine population being monitored grows, so will the confidence and predictive 
power of the application.  

In this study, three probabilistic cost benefit analyses were run to show the 
potential change in cost of energy (CoE) and Net Present Value (NPV) for  
(1) a 750 kW turbine retrofitted with SDM software and with 15 years of 
remaining life, (2) a 2.5 MW turbine with conventional CMS and SDM and 
with 20 years of remaining life, and (3) a 2.5 MW turbine with conventional 
CMS and SDM and with the potential for extended life (20+ years) as a benefit 
of SDM. CoE is estimated using the EPRI-TAG method. The Palisade 
software program, @Risk, was employed to execute a stochastic simulation of the 
cost model to obtain the uncertainty in the results.  

The results are highly dependent upon the baseline turbine selected. For 
example, the benefit to a turbine with chronic gearbox failures may be more 
significant than to one with no gearbox failures; though the use of a SDM would 
not solve the problem it may, for example, provide additional warning of the 
impending failure and reduce repair/replacement costs. For the purposes of this 
study, it was assumed that the turbine design is mature and hence robust. The 
750 kW base case turbine was created such that its characteristics are generally 
representative of a typical 5-8 year old turbine. The 2.5 MW base case turbine 
was created such that its characteristics are generally representative of a 1-2 year 
old onshore wind turbine. These characteristics include, amongst others, capital 
costs, O&M costs, total availability, downtime due to maintenance, capacity 
factor, etc. 

Because wind turbines are highly engineered complex machines, many of the 
benefits that will be assumed in this study will likely require real-world 
compromises that impact their efficacy. However, for the purposes of this study 
the optimistic assumption was made that the benefits can be achieved without 
negatively impacting other aspects of the turbine design and cost. 

There are a number of benefits of using SDM for the purposes of CM and power 
performance improvement, four of which were quantified in terms of economics:  

1. Increased power performance due to optimization of the power curve. 

2. Increased lifetime energy capture due to longer life, as a result of CM and a 
preventive maintenance approach. 

3. Reduced O&M costs due to optimized maintenance planning and reduced 
failure rates. 

4. Increased turbine availability due to reduced downtime for maintenance, 
assuming fewer component failures. 
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These economic benefits are matched with the three analyses in Table  5-1. The 
table shows which analysis will include which benefit; note some benefits are 
mutually exclusive and cannot be included in the same analysis. Insurance 
premiums are also expected to decrease, but this is not quantified in the analysis 
because the uncertainty on the decrease is greater than the expected decrease 
itself.  

Table 5-1 
SDM Economic Analysis Scenarios 

Scenario/ 
Benefit 

Case 1 Case 2 Case 3 

750KW 
Turbine, 

Retrofitted SDM 

2.5MW 
Turbine, CMS & 

SDM 

2.5MW Turbine, 
CMS & SDM 

(Extended Life) 

Increased power due 
power curve analysis X X X 

Increased lifetime 
energy capture due to 
longer life 

  X 

Reduced O&M costs X X X 

Increased availability 
due to reduced O&M 
related downtime 

X X X 

 
The cost model inputs are described below: 

1. Turbine Capital Costs 

The nominal capital cost of the installed turbine was assumed to be 
$1,800/kW, representing the costs of development, design, engineering, 
construction, substation/interconnection, financing/legal, as well as the 
capital costs of the equipment. The uncertainty on this nominal installed cost 
is $200/kW.  

2. SDM Software Capital Costs 

The cost of developing and validating the machine-specific SDM algorithms 
includes labor costs and hardware costs as described in the previous chapter 
and totals $350,000. For the probabilistic assessment a triangular distribution 
is used and applies a relatively conservative uncertainty of -5%/+30%.  

3. Discount Rate 

For the probabilistic assessment a discount rate of 7% was assumed and a 
triangular distribution applied with a low value of 5.5% and a high value  
of 10%.  
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4. Turbine Operable Life 

A nominal life of 15 years and 20 years was assumed for the base case  
750 kW and 2.5 MW turbines, respectively. A life extension of 2 additional 
years was assumed for Scenario 3 in order to test the assumption that 
preventive maintenance should help increase mean-time-between-failures 
and potentially add years of operation to the turbine.  

5. O&M Costs 

A proprietary in-house O&M model was used to estimate the annual O&M 
costs associated with each case. As described in Table  4-1, a 5-year old sub-
MW machine is assumed to experience annual reductions in O&M costs of 
20%. A modern, multi-MW machine is assumed to experience annual 
reductions in O&M costs of 5% (years 1 to 5) and 10% (years 6 to 20). For 
the probabilistic assessment, a triangular distribution is used with an 
uncertainty of -10%/+20%.  

The resulting expected reductions in O&M costs fall in ranges of 16% to 
22% for Scenario 1, and 4% to 5.5% (years 1 to 5) and 8% to 11% (after  
year 6) for Scenarios 2 and 3. 

6. Availability  

A nominal turbine availability of 95% on time was assumed. Using a 
time:energy ratio of 1.2 this converts to a turbine availability of 94% on 
energy.  

It is assumed that turbine downtime is reduced by an amount proportional to 
O&M cost reductions described above. Therefore a 20% reduction of 
downtime is assumed for Scenario 1 which yields a time-based availability of 
96%. For Scenarios 2 and 3, 5% and 10% reductions in downtime would 
yield a time-based availability of 95.3% and 95.5% respectively. For the 
probabilistic assessment, a triangular distribution is used with an uncertainty 
of -10%/+20%.  

7. Power Performance Improvement 

It is assumed that the application of SDM for the purposes of power 
performance improvement could yield revenue improvements up to 5%. For 
the average turbine, a 1%to 2% improvement can be expected. However, the 
range of potential benefits differs between the two turbine types.  

In Scenario 1, a wide range of power performance improvement is assumed 
due to the age of the turbines and the lack of any previous performance 
monitoring software. A range of 0.5% to 5% improvement in revenue is 
assumed. Most turbines are expected to see improvements typical of the 
lower end of this range and as such a Weibull distribution is used for the 
probabilistic assessment. The Weibull distribution assumes a shape factor of 
1.2 and a scale factor of 2% and the curve is truncated at 0.5% and 5%. 

In Scenarios 2 and 3, a narrower range of power performance improvement is 
assumed due to the presence of some sort of performance monitoring 
software and therefore a smaller potential for improvement. A range of 
0.25% to 3% improvement in revenue is assumed. Most turbines are expected 
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to see improvements typical of the lower end of this range and as such a 
Weibull distribution is used for the probabilistic assessment. The Weibull 
distribution assumes a shape factor of 1.2 and a scale factor of 2% and the 
curve is truncated at 0.25% and 3%. 

8. Capacity Factor 

A capacity factor of 35% was assumed for all three scenarios and is used in 
combination with turbine availability to estimate total annual energy 
production.  

9. Price of Electricity 

For the purposes of calculating base case revenue as well as changes in annual 
revenue with the addition of SDM, a price of $75/MWh is assumed for this 
study. 

Scenario 1 

Overview 

Under Scenario 1, 100 750kW machines are retrofitted with SCADA Data 
Mining software. Such a large number of sub-MW machines is not typical for  
5 to 8 year old wind projects in the U.S. The assumption here is that this is not a 
single project but rather a collaboration among several smaller projects. It is not 
realistic to assume that the relatively high capital costs of developing the 
machine-specific algorithms should be borne by a single project. Rather, this 
scenario assumes that several projects running the same turbine model form an 
owner’s group and leverage their increase numbers to share the capital costs (as 
well as the benefits) of model development. It is expected that a third-party can 
develop a machine-specific SDM software tool that can be shared across various 
projects running the same model turbine. These projects would then be expected 
to pay an annual or monthly fee for remote monitoring services on a per turbine 
basis.  

A Monte Carlo simulation was run with 10,000 iterations. The resulting 
distribution of all inputs and outputs of the probabilistic assessment are 
summarized in Table  5-2. Note that these results show the potential, not likely, 
outcomes. 

Results 

Using tools such as power curve analysis, and condition monitoring to increase 
turbine availability would yield an expected increase of 2.3% in net Annual 
Energy Production (AEP). At $75 / MWh, that equates to additional annual 
revenue of $4,750 /WTG at the 50% probability level (P50) and $3,250 /WTG 
at the 90% probability level (P90).  
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The condition monitoring and fault diagnosis/prognosis provided by SDM 
would yield a reduction in O&M costs of 20% or roughly $3,600/year per turbine 
averaged over the remaining 15 year project life. It is important to note that since 
O&M costs are expected to increase as the turbines age, the annual O&M cost 
savings also increase over time as they are a function of overall O&M costs.  

The gross NPV of the investment in SCADA Data Mining is estimated to be 
$75,000 /WTG at the 50% probability level (P50) and $60,000 /WTG at the 
90% probability level (P90).  

Expected costs for the development and implementation of the SDM software 
tool are expected to be $3,750 /WTG at the 50% probability level (P50) and 
$3,500 /WTG at the 90% probability level (P90). The annual service fee per 
WTG has been estimated for three different payback periods of 5, 7.5 and  
10 years (see Table  5-2).  

Assuming the gross benefits described above, the annual fee per turbine that 
would yield a payback period of 5 years is expected to be $7,250 /WTG at the 
50% probability level (P50) and $5,750 /WTG at the 90% probability level 
(P90). After 15 years of operation, the internal rate of return (IRR) for this 
investment is estimated to be 24%.   

 

Figure 5-1 
Percent Change in NPV – Scenario 1 

Assuming the capital costs described above and an annual service fee yielding a  
5 year payback period, the NPV of net benefits from implementing SDM for the 
purposes of power performance improvement (PPI) and condition monitoring 
are expected to be $6,500 /WTG at the 50% probability level (P50) and  
$5,250 /WTG at the 90% probability level (P90). The distribution of these 
results is shown in Figure  5-1. 
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Figure 5-2 
Percent Change in Cost of Energy – Scenario 1 

The expected reduction in CoE is estimated to be 5.8% at the 50% probability 
level (P50) and 4.9% at the 90% probability level (P90). The distribution of these 
results is shown in Figure  5-2. 

A summary of the distributions of all inputs and outputs related to the 
probabilistic assessment of Scenario 1 is provided in Table  5-2.  

For each input and output category, the following outcomes are provided in their 
relevant units: 

 Minimum value 

 Maximum Value 

 Arithmetic mean 

 Value of one standard deviation 

 Likely value at the 90% probability level (P90) 

 Likely value at the 50% probability level (P90) 
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Table 5-2 
Summary of Probabilistic Assessment for Scenario 1 

 Category Min. Max. Mean Std Dev. P90 P50 

O
U

TP
U

TS
 

S1 - Average % reduction in 
annual O&M Costs 16.00% 22.00% 19.30% 1.20% 17.50% 19.50% 

S1 - % change in TAG COE -9.20% -3.80% -5.90% 0.80% -4.90% -5.80% 

S1 - Annual O&M Savings 
/WTG $3,000 $4,000 $3,500 $250 $3,250 $3,750 

S1 - Annual Energy Prod 
Increase /WTG $2,500 $10,250 $5,000 $1,500 $3,250 $4,750 

S1 - Average Annual $Benefit 
/WTG $5,500 $14,250 $8,750 $1,500 $7,000 $8,500 

S1 - NPV lifetime additional 
revenue /WTG $20,500 $97,750 $44,750 $13,000 $29,250 $43,000 

S1 - NPV lifetime O&M savings 
/WTG $22,750 $39,250 $31,000 $2,750 $27,250 $31,000 

S1 - NPV of Gross SDM 
$Benefits /WTG $44,250 $135,000 $75,750 $13,750 $59,250 $73,750 

S1 - NPV of Net SDM $Benefits 
/WTG - 5 Yr payback period $4,000 $9,500 $6,500 $750 $5,250 $6,500 

S1 - NPV of Net SDM $Benefits 
/WTG - 7.5 Yr payback period $1,500 $5,250 $3,000 $500 $2,250 $3,000 

S1 - NPV of Net SDM $Benefits 
/WTG - 10 Yr payback period $(500) $2,250 $750 $500 $100 $750 

S1 - Annual fee - 5 Yr payback 
period $4,250 $12,750 $7,500 $1,500 $5,750 $7,250 

S1 - Annual fee - 7.5 Yr 
payback period $4,750 $13,250 $7,750 $1,500 $6,000 $7,500 
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Table 5-2 (continued) 
Summary of Probabilistic Assessment for Scenario 1 

 Category Min. Max. Mean Std Dev. P90 P50 

 
S1 - Annual fee - 10 Yr payback 
period $5,000 $13,500 $8,000 $1,500 $6,250 $8,000 

IN
PU

TS
 

Discount rate 5.50% 10.00% 7.50% 0.90% 6.30% 7.40% 

Capital cost of SDM 
development $332,750 $454,250 $379,250 $27,000 $347,250 $374,750 

Turbine Capital Cost (/kW) $1,500 $2,000 $1,750 $ 100 $1,750 $1,750 

% Reduction O&M costs  16.00% 22.00% 19.30% 1.20% 17.50% 19.50% 

Power Perf. Improvement 0.50% 5.00% 1.90% 0.90% 0.80% 1.70% 
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Scenario 2 

Overview 

Under Scenario 2, 100 2.5MW machines are equipped with SCADA Data 
Mining software in addition to previously installed conventional Condition 
Monitoring instrumentation and software. This project is intended to be 
representative of the typical large wind farm currently being developed and built 
in the U.S. It is assumed that, unlike Scenario 1, the capital costs of developing 
the machine-specific algorithms are borne by this single project with the 
expectation is that it has greater access to funds. Again, the project depicted in 
this scenario would also be expected to pay an annual or monthly fee on a per 
turbine basis for remote monitoring services by the third party provider, in 
addition to funding the development of machine-specific algorithms.  

A Monte Carlo simulation was run with 10,000 iterations. The resulting 
distribution of all inputs and outputs of the probabilistic assessment are 
summarized in Table  5-3. Note that these results show the potential, not likely, 
outcomes. 

Results 

Using tools such as power curve analysis, and condition monitoring to increase 
turbine availability would yield an expected increase of 1.6% in net Annual 
Energy Production (AEP). At $75 / MWh, that equates to additional annual 
revenue of $9,750 /WTG at the 50% probability level (P50) and $5,250 /WTG 
at the 90% probability level (P90).  

The condition monitoring and fault diagnosis/prognosis provided by SDM 
would yield a reduction in O&M costs of 8.75% or roughly $2,750/year per 
turbine averaged over the 20 year project life. However, since O&M costs are 
expected to increase as the turbines age, the annual O&M cost savings should 
also increase over time as they are a function of overall O&M costs.  

The gross NPV of the investment in SCADA Data Mining is estimated to be 
$125,000 /WTG at the 50% probability level (P50) and $80,000 /WTG at the 
90% probability level (P90).  

Expected costs for the development and implementation of the SDM software 
tool are expected to be $3,750 /WTG at the 50% probability level (P50) and 
$3,500 /WTG at the 90% probability level (P90). The annual service fee per 
WTG has been estimated for three different payback periods of 5, 7.5 and  
10 years (see Table  5-3). 

Assuming the gross benefits described above, the annual fee per turbine that 
would yield a payback period of 5 years is expected to be $10,250 /WTG at the 
50% probability level (P50) and $5,750 /WTG at the 90% probability level 
(P90). After 20 years of operation, the internal rate of return (IRR) for this 
investment is estimated to be 33%. 
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Figure 5-3 
Percent Change in NPV – Scenario 2 

Assuming the capital costs described above and an annual service fee yielding a  
5 year payback period, the NPV of net benefits from implementing SDM for the 
purposes of power performance improvement (PPI) and condition monitoring 
are expected to be $18,000 /WTG at the 50% probability level (P50) and 
$14,750 /WTG at the 90% probability level (P90). The distribution of these 
results is shown in Figure  5-3. 

 

Figure 5-4 
Percent Change in Cost of Energy – Scenario 2 
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The expected reduction in CoE is estimated to be 2.5% at the 50% probability 
level (P50) and 1.7% at the 90% probability level (P90). The distribution of these 
results is shown in Figure  5-4. 

A summary of the distributions of all inputs and outputs related to the 
probabilistic assessment of Scenario 2 is provided in Table  5-3. 

For each input and output category, the following outcomes are provided in their 
relevant units: 

 Minimum value 

 Maximum Value 

 Arithmetic mean 

 Value of one standard deviation 

 Likely value at the 90% probability level (P90) 

 Likely value at the 50% probability level (P90)
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Table 5-3 
Summary of Probabilistic Assessment for Scenario 2 

 Category Min. Max. Mean Std Dev. P90 P50 

O
U

TP
U

TS
 

S2 - Average % reduction in 
annual O&M Costs 7.10% 9.60% 8.50% 0.50% 7.80% 8.50% 

S2 - % change in TAG COE -4.30% -1.30% -2.60% 0.70% -1.70% -2.50% 

S2 - Annual O&M Savings 
/WTG $2,500 $3,250 $2,750 $250 $2,500 $2,750 

S2 - Annual Energy Prod 
Increase /WTG $4,000 $19,500 $10,500 $4,000 $5,250 $9,750 

S2 - Annual $Benefit /WTG $6,500 $22,500 $13,250 $4,000 $8,250 $12,750 

S2 - NPV lifetime additional 
revenue /WTG $36,000 $219,500 $106,500 $42,500 $54,250 $100,250 

S2 - NPV lifetime O&M savings 
/WTG $17,000 $32,750 $24,750 $2,500 $21,250 $24,750 

S2 - NPV of Gross SDM 
$Benefits /WTG $55,000 $250,000 $131,250 $43,000 $80,000 $125,000 

S2 - NPV of Net SDM $Benefits 
/WTG - 5 Yr payback period $10,500 $27,250 $18,000 $2,500 $14,750 $18,000 

S2 - NPV of Net SDM $Benefits 
/WTG - 7.5 Yr payback period $5,750 $17,000 $10,750 $1,750 $8,250 $10,750 

S2 - NPV of Net SDM $Benefits 
/WTG - 10 Yr payback period $1,750 $8,750 $4,750 $1,250 $100 $4,750 

S2 - Annual fee - 5 Yr payback 
period $4,250 $20,000 $10,750 $4,000 $5,750 $10,250 

S2 - Annual fee - 7.5 Yr 
payback period $4,750 $20,750 $11,500 $4,000 $6,250 $11,000 
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Table 5-3 (continued) 
Summary of Probabilistic Assessment for Scenario 2 

 Category Min. Max. Mean Std Dev. P90 P50 

 
S2 - Annual fee - 10 Yr payback 
period $5,250 $21,250 $12,000 $4,000 $7,000 $11,500 

IN
PU

TS
 

Discount rate 5.50% 10.00% 7.50% 0.90% 6.30% 7.40% 

Capital cost of SDM 
Development $335,000 $455,000 $380,000 $25,000 $345,000 $375,000 

Turbine Capital Cost (/kW) $1,500 $2,000 $1,750 $100 $1,750 $1,750 

% reduction O&M costs  
(Yr 1-5) 4.00% 5.50% 4.80% 0.30% 4.40% 4.90% 

% reduction O&M costs  
(Yr 6-20) 8.00% 11.00% 9.70% 0.60% 8.80% 9.70% 

Power Perf. Improvement 0.30% 3.00% 1.40% 0.80% 0.40% 1.30% 
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Scenario 3 

Overview 

Scenario 3 is identical to Scenario 2 in every way except the added benefit of 
project life extension has been assumed. The premise for this assumption is that 
SCADA data mining allows the operator to correct a number of operating 
conditions that place unnecessary additional loads on the machine. For instance 
power performance monitoring may reveal that a turbine is underperforming due 
to off-yaw operation, blade angle asymmetry or some other controls-related issue 
that, if corrected, would serve to reduce loads in addition to increasing power 
output. Similarly, condition monitoring would drive the development of 
preventive and condition-based maintenance strategies which has a goal of 
maximizing the useful life of turbine components. As a result, this scenario 
assumes the additional benefit of 2 years of extended life for the turbines. 

Again, in addition to funding the development of machine-specific algorithms, 
the project depicted in this scenario would also be expected to pay an annual or 
monthly fee on a per turbine basis for remote monitoring services by the third 
party provider.  

A Monte Carlo simulation was run with 10,000 iterations. The resulting 
distribution of all inputs and outputs of the probabilistic assessment are 
summarized in Table  5-4.  Note that these results show the potential, not likely, 
outcomes. 

Results 

Using tools such as power curve analysis, and condition monitoring to increase 
turbine availability would yield an expected increase of 2.3% in net Annual 
Energy Production (AEP) in years 1 through 20. At $75 / MWh, that equates  
to additional annual revenue of $10,000 /WTG at the 50% probability level 
(P50) and $5,500 /WTG at the 90% probability level (P90).  

The condition monitoring and fault diagnosis/prognosis provided by SDM 
would yield an reduction in O&M costs of 8.75% or roughly $2,750/year per 
turbine averaged over the 22 year project life. However, since O&M costs are 
expected to increase as the turbines age, the annual O&M cost savings should 
also increase over time as they are a function of overall O&M costs.  

The gross NPV of the investment in SCADA Data Mining is estimated to be 
$176,000 /WTG at the 50% probability level (P50) and $125,000 /WTG at the 
90% probability level (P90).  

Expected costs for the development and implementation of the SDM software 
tool are expected to be $3,750 /WTG at the 50% probability level (P50) and 
$3,500 /WTG at the 90% probability level (P90). The annual service fee per 
WTG has been estimated for three different payback periods of 5, 7.5 and  
10 years (see Table  5-4). 
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Assuming the gross benefits described above, the annual fee per turbine that 
would yield a payback period of 5 years is expected to be $10,250 /WTG at the 
50% probability level (P50) and $5,750 /WTG at the 90% probability level 
(P90). The 2 years of extended life does not affect this calculation since those 
benefits are not experienced in the first 5 years of project operations.  

After 22 years of operation, the internal rate of return (IRR) for this investment 
is estimated to be 35%. 

 

Figure 5-5 
Percent Change in NPV – Scenario 3 

Assuming the capital costs described above and an annual service fee yielding a  
5 year payback period, the NPV of net benefits of implementing SDM for the 
purposes of power performance improvement (PPI) and condition monitoring 
are expected to be $64,000 /WTG at the 50% probability level (P50) and 
$50,000 /WTG at the 90% probability level (P90). The distribution of these 
results is shown in Figure  5-5. 
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Figure 5-6 
Percent Change in Cost of Energy – Scenario 3 

The expected reduction in CoE is estimated to be 4.1% at the 50% probability 
level (P50) and 3.3% at the 90% probability level (P90). The distribution of these 
results is shown in Figure  5-6. 

A summary of the distributions of all inputs and outputs related to the 
probabilistic assessment of Scenario 3 is provided in Table  5-4. 

For each input and output category, the following outcomes are provided in their 
appropriate units: 

 Minimum value 

 Maximum Value 

 Arithmetic mean 

 Value of one standard deviation 

 Likely value at the 90% probability level (P90) 

 Likely value at the 50% probability level (P90) 
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Table 5-4 
Summary of Probabilistic Assessment for Scenario 3 

 Category Min. Max. Mean Std Dev. P90 P50 

O
U

TP
U

TS
 

S3 - Average % reduction in 
annual O&M Costs 7.20% 9.70% 8.60% 0.50% 7.90% 8.60% 

S3 - % change in TAG COE -5.90% -3.00% -4.20% 0.70% -3.30% -4.10% 

S3 - Annual O&M Savings 
/WTG $2,500 $3,250 $3,000 $250 $2,750 $3,000 

S3 - Annual Energy Prod 
Increase /WTG $4,000 $19,500 $10,500 $4,000 $5,500 $10,000 

S3 - Annual $Benefit /WTG $6,500 $22,750 $13,500 $4,000 $8,250 $12,750 

S3 - NPV lifetime additional 
revenue /WTG $67,500 $293,250 $155,500 $45,750 $100,000 $149,500 

S3 - NPV lifetime O&M savings 
/WTG $18,000 $35,500 $26,500 $3,000 $22,500 $26,500 

S3 - NPV of Gross SDM 
$Benefits /WTG $87,500 $326,250 $182,000 $47,000 $125,000 $176,000 

S3 - NPV of Net SDM $Benefits 
/WTG - 5 Yr payback period $39,000 $94,500 $64,250 $10,500 $50,000 $64,000 

S3 - NPV of Net SDM $Benefits 
/WTG - 7.5 Yr payback period $33,500 $84,500 $56,500 $10,000 $43,000 $56,750 

S3 - NPV of Net SDM $Benefits 
/WTG - 10 Yr payback period $29,250 $76,250 $50,500 $9,500 $37,500 $50,500 

S3 - Annual fee - 5 Yr payback 
period $4,250 $20,000 $10,750 $4,000 $5,750 $10,250 

S3 - Annual fee - 7.5 Yr 
payback period $4,750 $20,750 $11,500 $4,000 $6,250 $11,000 

S3 - Annual fee - 10 Yr payback 
period $5,250 $21,250 $12,000 $4,000 $7,000 $11,500 
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Table 5-4 (continued) 
Summary of Probabilistic Assessment for Scenario 3 

 Category Min. Max. Mean Std Dev. P90 P50 

IN
PU

TS
 

Discount rate 5.50% 10.00% 7.50% 0.90% 6.30% 7.40% 

Capital cost of SDM 
Development $335,000 $455,000 $380,000 $25,000 $345,000 $375,000 

Turbine Capital Cost (/kW) $1,500 $2,000 $1,750 $100 $1,750 $1,750 

% reduction O&M costs  
(Yr 1-5) 4.00% 5.50% 4.80% 0.30% 4.40% 4.90% 

% reduction O&M costs  
(Yr 6-20) 8.00% 11.00% 9.70% 0.60% 8.80% 9.70% 

Power Perf. Improvement 0.30% 3.00% 1.40% 0.80% 0.40% 1.30% 
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Discussion 

Of the three scenarios evaluated, Scenario 1 shows the most potential for 
reducing COE. The P90 value for the estimated percent change in Cost of 
Energy is -4.9%. Therefore, in 90% of outcomes the simulation is estimating that 
CoE will be reduced by at least 4.9% over the life of the project. This is driven 
primarily by 1) increased revenue due to power performance improvement using 
SDM to perform power curve analysis followed by 2) reduction in O&M cost 
from CM. The CoE estimate for Scenario 1 is particularly sensitive to variations 
in the impact of PPI as shown in Figure  5-7. This tornado graph shows the 
amount of change in the output (CoE) due to a +1 standard deviation change in 
each input.  

 

Figure 5-7 
CoE Sensitivities to Input Values – Scenario 1 

The estimated impact of SDM on the CoE of Scenario 1 is nearly three times 
that of Scenario 2 and 1.5 times that of Scenario 3. The P90 values for the 
estimated percent change in CoE are -1.7% for Scenario 2 and -3.3% for 
Scenario 3. Again, these impacts are most sensitive to changes in the impact of 
PPI as shown by the tornado graphs below (Figure  5-8 and Figure  5-9). 
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Figure 5-8 
CoE Sensitivities to Input Values – Scenario 2 

 

Figure 5-9 
CoE Sensitivities to Input Values – Scenario 3 

Because of the larger capacity of the turbines in Scenarios 2 and 3, the cash flows 
are also larger in those scenarios compared to Scenario 1. Therefore, despite a 
greater impact on CoE, the NPV of the SDM investment for Scenario 1 is lower 
than for Scenarios 2 and 3. Using this metric, SDM is most valuable for  
Scenario 3 where the additional revenue assumed in years 21 and 22 of operation 
contribute to a P90 value for NPV of $50,000 per turbine (assuming a 5 year 
payback period) compared to $5,250 for S1 and $14,750 for S2.  
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Conclusions  

This report has estimated that an investment in SDM technology appears to have 
economic merit across all three scenarios evaluated in the study. Although the 
impacts of SDM may vary from project to project, it is clear that it should be 
explored as an option for operators trying to achieve high availability and optimal 
production through the design life of the turbine and beyond.  

The value of this technology may be most relevant to projects that no longer have 
OEM involvement since they are not likely to benefit from OEM driven 
improvements such as GE’s SDA service – offered exclusively as a bundle with 
their extended service agreements. For these projects, remote CM and 
performance monitoring could be effectively provided by third-party suppliers of 
SDM services. 

The cost of operating a 24/7 remote monitoring center was estimated to be 
roughly $1.2MM per year. It is possible to estimate the number of turbines 
required to fund such an operation. Assuming a 5-year payback period, the range 
of P90 values estimated for the annual service fee (charged on a per turbine basis) 
is just under $6,000 for all three scenarios. A remote monitoring center would 
therefore need at least 200 turbines under contract in order to cover its 
operational expenses.  

All three scenarios considered apply to onshore applications. However, the 
benefits of reduced component failures would be even greater for offshore wind 
plants as well as for tall towers because of the higher costs and downtime 
associated breakdown and the challenges associated with the offshore 
environment and higher hub heights, respectively.  

Recommendations  

A number of Research and Development (R&D) activities would further benefit 
SDM applications to wind turbines. Recommendations for future work include 
the following.  

 The expected benefits of SDM applied in this study are largely based on 
academic research or limited data from applications of SDM technology by 
OEMs and third-party developers. An evaluation of this technology would 
benefit greatly from additional independent testing and operational data. 

 Although the initial capital costs of developing machine-specific SDM 
algorithms for condition-monitoring and performance monitoring may be 
too much for a single project operating a small number of sub-MW turbines, 
an owners-groups consisting of several projects operating the same turbine 
model(as described in Scenario 1) may offer economies of scale that allow for 
collaborative funding opportunities. An evaluation of this funding model 
may help accelerate opportunities to bring SDM into the market for older 
projects operating sub-MW turbines. In this manner, most of the benefits  
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claimed by large operators with centralized 24/7 manned control rooms can 
be obtained by smaller operators by collaborating in the development of 
machine-specific software and funding third party supervisory services. 

 The effectiveness of SDM tools will only increase with greater access to 
higher quality and higher frequency SCADA data. To this end, it is 
recommended that wind plant owners and operators develop new contract 
requirement allowing greater access to their wind turbines operational data 
both during and after the warranty period. 

 Standardizing communication protocols across OEM SCADA systems 
under the IEC 61400-25 standard would significantly improve 
interoperability and enhance the capacity to link machines of different makes 
using a single third-party system. Some wind turbine OEMs in the process 
of developing IEC 61400-25-compliant interfaces to improve the operational 
management of wind plants with turbines and sensors from various 
manufacturers. The continued development of IEC-61400-25 compliant 
systems would greatly benefit the development and capabilities of  
SDM tools. 
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