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PRODUCT DESCRIPTION 
Customer demand for electricity (i.e. load) varies from moment to moment. Electric load 
volatility impacts utility costs, and ultimately profits, of providing electricity. This report 
explains what electric load volatility is, why it matters to stakeholders, how it has likely changed 
in recent decades, how it might be measured, and how its adverse impacts might be mitigated. 

Background 
“Load volatility” is a standardized measure of the uncertainty of future customer electricity 
loads. Aggregated across customers, load volatility also affects the costs of maintaining reliable 
power systems. Due to the growth of distributed resources, and because of changes in the 
technical and institutional bases for controlling power systems, load volatility issues have 
evolved over the past two decades. This report investigates electric load volatility. 

Objectives 
To survey existing methods to describe and explain the concept of electric load volatility. 

Approach 
The report was developed based upon the authors’ experience with the subject at hand, 
supplemented by appropriate references to the literature. 

Results 
This research explains concepts and surveys existing methods. It includes sections that define 
load volatility, why it matters, how load volatility might be changing, modeling and forecasting 
load and load volatility, and managing the impacts of load volatility. Further research into load 
modeling and forecasting, demand-side program database development, and production patterns 
of emerging distributed resource technologies is needed to investigate the measurement and 
mitigation of load volatility. 

Applications, Value, and Use 
This report is addressed to a general audience of electricity industry stakeholders, particularly 
those interested in issues pertaining to retail electricity pricing and electricity investment, 
including distributed resource investment. 

Keywords 
Demand response 
Distributed resources 
Electricity pricing 
Load forecasting 
Time-based pricing 
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ABSTRACT 
This report explains what electric load volatility is, why it matters to stakeholders, how it has 
likely changed in recent decades, how it might be measured, and how its adverse impacts might 
be mitigated. “Electric load volatility” is a standardized measure of the uncertainty of future 
customer electricity loads. It is important because of the impact it has on the costs, and ultimately 
the profitability, of providing electrical energy. Aggregated across customers, load volatility also 
affects the costs of maintaining reliable power systems. Load volatility is changing over time 
because of ongoing changes in the ways that customers use electricity, and an ongoing 
proliferation of distributed resources throughout power systems. Load volatility is measurable 
through calculations derived from load forecasting models. Utilities can manage the impacts of 
load volatility by reducing load volatility itself, and by mitigating its financial impacts. 
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EXECUTIVE SUMMARY 
“Load volatility” is a standardized measure of the uncertainty of future customer electricity loads 
due to random events such as changing business conditions and changing weather. It is a 
measure of the uncertainty of load outcomes around the expected load profile.  

Because the factors underlying load uncertainty vary among customers, load volatilities will vary 
across customer classes and will sometimes be very customer-specific. Since these factors can 
differ by season, day of week, and time of day, load volatilities will generally change over time, 
even for a single customer.  

Just as grid resilience is an important aspect of designing and maintaining an electric system, so 
too is load volatility. Load volatility is the customer analog, behind the meter, to grid resilience. 
In fact, one could postulate the creation of a resilience market, where the supply and demand for 
resilience and volatility could be established and priced based on customer demands, capacity 
assets and end-use technology. 

Why Load Volatility Matters 
Load volatility is important because of the impacts it has on the costs, and ultimately the 
profitability, of providing electrical energy. Aggregated across customers, load volatility also 
affects the costs of maintaining reliable power systems. By using load volatility to quantify load 
uncertainty, we can quantify load-related risks to electricity provider profits and power system 
reliability. This information can facilitate electricity providers’ efforts to incorporate these risks 
into their pricing and investment policies.  

In setting retail prices, the retailer faces financial risks due both to the uncertainties in loads and 
wholesale energy prices, and to the covariance between loads and wholesale energy prices. In 
other words, load volatility affects retail electrical energy prices through its interaction with 
wholesale price volatility. When load volatility and wholesale prices are positively correlated, 
load volatility raises the breakeven retail electricity prices above the expected wholesale energy 
price.  

Aggregate load volatility reflects critical uncertainties that the supply of resources must address, 
raising the quantities of resources needed to meet load, and that must have the frequency control 
and fast-start capabilities needed to meet load changes. As aggregate load volatility rises, there 
are greater threats to reliability and higher resource costs to maintain reliability.  

How Load Volatility May Be Changing 
Load volatility is driven by factors that are common to many customers, as well as by factors that 
are idiosyncratic to particular customers. In the short run, weather affects many loads, while 
leisure and short-term economic factors affect different customers according to their particular 
circumstances. In the long term, broad changes in economic conditions and technology affect 
many loads similarly, while other economic and business circumstances affect different 
customers in different ways. 

Because the drivers of load volatility are changing over time, load volatility itself – at both the 
individual customer level and in the aggregate – may be changing over time. Such volatility 
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changes are likely to have occurred in recent years, and are likely to still be occurring, due to 
ongoing changes in the ways that customers use electricity, and to an ongoing proliferation of 
distributed resources throughout power systems. Customers’ uses of electricity are changing as 
technologies advance, as consumer tastes evolve, and as the national economy continues moving 
away from heavy industry and toward services. Because network resources need to cover the 
portion of consumption that is not covered by distributed resources, the need for and cost of 
network resources is significantly influenced by the power provided by and reliability of 
distributed resources.  

Modeling and Forecasting Load and Load Volatility 
Because load volatility measures the uncertainty of load outcomes around the expected load 
profile, a key conceptual and practical challenge is to distinguish between expected changes in 
load and unexpected deviations in load. In the load data, expected changes and unexpected 
deviations are intertwined. The analytic objective is to separate these two strands, using 
statistical analysis to peel off the uncertainty strand and then use that strand to calculate and 
analyze volatility.  

Many different types of models can be used to estimate expected loads. All models nonetheless 
reveal deviations between expected loads and actual loads. These deviations serve as the error 
terms from which load volatility can be quantified. 

Managing the Impacts of Load Volatility 
Utilities can manage the impacts of load volatility in two basic ways. The first is by reducing 
load volatility itself. The second is by mitigating the financial impacts of load volatility.  

Reducing the volatility of load itself requires that the utility have some means of reducing load 
uncertainty, which means somehow placing limits on customers’ loads. In the U.S., this can be 
achieved through direct load control programs, price signals that influence loads (such as through 
real-time pricing, critical peak pricing, and peak-time rebate programs, or through demand 
charges), and technology fixes (like smart energy systems, storage technologies, and Internet-
connected devices). 

The financial impacts of load volatility can be mitigated by reducing load volatility or by pricing 
retail products to incorporate costs associated with load and wholesale price volatilities. The 
retail design problem is partly a matter of setting retail prices at the appropriate levels and partly 
a matter of differentiating electricity products and customers. To achieve an expected breakeven 
price, the level and structure of retail prices must reflect the costs of providing customers with 
the energy, ancillary, transmission, and distribution services that they use. Because load volatility 
is not a service per se, there should not be any price on load volatility itself. Instead, the costs of 
load volatility should be recovered through the prices of the services that are made more costly 
by load volatility. The costs of load volatility may also be reduced by differentiating retail prices 
by time, location, and customer. 

Directions for Further Research 
There are a few lines of research that may shed light on the measurement and mitigation of load 
volatility. First, because the quantification of load volatility is a derivative of load forecasting, 
future research may profitably engage in a detailed examination and synthesis of the econometric 
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literature on load modeling and forecasting. Second, because system operators can mitigate load 
volatility through demand-side management programs, it would be helpful to develop a database 
that indicates the extent to which such programs result in actual demand reductions. Third, future 
research could explore in detail the effects on net load volatility of emerging distributed 
technologies. 
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1-1 

1  
INTRODUCTION 
Load volatility is important because of the impacts that it has on the costs, and ultimately the 
profitability, of providing electrical energy. Aggregated across customers, load volatility also 
affects the costs of maintaining reliable power systems. Load volatility issues have evolved over 
the past two decades because of the growth of distributed resources and because of changes in 
the technical and institutional bases for controlling power systems.  

This report explains what electric load volatility is, why it matters to stakeholders, how it has 
likely changed in recent decades, how it might be measured, and how its adverse impacts might 
be mitigated. It is organized accordingly. 
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2  
WHAT IS ELECTRIC LOAD VOLATILITY? 
Customers’ electricity demands – called “loads” – vary from moment to moment. A customer’s 
historical load profile indicates the past experience of what the customer’s loads have been, 
usually on an hourly basis. The historical load profile depends partly on the customer’s usual 
routine but also depends upon random events that affect the customer’s electricity-using 
activities. Forecasts of a customer’s future load profile reflect the expectation of what the 
customer’s loads will be based upon the customer’s usual routine but do not reflect uncertain 
random events. A customer’s actual future loads can therefore be regarded as consisting of two 
components, an expected future load profile plus unexpected loads that depend upon uncertain 
future events.  

Different customers have very different load profiles. For example, a three-shift industrial 
customer with around-the-clock operations might have a load that is nearly constant every hour 
of the year, yielding a flat load shape. An agricultural goods processor might have higher loads 
around harvest time than at other times of the year. A commercial customer might have high 
loads during weekday business hours and low loads otherwise. A residential customer might 
have loads that are highest during evening and weekend hours, and highest during the summer 
cooling season. 

Figure 2-1 presents the actual historical loads of a hypothetical residential customer along with 
the expected loads that would have been statistically forecast based upon the customer’s past 
behavior. The horizontal axis indicates the hour of the day, while the vertical axis shows the 
customer’s load in MW. In this example, the customer’s actual loads (represented by the solid 
blue line) are lower than the forecast loads (represented by the dashed red line), possibly because 
this particular summer day may have had cooler weather, and therefore lower cooling needs, than 
usual.  

Statistical analysis enables us to identify the uncertain component of the customer’s load as the 
difference between the actual and expected loads. This uncertain component provides the data 
with which load volatility may be quantified. 

Load volatility is a standardized measure of the uncertainty of future customer electricity loads 
due to random events such as changing business conditions and changing weather. It is a 
measure of the uncertainty of load outcomes around the expected load profile. This uncertainty is 
illustrated, for example, by the differences between the two lines in Figure 2-1. The 
quantification of this measure depends upon the plausible assumption that the range of future 
load outcomes is bounded by our knowledge of the past history of loads, so that the load-related 
risks to electricity provider profits and power system reliability can also be bounded. 

Because the factors underlying load uncertainty vary among customers, load volatilities will vary 
across customer classes and will sometimes be very customer-specific. Because the factors 
underlying load uncertainty can vary by season, day of week, and time of day, load volatilities 
will generally vary over time even for a single customer. 
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Figure 2-1 
Actual Versus Expected Loads for a Hypothetical Customer 

Load volatility is not a measure of the amount by which load changes from hour to hour because 
such changes are expected due to customers’ routinely changing electricity needs over the course 
of a day, a week, or a year. Instead, load volatility is a measure of the uncertainty in how much 
electricity that customers will consume in each time period. In other words, load volatility can be 
defined as the deviation of load from an expected reference level in some specified period of 
time, usually an hour. 

Consequently, the term load volatility refers to an entirely different phenomenon than the price 
volatility associated with stock market equities. For a particular common stock, for example, 
price volatility measures the amount by which the price of the stock bounces around from hour to 
hour or day to day. The key fact is that the stock price is for a single good, namely a share of 
some corporation. Load volatility, by contrast, does not refer to the amount by which load 
bounces around from hour to hour because, among other things, electricity at noon on Thursday 
is not the same good as electricity at midnight on Saturday. Instead, load volatility measures how 
actual load at noon on Thursday deviates from expected load at noon on Thursday. While price 
volatility for equities reflects the speed with which investors’ perceptions of a stock’s value 
changes over time, electricity load volatility reflects the uncertainty in loads at each particular 
moment in time. 

Electricity load volatility can reflect uncertainties in future electricity prices to the extent that 
customers who face time-differentiated prices respond to those prices. For such customers, 
uncertain prices are among the random events that affect load. If future time-differentiated prices 
were known with certainty, then these prices might affect the customer’s load profile but would 
not affect the customer’s load volatility. 
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Consequently, a key conceptual and practical challenge is to distinguish between expected 
changes in load and unexpected deviations in load. In the load data, expected changes and 
unexpected deviations are intertwined. The analytic objective is to separate these two strands, 
using statistical analysis to peel off the uncertainty strand and then use that strand to calculate 
and analyze volatility. In other words, the challenge is to distinguish the signal and the noise, 
discerning whether there is information in the noise that can explain some part of the noise and 
how it might be changing over time. Volatility is a way of measuring the noise. 
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3  
WHY LOAD VOLATILITY MATTERS 
Load volatility affects the costs, and ultimately the profitability, of providing electrical energy. 
Aggregated across customers, load volatility also affects the costs of maintaining reliable power 
systems. By using load volatility to quantify load uncertainty, we can quantify load-related risks 
to electricity provider profits and power system reliability. This information can facilitate 
electricity providers’ efforts to incorporate these risks into their pricing and investment policies. 

Impacts on the Profitability of Providing Electrical Energy 
In each hour, a retailer’s gross profit from the sale of electrical energy to a particular customer 
equals that customer’s load times the amount by which the retail price exceeds the wholesale 
energy price of energy. For any hour h and customer j, this can be expressed as: 

𝑮𝑮𝑮𝑮𝑮 𝑷𝑷𝑷𝑷𝑷𝑷𝒉𝒉 =  𝑳𝒉𝒉  ∗  �𝑷𝒉𝒉 −𝑾𝑾𝑾𝒉� Eq. 3-1 

where 𝐺𝐺𝐺𝐺𝐺 𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑗 is the gross profit from selling power to customer j in hour h, 𝐿ℎ𝑗 is the 
load of customer j in hour h, 𝑃ℎ𝑗 is the retail price charged to customer j in hour h, and 𝑊𝑊𝑊ℎ is 
the wholesale energy price in hour h. When the retail price must be set in advance, as is usually 
the case, this gross profit is uncertain because both the customer’s load and the wholesale energy 
price are uncertain.  

While an individual customer’s load rarely affects wholesale energy prices, individual 
customers’ loads will often be correlated with wholesale energy prices. For example, on hot 
summer days, high customer loads will need to be served, at the margin, by relatively costly 
power plants; so high customer loads will cause, and be correlated with, high wholesale energy 
prices.  

Given a preset retail price, the variance of the gross profit depends upon the variances and 
covariance of load and wholesale energy price: 

𝑣𝑣𝑣�𝐺𝐺𝐺𝐺𝐺 𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑗� =  �𝑃ℎ𝑗 − 𝐸{𝑊𝑊𝑊ℎ}�
2
∗ 𝑣𝑣𝑣�𝐿ℎ𝑗� + 𝐸� 𝐿ℎ𝑗�

2
∗ 𝑣𝑣𝑣(𝑊𝑊𝑊ℎ) 

−2 ∗ 𝐸�𝐿ℎ𝑗� ∗ �𝑃ℎ𝑗 − 𝐸{𝑊𝑊𝑊ℎ}� ∗ 𝑐𝑐𝑐�𝐿ℎ𝑗 ,𝑊𝑊𝑊ℎ�  

+ 𝒗𝒗𝒗�𝑳𝒉𝒉� ∗ 𝒗𝒗𝒗(𝑾𝑾𝑾𝒉) + 𝒄𝒄𝒄�𝑳𝒉𝒉,𝑾𝑾𝑾𝒉�
𝟐 Eq. 3-2 

This equation shows that, in setting retail prices, the retailer faces financial risks due both to the 
uncertainties in loads and wholesale energy prices and to the covariance between loads and 
wholesale energy prices.  

In general, retailers should set retail prices according to an expected load-weighted average of 
wholesale energy prices. This is not the same as setting retail prices according to the wholesale 
energy prices associated with expected loads, however. Because loads are correlated with 
wholesale energy prices, pricing according to expected loads would not be sufficient to give the 
retailer an expected profit. This can be seen in Figure 3-1, which provides a simplistic illustration 
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of the problems created by the correlation between loads and wholesale energy prices. The figure 
shows wholesale energy prices as a function of total power system load. Because it is common 
for wholesale energy prices to rise more rapidly at high load levels than at low load levels, the 
figure shows a wholesale energy price curve that has a slope that rises with load.  

 
Figure 3-1 
Loads, Wholesale Energy Prices, and Profitable Pricing 

Suppose that system load has a 50% chance of being at level L1 and a 50% chance of being at 
level L2. The wholesale energy price associated with average load Lavg is WEPavg. But the 
average of the wholesale energy prices associated with L1 and L2 – that is, the average of WEP1 
and WEP2 – is WEPcorr, which is higher than WEPavg. To operate profitably, the retailer needs to 
base retail prices on WEPcorr, and would lose money by basing its prices on WEPavg. In other 
words, load uncertainty, as measured by a metric such as load volatility, is critical for 
determining competitive retail electricity prices. 

Load volatility tends to raise expected marginal costs, particularly at high load levels. Although 
the load volatility of individual customers does not impact wholesale energy prices and the 
consequent competitive retail prices, aggregate load volatility does impact these costs and prices. 
Nonetheless, for retail pricing purposes, the uncertainties that matter are those of the individual 
customers or groups of customers for whom particular retail rates are being developed. 

Impacts on Resource Investment and Power System Reliability 
Power systems must incur significant capital and operating costs to address the reliability issues 
created by load volatility. Because the demand and supply of electricity must be equal at all 
times within each electric power system, power resources must be sufficient to meet the system’s 
peak demand with a margin of error sufficient to cover resources’ forced outages and to cover 
the uncertainties in exactly what peak demand will be. Furthermore, more volatile loads are more 
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difficult to follow, generally requiring more capital equipment (at the generation, transmission, 
and distribution levels) to meet uncertain peak loads, and generally requiring both more capital 
equipment and higher operating costs to provide regulating and operating reserves (ancillary 
services) than do less volatile loads. Resource costs depend upon the quantity of capacity that is 
needed to meet peak load, and upon the types of resources that are needed to meet the system 
load pattern at least cost, considering not only the durations of load levels but also the speeds at 
which loads ramp up and down and the uncertainties in the required ramp rates. 

Load is thus a key determinant of the quantity, mix, and costs of the resources that are needed to 
reliably operate power systems. Load volatility reflects critical uncertainties that the supply of 
resources must address, raising the quantity of resources that is needed to meet load and raising 
the quantity of resources that must have the frequency control and fast-start capabilities that are 
needed to meet unexpected load changes. Higher load volatility poses a greater threat to 
reliability and requires greater resource costs to maintain reliability than does lower load 
volatility. 

For reliability and planning purposes, aggregate load volatility, not individual customers’ load 
volatilities, is critical. This aggregate load volatility can be measured over the several time 
frames that are important in maintaining reliability. These include the planning time frames (in 
years) required for resource investments as well as the operating time frames (in days or hours) 
required for power system commitment and dispatch. 

Implications of Volatility for Retail Electricity Pricing 
Load volatility affects retail electrical energy prices through its interaction with wholesale price 
volatility. For example, a “flip-the-switch” retail product with a fixed price set at time 0 for some 
future hour h would have the following breakeven price:1 

𝑃𝐹𝐹𝐹 = 𝐹0,ℎ𝑒𝜌𝜎𝑃𝜎𝐿ℎ Eq. 3-3 

where F0,h is the forward price or expected spot price at time 0 for future hour h, e is the 
exponential operator (2.71828), ρ is the correlation between load and wholesale spot price 
volatilities, σP is wholesale spot price volatility, and σL is load volatility. Equation 3-3 says that 
the flip-the-switch price equals the expected spot price with an adjustment for price and load 
volatility. Because the exponential operator, the volatilities, and future hour are all positive 
numbers, the direction of the adjustment – positive or negative – depends entirely on the sign of 
ρ, the correlation between loads and spot prices: 

• If ρ < 0, PFTS < F0,h, so if loads and spot prices tend to move in opposite directions, the flip-
the-switch price will be lower than the expected spot price.  

• If ρ = 0, PFTS = F0,h, so if loads and spot prices are uncorrelated, the flip-the-switch price will 
be the same as the expected spot price. 

• If ρ > 0, PFTS > F0,h, so if loads and spot prices tend to move in the same direction, the flip-
the-switch price will be higher than the expected spot price. 

                                                      
 
1 This equation is from [20, p. 12-11]. 
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Because the correlation is generally positive (i.e., when loads are unexpectedly high, prices tend 
to be unexpectedly high), the flip-the-switch price will generally exceed the expected spot price. 
Note, however, that high load volatility is important only when the correlation and wholesale 
price volatility are both significant. 

Load volatility has the similar impacts on breakeven retail electricity prices in general as it does 
on breakeven flip-the-switch prices in particular: it affects breakeven prices according to load 
volatility, wholesale spot price volatility, and the correlation between loads and wholesale spot 
prices. Because this correlation is usually positive, load volatility usually raises breakeven retail 
prices above expected wholesale energy prices. On the other hand, because the volatilities and 
correlation can differ by season and time of day, the impacts of load volatility upon price can 
vary by time of use, being larger in some time periods (particularly peak periods, when small 
load changes can cause large spot price changes) than in other time periods. 

In principle, prices could be set so that each customer bears the costs of the risks created by their 
individual load volatility. For administrative reasons, however, it would usually be practical to 
apply such individual treatment only to the largest customers. For most customers, prices would 
usually be set so that each customer group bears the costs of the risks created by their aggregate 
load volatility. 
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4  
HOW LOAD VOLATILITY MAY BE CHANGING 
Load volatility is driven by factors that are common to many customers as well as by factors that 
are idiosyncratic to particular customers. Load volatility is also driven by factors that can be 
distinguished by the duration of their impacts. 

Table 4-1 presents a partial list of the drivers of load volatility, distinguished by commonality 
and duration. In the short run, weather affects many loads, while leisure and short-term economic 
factors affect different customers according to their particular circumstances. In the long term, 
broad changes in economic conditions and technology affect many loads, while other economic 
and business circumstances affect different customers in different ways. 

Table 4-1 
Some Drivers of Load Volatility 

Duration Common Drivers Idiosyncratic Drivers 

Short-Term 
(hours or days) 

weather For residences: 
• Vacations 

For businesses: 
• Sales 
• Operational circumstances 

Long-Term 
(months or years) 

• Overall economic conditions 
• Changing electricity uses 
• Advances in distributed 

resource technologies 

For residences: 
• Economic circumstances 

For businesses: 
• Competition 
• Applicable technological 

progress 

 
Because the drivers of load volatility are changing over time, load volatility itself – at both the 
individual customer level and in the aggregate – may be changing over time. Such volatility 
changes are likely to have occurred in recent years, and are likely to still be occurring, due to 
ongoing changes in the ways that customers use electricity and to an ongoing proliferation of 
distributed resources throughout power systems. 

Uses of Electricity Are Changing 
Customers’ uses of electricity are changing as technologies advance and as consumer tastes 
evolve. Aggregate loads on power systems are changing as the national economy continues 
moving away from heavy industry and toward services. 

Evolving Consumer and Industrial Technologies 
In the period 1998-2005, total U.S. residential electricity use doubled for lighting; increased by 
more than 50% for home entertainment systems and space cooling; increased by about 10% for 
dishwashers, clothes dryers, and personal computers; and dropped by more than 10% for 
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freezers, space heating, and refrigeration.2 Figure 4-1 shows that, between 1978 and 2005, 
residential use of energy (including gas and oil) dramatically shifted from space heating toward 
relatively electric-intensive uses for appliances, electronics, and air-conditioning. Figure 4-2 
shows that the percentages of households having various types of appliances changes over time, 
sometimes rising and sometimes falling, with occasional dramatic increases in market 
penetration of new technologies (microwave ovens in this figure). Figure 4-3 shows that the 
percentage of homes with air conditioning has risen substantially throughout the U.S. in recent 
decades. These figures together illustrate the unsurprising fact that residential uses of electricity 
have changed significantly during past decades. 

 
Figure 4-1 
U.S. Total Residential Energy Uses, 1978 and 20053 

 

                                                      
 
2 See [10, p. 138]. 
3 The figure is from [13, Figure 1]. 
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Figure 4-2 
Penetration of Select Household Appliances in the U.S., 1978-20094 

 
Figure 4-3 
Percent of U.S. Homes with Air Conditioning, by Region, 1980-20095 

                                                      
 
4 The figure is from [13, Figure 1]. RECS is the Residential Energy Consumption Survey (RECS) administered by 
the U.S. Energy Information Administration. 
5 The figure is from [13, Figure 6]. 
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Figure 4-4 shows how major residential uses of electricity, excluding electric vehicles, are 
forecast to evolve over the next three decades.6  Each curve indicates the share of each of the 
seven largest uses as a percentage of total residential electricity consumption. The significant 
trends shown in the figure are a substantial drop in the share of lighting load, a small drop in the 
share of refrigeration load, an erratic drop in the share of space heating load, and a 
correspondingly erratic increase in the share of space cooling load. Not shown in the figure is an 
increase in the aggregate share of electric vehicle and other loads. 

 
Figure 4-4 
U.S. Residential Customer End-Use Shares of Electricity, 2012-20407 

Figure 4-5 shows how major commercial uses of electricity, excluding electric vehicles, are 
forecast to evolve over the next three decades. Each curve indicates the share of each of the five 
largest uses as a percentage of total commercial electricity consumption. An upward trend is 
forecast only for non-computer office equipment. Downward trends are forecast for the other 
four major uses, with particularly significant decreases in lighting and refrigeration loads. There 
is a significant forecast increase in the aggregate share of other loads not shown in the figure.  

                                                      
 
6 Unfortunately, the forecasts of residential and commercial uses exclude electric vehicle use, the data for which are 
buried in a forecast of fuel requirements for the transportation sector. 
7 Data are from [24, Table A4]. 
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Figure 4-5 
U.S. Commercial Customer End-Use Shares of Electricity, 2012-20408 

Evolving Customer Mix 
Figure 4-6 shows how, for the U.S. as a whole, the relative consumption of electrical energy has 
shifted among customer classes over the past quarter century and is forecast to shift over the next 
two decades. The residential share of consumption, represented by the short-dashed blue line, has 
risen modestly from 35% of total electrical energy consumption in 1990 to 38% in 2015, with a 
modest drop to 36% forecast for 2035. The changes in the commercial and industrial shares, by 
contrast, have been more dramatic, as the U.S. economy has shifted away from manufacturing 
and toward services. Between 1990 and 2015, the commercial share, represented by the long-
dashed red line, has moved upward from 29% to 36%, while the industrial share, represented by 
the solid green line, has moved downward from 36% to 26%. Between now and 2035, both the 
commercial and industrial shares are forecast to rise slightly, to 37% for the commercial class 
and 28% for the industrial class. 

 

                                                      
 
8 [24, Table A4]. 
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Figure 4-6 
Shares of U.S. Electrical Energy Consumption, by Major Class, 1990-20349 

The de-industrialization implied by Figure 4-6 would have increased overall load volatility if 
residential and commercial customers, having relatively weather-sensitive loads, have higher 
volatility than the industrial class. 

Distributed Resources Are Changing Needs for Network Resources 
Distributed resources are gaining larger shares of total power production, a trend that is widely 
forecast to continue into the future. Network resources need to cover the portion of consumption 
that is not covered by distributed resources. For example, a residential customer with rooftop 
solar panels has a net load equal to their gross consumption of electricity minus their solar 
output; and network resources must serve that net load. Consequently, the need for and cost of 
network resources is significantly influenced by the power produced by distributed resources.  

In mathematical terms, the power system needs to serve customers’ net loads, which are equal to 
the amounts by which gross loads differ from own-generation: 

𝑁𝑁𝑁𝑁ℎ𝑗 =  𝐺𝐺𝐺𝐺𝐺𝐺ℎ𝑗 − 𝐺𝐺𝐺ℎ𝑗 Eq. 4-1 

where 𝑁𝑁𝑁𝑁ℎ𝑗 and 𝐺𝐺𝐺𝐺𝐺𝐺ℎ𝑗 are respectively the net and gross loads of customer j in hour h, and 
𝐺𝐺𝐺ℎ𝑗 is the own-generation of customer j in hour h. The uncertainty in customers’ loads, as 
represented by variance, therefore depends upon own-generation as follows: 

𝑣𝑣𝑣�𝑁𝑁𝑁𝑁ℎ𝑗� =  𝑣𝑣𝑣�𝐺𝐺𝐺𝐺𝐺𝐺ℎ𝑗� + 𝑣𝑣𝑣�𝐺𝐺𝐺ℎ𝑗�  −  2 ∗ 𝑐𝑐𝑐�𝐺𝐺𝐺𝐺𝐺𝐺ℎ𝑗 ,𝐺𝐺𝐺ℎ𝑗� Eq. 4-2 

                                                      
 
9 Data through 2013 are from [23]. Forecasts beginning 2014 are from [24, Table A8]. 
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The volatility of net loads thus depends upon the volatility of gross loads, the volatility of self-
generation, and the covariance between gross loads and self-generation. If the customer’s gross 
load and self-generation tend to move up and down together, net load volatility will be less than 
gross load volatility. If the customer’s gross load and self-generation tend to move in opposite 
directions, net load volatility will be greater than gross load volatility.  

In addition to impacting the time patterns of customers’ net loads, distributed resources also 
affect the wholesale energy prices that underlie competitive retail prices. Under net metering 
schemes similar to those presently in place in most states, the relevant gross profit is found by 
inserting equation (4-1) into equation (3-1): 

𝐺𝐺𝐺𝐺𝐺 𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑗 =  �𝐺𝐺𝐺𝐺𝐺𝐺ℎ𝑗 − 𝐺𝐺𝐺ℎ𝑗�  ∗  �𝑃ℎ𝑗 −𝑊𝑊𝑊ℎ� Eq. 4-3 

The variance in the gross profit of equation 4-3 is even messier than the variance shown in 
equation 3-2, and is therefore not spelled out here in mathematical terms. In words, the variance 
of the gross profit of equation 4-3 depends upon the variances of loads, own-generation, and 
wholesale energy prices, as well as upon the covariances among these three variables. The 
determination of profitable retail prices is affected by these variances and covariances.  

Supply-Side Resources 
Power system stability and reliability can be improved by supply-side distributed resources that 
are dispatchable, because such resources can respond to market prices and operator control 
signals in ways that increase supply when supply is needed most and reduce supply when supply 
is needed least. For example, customers with their own gas or diesel generators can produce 
power when the power system needs it most, thereby responding to fluctuations in market 
conditions, reducing the need for network resources to meet peak load, and helping local 
networks maintain electricity service when there are transmission or distribution system outages. 
Such use of own-generation will tend to be positively correlated with the customer’s gross load 
and will tend to reduce the utility’s costs of serving the customer. In terms of equation 4-2, the 
covariance term will be positive, which will reduce the variance of net load. 

 

Application of Concepts: 
Increasing Residential Solar Penetration  

As rooftop solar becomes more prevalent, the expected net load profile will change: net load will be 
lower in sunny hours. If solar penetration is high enough, wholesale energy prices in sunny hours 
will also be reduced. The effect on customer-level volatility will depend on the correlation between 
customers’ consumption and generation. The effect on aggregate volatility may be pronounced if 
solar generation is highly correlated across customers, as will be the case if cloud cover affects 
everyone’s solar panels at the same time.  

Under net metering, the breakeven retail price depends upon the correlations between net loads and 
wholesale prices. Under a gross metering scheme, there could be different prices for electricity 
consumption and production, where the respective prices would be separately based upon 
consumption and production patterns, including the volatilities thereof. If solar production is sold to 
the utility under a feed-in tariff that guarantees a buy-back price, a breakeven version of that 
guaranteed price would be determined just like a long-term flip-the-switch price.  
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On the other hand, power system stability and reliability can be complicated by supply-side 
distributed resources that are not dispatchable. Such complications arise not only from the 
inability of such resources to respond to market prices and power system conditions, but also 
arise from these resources placing new stresses on power systems. For example, solar resources 
can have volatile production patterns as solar output goes up and down with the difficult-to-
predict passage of clouds; and while solar power is likely to be available to meet summer 
afternoon peak loads, it is not available to meet winter evening peak loads.  

The challenges that arise from solar resources are implied by Figure 4-7 and Figure 4-8. Figure 
4-7 shows average hourly available solar energy – measured by global horizontal irradiance, in 
watt-hours per square meter – for six U.S. cities in July 2010. Of course, irradiance is highest 
midday and varies by city, with desert and southern cities tending to have higher irradiance than 
coastal or northern cities. Solar resources’ output depends upon irradiance, among other factors, 
and will be higher as irradiance is higher. 

 
Figure 4-7 
Average Hourly Global Horizontal Irradiance for Six U.S. Cities, July 201010 

A key commonality among the six cities is the uncertainty in their hourly outputs. For each of the 
cities, Figure 4-8 shows the range of irradiance for each hour of the day in July 2010, with the 
hourly averages from Figure 4-7 shown as diamonds. Each hourly maximum is typically triple or 
quadruple the respective hourly minimum, which implies that solar rooftop output in many cities 
will have a range of uncertainty characterized by a factor of three or four depending upon 
ambient weather conditions. The volatility of solar rooftop output will thus be quite high relative 
to average solar rooftop output. How that volatility affects the volatility of net loads will depend 
upon the relationship between gross loads and solar generation. 

  

                                                      
 
10 Data are from [18]. 
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Figure 4-8 
Minimum, Maximum, and Average Hourly Irradiance for Six U.S. Cities, July 201011 

Demand-Side Resources 
As with supply-side resources, power system stability and reliability can be improved by 
demand-side distributed resources that are dispatchable. This improvement can arise from 
dispatchable resources’ ability to respond to market prices and operator control signals in ways 
that reduce demand when supply is most scarce. Again, such resources can reduce the need for 
network resources to meet peak load and to respond to fluctuations in market conditions. 

                                                      
 
11 Id. 
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A key empirical question is whether demand-side resources are, in the aggregate, becoming more 
reliable and dispatchable over time. Because the electric power industry traditionally measures 
the success of its demand-side programs according to the number of customers and MWs 
enrolled, publicly available reports say a great deal about such enrollment numbers; but they say 
relatively little about the extent to which demand-side resources are actually available when 
needed. Some tidbits of information that might cast light on the availability question are as 
follows: 

• The market monitor for PJM finds that the observed average load reduction of emergency 
events implies demand response compliance rates of 97.6% in 2012,12 81.8% in 2013,13 and 
29.2% in 2014.14 

• The New York Independent System Operator has an Emergency Demand Response Program 
(EDRP) in which “EDRP resources are not obligated to curtail their load during an EDRP 
event.”15  It has a Day-Ahead Demand Response Program that did not call upon demand-side 
resources at any time during the most recent analysis period of August 2013 through July 
2014.16  It has a Demand-Side Ancillary Service Program in which its only demand-side 
resources, namely three resources with 126.5 MW of capability, had “an average 
performance of 154% during the analysis period of May 2014 through October 2014.”17  It 
has an Installed Capacity – Special Case Resource program in which responses from 
demand-side resources were “voluntary” at the height of the January 2014 polar vortex 
power shortage, on which occasion such resources and EDRP resources had a 26.3% 
response rate.18   

In other words, compliance rates can vary substantially over time and by program; and some 
demand response programs do not even impose upon demand-side resources an obligation to 
perform, even in emergencies. Without substantial research that is outside the scope of this 
report, we are unable to identify significant evidence about the extent to which demand response 
might be relied upon to reduce load volatility, or the extent to which it may have already done so. 
It is clear, however, that the impacts of demand response programs upon volatility will be 
idiosyncratic to the characteristics of each demand-side program. 

 

                                                      
 
12 [15]. 
13 [16]. 
14 [17]. 
15 [19, p. 1]. 
16 [19, p. 5]. 
17 Id. 
18 [19, p. 15]. The 26.3% response rate is an aggregate of the 27.5% and 4.3% rates reported in the source document. 
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5  
MODELING AND FORECASTING LOAD AND LOAD 
VOLATILITY 
To understand how load volatility can be measured and addressed for purposes of managing 
electricity pricing and investment risk, it is necessary to first understand how load itself is 
modeled and forecast. With load volatility defined generally as the deviations of load from some 
expected level, it is vital to do as good a job of modeling the expected load profile in order to 
grasp how deviations from the expectation can be characterized, modeled, and used to manage 
risk. 

There is no general agreement among analysts about the “best” way to model load; so there is no 
general agreement about the “best” way to model the error terms (noise) in the load profile. 
Consequently, we do not propose a single method for measuring load volatility, but instead 
provide an overview of various approaches to modeling electricity load that lead to 
corresponding characterizations of load volatility based upon the error terms of various load 
forecasting models.  

The discussion begins with a mathematical definition of load volatility. It then provides an 
overview of load modeling, particularly modeling the error term to get at volatility. Along the 
way, there is a high-level discussion of the pros and cons of the various models and estimators.  

The Mathematics of Load Volatility 
The load volatility at some future time T periods in the future is defined as percentage standard 
deviation of potential loads LT at that time divided by the square root of T: 

𝜎𝑇 ≡  𝑠𝑠𝑠[𝑙𝑙(𝐿𝑇)]

√𝑇
 =   �1

𝑇
∑ [𝑙𝑙(𝐿ℎ) − 𝜇]2𝑇
ℎ=1   Eq. 5-1 

where 𝑙𝑙(𝐿ℎ) is the natural logarithm of load in hour h, 𝜇 is the expected value of 𝑙𝑙(𝐿ℎ), and 
the summation is over the relevant hours. For example, to determine the load volatility on spring 
non-holiday weekdays at noon, the summation would be over spring non-holiday weekdays at 
noon. This formulation assumes that, for any particular hour (like a Tuesday noon), 𝑙𝑙(𝐿ℎ) has 
constant mean 𝜇 and constant variance 𝑣𝑣𝑣{𝑙𝑙(𝐿ℎ)}. Because the standard deviation measures 
load uncertainty, load volatility is thus a time-normalized measure of the uncertainty in the 
potential values of future load. 

Load volatility changes over time. As measured by the standard deviation in the numerator of 
equation 5-1, load uncertainty is greater in some time periods (like summer weekday afternoons) 
than in other time periods. Meanwhile, the time-normalization in the denominator in equation 5-
1 tends to cause load volatility to fall over time. Thus, if uncertainty is constant over time, 
volatility will decay to zero as T becomes very large. In practice, load uncertainty is likely to 
increase over time, though not as quickly as the square root of T; so volatility will tend to fall 
over time, but not to zero. 
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Modeling and Forecasting Load 
Because the costs of over- or under-contracting for power can lead to financial distress for an 
electricity provider, there are substantial financial rewards to electric service providers for 
minimizing their volumetric risks. Consequently, load forecasting is an integral part of the 
process of setting retail electricity prices, determining the terms of electricity trades, and 
planning and operating electric power systems. Short-term load forecasts are important for 
resource commitment and dispatch decisions as well as for short-term trading. Short- and 
medium-term load forecasts are important for forecasting market prices and valuing short- and 
medium-term contracts. Long-term load forecasts are important for resource investment 
valuation and for valuing long-term contracts. 

Load forecasting involves accurately predicting the magnitude, geographical locations, and 
timing of loads over a well-defined future period. The bulk of the modeling attention concerns 
forecasting hourly total system load, though models are also concerned with predicting daily, 
weekly, monthly, and annual values of total and peak system loads. In general, shorter-term 
forecasts are more accurate than longer-term forecasts; and longer-term forecasts tend to be 
weather-normalized so that expected loads reflect “normal” weather conditions. In all cases, 
given a forecast of the expected load, it is possible to define and develop measures of volatility in 
terms of deviations from the expectation. 

Load forecasting for any time horizon is challenging because time series of measured load 
exhibit “seasonality” at the daily, weekly, and annual time scales. Furthermore, loads depend 
upon many exogenous variables, such as weather conditions, economic events, and even social 
events, all of which must be considered in developing a picture of the expected load.  

A wide variety of methods have been applied to the task of load forecasting. These fall into two 
major categories: 

• statistical (parametric) methods, including simplistic similar-day methods, various smoothing 
techniques, regression models, and Box-Jenkins-style time-series models; and 

• artificial intelligence-based (non-parametric) methods, including neural networks, fuzzy 
logic, expert systems, and support vector machines. 

Almost all of these methods can be adapted to analyze load volatility at any level of time, spatial, 
and customer granularity. For example, if data series are available at the customer level, these 
techniques can be applied to estimate and to predict load volatility and to form a basis for risk 
management at the customer level. 

Statistical Methods 
Statistical methods forecast loads by analyzing relationships between historical loads and 
exogenous variables such as weather and economic measures, and may also include previous 
load values as explanatory measures. These types of models can be appealing because relatively 
intuitive physical or economic explanations may be given to the estimated relationships, thus 
helping convey an understanding of consumer behavior. Such models are often criticized, 
however, for their limited ability to model the usually non-linear relationships between loads and 
their underlying variables. Nonetheless, in practical applications, linear models appear to 
perform as well as the non-linear alternatives, which also have limitations. 
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A large variety of statistical techniques have been developed for short-term load forecasting. 
Statistical approaches begin with mathematical models that express load as a function of various 
explanatory factors. Statistical models can be classified as additive or multiplicative. The two 
types differ in that the additive model expresses the forecasted load as the sum of a set of 
predictor variables while the multiplicative model expresses the forecast as a product of a set of 
factors. Additive models tend to be more popular than multiplicative models because they lend 
themselves to more intuitive explanations. 

An additive model for predicting total load in hour h may take the form: 

𝐿ℎ = 𝐿ℎ𝑏 + 𝐿ℎ𝑤 + 𝐿ℎ𝑠 + 𝜀ℎ Eq. 5-2 

where Lh is the load in hour h, 𝐿ℎ𝑏  is the weather-normalized base load that represents 
standardized load shapes for each day-type throughout the year, 𝐿ℎ𝑤 is the weather-sensitive load 
component, 𝐿ℎ𝑠  is a component that represents special events such as vacations or holidays, and 
𝜀ℎ is the error term that accounts for noise and remaining unexplained deviations from the 
expected load pattern. Equation 5-2 says that each hour’s load is the sum of the latter four 
components.19 

The load forecasts and error terms of the additive model structure are estimated in a variety of 
ways. 

The similar-day approach bases load forecasts on historical data from days in recent years that 
exhibit profiles or characteristics similar to those of the forecast day. Days may be grouped 
according to similarities that include weather, day of the week, and the date. Often, similar days 
or groups of days are identified through statistical clustering techniques. The forecast can be 
based on a linear combination or regression procedure that can include several similar historical 
days, perhaps with trend coefficients. 

Regression methods are widely used to construct short-, medium-, and long-term load 
forecasts.20 These methods use statistical techniques to model the relationship of load to factors 
such as weather, day type, and customer class. The typical regression model expresses the load 
as a linear function of one or more explanatory variables and an error term that can be subject to 
further modeling to address load volatility, as follows: 

𝐿ℎ = 𝛽0 + 𝛽1𝑋1ℎ + 𝛽2𝑋2ℎ + ⋯+ 𝛽𝑘𝑋𝑘ℎ + 𝜀ℎ Eq. 5-3 

where X1h,…,Xkh are explanatory variables believed to influence load, and β0, β2,…,βk are 
regression coefficients that are estimated by the regression analysis.21 The explanatory variables 
                                                      
 
19 A multiplicative model may take the form 𝐿ℎ = 𝐿ℎ𝑏 × 𝐿ℎ𝑤 × 𝐿ℎ𝑠 × 𝜀ℎ, where 𝐿ℎ𝑏  is base load, 𝐿ℎ𝑤 is the weather-
sensitive component, 𝐿ℎ𝑠  is the special events component, and 𝜀ℎ is the error term. 
20 For examples of such models, see [2], [5], [7], [9], and [22]. 
21 Typically the statistical method used to estimate the parameters is the method of least squares or, alternatively, the 
maximum likelihood technique. However, there are a wide variety of other optimization methods that have been 
applied, such as robust regression methods that are less influenced by skewed distributions and outliers in the time 
series data. 
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can be simple, like maximum daily temperature, or complex functions of simple variables, such 
as the squared difference between maximum and minimum daily temperatures. Regression 
models are capable of accommodating non-linear relationships to some degree. 

Time series methods assume that the load data and other relevant explanatory factors follow 
structural patterns that may be characterized by autocorrelation, trend, or seasonal variation. 
Time series forecasting methods estimate such structural patterns. Time series have been used 
broadly for decades in economics and physics, as well as for electric load forecasting. In 
particular, ARMA (autoregressive moving average), ARIMA (autoregressive integrated moving 
average), ARMAX (autoregressive moving average with exogenous variables), and ARIMAX 
(autoregressive integrated moving average with exogenous variables) are the most often used 
classical time series methods. ARMA models are usually used for stationary processes while 
ARIMA is an extension of ARMA to non-stationary processes. ARMA and ARIMA use the time 
and load as the only input parameters. Since load generally depends (at the very least) on the 
weather and time of day, ARIMAX is the most obvious adaptation of the simpler classical 
ARMA and ARIMA models for load forecasting; and there is a large body of literature reporting 
on the ARIMAX modeling approach.22 The typical ARMA model for load forecasting takes the 
form of the following equation: 

𝐿ℎ = ∑ 𝛾𝑗𝐿ℎ−𝑗 + ∑ 𝜃𝑗𝜀𝑗
𝑞
=1

𝑝
𝑗=1   Eq. 5-4 

where 𝐿ℎ−𝑗 is the value of load j periods in the past, 𝜀𝑗 is a random load disturbance (volatility) 
term, and γ1,…,γp and θ1,…,θq are model parameters to be estimated.  

The random disturbance term in traditional ARMA and ARIMA models is assumed to have a 
Gaussian (i.e., normal) distribution with zero mean and finite constant variance and covariance 
functions, though a wide variety of time series models depart from these assumptions. These 
models address various forms of non-linear dynamics of the load time series, including the 
strong dependence of the variability of the series on its own past, non-constant conditional 
variance, and the tendency of the underlying distribution to exhibit fat tails.  

Other time series models are referred to as Autoregressive Conditional Heteroskedastic (ARCH) 
models, as generalized ARCH (GARCH) models, and variants of these that incorporate 
exogenous variables (ARCHX and GARCHX). The key feature that distinguishes these models 
from the traditional time series models is the characterization of the error structure as follows: 

𝑘ℎ = 𝜀ℎ𝜎ℎ   with      𝜎ℎ2 = 𝛼0 + ∑ 𝛼𝑖𝑘ℎ−𝑖2𝑞
𝑖=1 + ∑ 𝛽𝑗𝜎ℎ−𝑗2𝑝

𝑗=1  Eq. 5-5 

where 𝜀ℎ is assumed to be independently and identically distributed as a normal random variable 
with mean zero and variance one, and α0,…,αq and β1,…,βp are parameters to be estimated. 

  

                                                      
 
22 See [4] and [6]. 

0



 

5-5 

Artificial Intelligence-Based Methods 
Artificial intelligence-based (AI-based) methods tend to be more flexible than statistical methods 
and can handle complexity and non-linearity. Unfortunately, AI-based methods are generally 
“black box” tools, making it difficult or impossible to incorporate specific relationships such as 
those that can be tested by a statistical method. Furthermore, the performance of AI-based 
methods has received mixed reviews when applied to load forecasting.  

Artificial neural networks (ANNs) are prominent among AI-based methods because their 
application requires no prior modeling experience to obtain reasonable load forecasts. ANNs 
were developed to perform “intelligent” tasks similar to those performed by the human brain in 
that an ANN acquires knowledge through learning and stores this knowledge within inter-neuron 
connection strengths known as synaptic weights. ANNs employ algorithms that automatically 
classify the input data and associate it with the respective output values, eliminating the need for 
human judgment regarding model structure and development. There is no need to make a priori 
assumptions about model structure or underlying population distributions. Relative to traditional 
linear statistical models, ANNs are inherently non-linear and have the advantage of being able to 
represent both linear and non-linear relationships and to learn these relationships directly from 
the data being modeled. 

ANN models can be classified by their architecture, processing, and learning. The architecture 
defines the neural connections. The network elements are arranged in a relatively small number 
of layers of elements between network inputs and outputs. The outputs are linear or non-linear 
functions of the inputs. The inputs can be the outputs of other network elements as well as actual 
network inputs.  

The most widely used ANNs in forecasting problems are referred to as multi-layer perceptrons 
(MLPs), which use a single hidden layer feed forward network. The model is characterized by a 
network of three layers – input layer, hidden layer, and output layer. There may be more than one 
hidden layer. The nodes in various layers are also known as processing elements. The three-layer 
feed forward architecture of ANN models can be illustrated as in Figure 5-1, which shows 
various inputs entering the Input Layer and following a weighting process are passed to the 
Hidden Layer(s), followed by another weighting process before passing to the Output Layer for 
final processing to produce outputs. 
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Figure 5-1 
The Three-Layer Feed Forward ANN Architecture23 

The output of the ANN model is computed using an expression similar to the following 
equation:24 

𝐿ℎ = 𝛼0 + ∑ 𝛼𝑗𝑔�𝛽0𝑗 + ∑ 𝛽𝑖𝑖𝐿ℎ−𝑖
𝑝
𝑖=1 � + 𝜀ℎ

𝑞
𝑗=1  Eq. 5-6 

where Lh-i are the hourly inputs and Lh is the output. The integers p and q are the numbers of 
input and hidden nodes, respectively. The αj and βij are the connection weights, and εh is the 
random disturbance (noise) term. The function g(.) is often assumed to take the logistic sigmoid 
form 𝑔(𝑥) =  1

1+𝑒−𝑥
 , which is known as the activation function.25 

The feed forward ANN model in equation 5-6 performs a non-linear functional mapping from 
the past load observations to the future load values, with the mappings determined by the 
network structure and the connection weights. The connection weights are typically estimated 
using non-linear least squares or maximum likelihood procedures. ANN models can 
accommodate seasonality in the load data as well as model specific days – weekdays versus 
weekends, for example – using a time-lagged variation of the standard ANN model structure. 

                                                      
 
23 See [1]. 
24 The ANN model can be adapted to forecast the next day’s peak load or total load. Multiple output ANN models 
can be used to forecast a series of loads, such as 24 hourly loads that define the next day’s load profile, or 7 daily 
peak loads. 
25 The activation function can take other forms such as linear, hyperbolic tangent, and Gaussian. 
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In some applications, ANN models have out-performed other methods; but in other instances, 
ANN models have not performed as well as regression methods or exponential smoothing 
techniques. 

Expert systems produce forecasts based upon rules and procedures that are similar to those used 
by human experts in the field of interest. The incorporation of such rules and procedures into the 
expert system software enables forecasts to be automatically produced without additional human 
inputs. Nonetheless, expert systems forecasting ability is strengthened when software 
development is closely guided by human experts so that they accurately and fully incorporate the 
experts’ knowledge. This can result in the expert system incorporating thousands of decision 
rules. As applied to electric power systems, a system operator’s historical knowledge of load and 
its determinants can be represented in a parameterized rule base that is complemented by a 
location-specific parameter database.26 Expert system forecasts are frequently combined with 
forecasts from other methods. 

Support vector machines (SVMs) have a system of classification and regression that was 
originally developed in the context of statistical learning theory.27 Initially, SVMs were designed 
to solve pattern classification problems, such as optimal character recognition, face 
identification, and text classification. They quickly found wide applications in other domains, 
such as function approximation, regression estimation, and time series prediction problems. 
The objective of SVM is to find a decision rule with good generalization ability through 
selecting some particular subset of the training data, called support vectors. In this method, the 
input data are classified (separated) by a separating hyperplane (i.e., a rule that determines 
whether the data belong in one group or another group). The process can be repeated to refine the 
classification system and to arrive at an optimal separating hyperplane (i.e., classification of the 
data into two or more classes without error).  

There has not been extensive application of SVM methods to load forecasting. Several studies of 
SVM methods have found them to be as good as or better than other methods.28 

 

  

 

                                                      
 
26 See [8] and [21]. 
27 See [25]. 
28 See [3], [11], [12], and [14]. 
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6  
MANAGING THE IMPACTS OF LOAD VOLATILITY 
Utilities can manage the impacts of load volatility in two basic ways. The first is by reducing 
load volatility itself. The second is by mitigating the financial impacts of load volatility. Either 
way, the estimation of volatility needs to be consistent with its application. 

Reducing Load Volatility 
Reducing the volatility of load itself requires that the utility have some means of reducing load 
uncertainty, which means somehow placing limits on customers’ loads. In some times and places 
other than the United States of the present, customers could subscribe to minimum or maximum 
quantities of electricity service. More practical for present purposes are the following sorts of 
programs and technical approaches: 

• The utility can have some control over customers’ loads, particularly peak loads. This 
approach is used in myriad direct load control programs. 

• The utility can send customers price signals that influence loads. This approach is used, for 
example, in real-time pricing, critical peak pricing, and peak-time rebate programs. This 
approach is also implicit in demand charges, which can induce customers to hold down their 
peak loads and improve loads factors, both of which make loads less variable and probably 
make them less volatile. 

• Smart energy systems, storage technologies (like batteries), and Internet-connected devices 
can help customers better manage the net power flows that customers impose on the power 
system. Such technology fixes can mitigate load volatility if retail electricity prices are 
structured in ways that reduce customer bills for customers with less variable net loads. 

Mitigating the Financial Impacts of Load Volatility 
The financial impacts of load volatility can be mitigated by reducing load volatility as just 
described or by pricing retail products to incorporate costs associated with load and wholesale 
price volatilities. The retail design problem is partly a matter of setting retail prices at the 
appropriate levels and partly a matter of differentiating electricity products and customers. 

To achieve an expected breakeven price, the level and structure of retail prices must reflect the 
costs of providing customers with the energy, ancillary, transmission, and distribution services 
that they use. Because load volatility is not a service per se, there should not be any price on load 
volatility itself. Instead, the costs of load volatility should be recovered through the prices of the 
services that are made more costly by load volatility:  

• The expected costs of energy and ancillary services are increased by volatility in two ways. 
First, it is necessary to have more generation capacity to serve potentially high loads. Second, 
it is necessary to have costly resources that can rapidly respond to the load uncertainties 
associated with volatility. These two types of costs can materialize in the forms of both 
capital costs and operating costs. 
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• For some transmission and distribution systems, costs will be increased by volatility because 
of the need to have greater transmission and distribution capacity to serve potentially high 
local loads. The cost increase will mostly be capital costs, though restricting transmission 
flows in anticipation of uncertain load changes can increase the operating costs associated 
with transmission congestion. 

The costs of load volatility may also be reduced by differentiating retail prices by time, location, 
and customer. Such differentiation can mitigate cost uncertainties associated with load volatility 
by allowing closer matches between prices on the one hand and expected costs on the other. 
Such differentiation improves economic efficiency by sending more accurate price signals to 
customers, and improves fairness by having customers pay prices closer to the costs that they are 
expected to impose on the power system. The practicalities that limit differentiation include the 
following: 

• Forecasts of customer loads are inevitably imperfect, and are subject to greater error at the 
individual customer level than at the customer group level. 

• Price forecasts are inevitably imperfect. 

• Price differentiation over time is less simple than a flat rate. 

• Price differentiation by location is sometimes regarded as unfair because it seems to treat 
similar customers differently, even if, in fact, the costs that differently located customers 
impose on the power system are materially different. 

• Price differentiation by customer is sometimes regarded as unfair because it seems to treat 
similar customers differently, even if, in fact, customers’ uses of the power system are 
materially different. 

 

 
 

 

 

0



 

7-1 

7  
DIRECTIONS FOR FURTHER RESEARCH 
There are a few lines of research that may shed light on the measurement and mitigation of load 
volatility. 

First, because the quantification of load volatility is a derivative of load forecasting, future 
research may profitably engage in a detailed examination and synthesis of the econometric 
literature on load modeling and forecasting. As implied by Chapter 5 of this report, that literature 
is extensive. 

Second, because system operators can mitigate load volatility through demand-side management 
programs, it would be helpful to develop a database that indicates the extent to which such 
programs result in actual demand reductions. The data required for such an effort would need to 
be gleaned from a plethora of utility filings on their demand-side programs. The results would 
need to recognize the several very different types of such programs. This information would be 
helpful not only for quantifying the impacts of these programs on load volatility but also for 
identifying the programs that are most effective. 

Third, future research could explore in detail the effects on net load volatility of emerging 
distributed technologies such as rooftop solar, residential battery storage systems, 
programmable-controllable thermostats, electric vehicles, and smart appliances. Such research 
can be particularly useful for distribution planning. 
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