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 v  

Abstract 

 

Industrial instrumentation and control (I&C) network protocol, as 
well as common networking protocols, are generally insecure by 
design as functionality was the dominating design requirement. 
These protocols were not intended for use in the current and 
evolving threat environment. This has resulted in serious concerns 
about the security of critical infrastructure, especially those facilities 
that depend on inherently insecure protocols for daily monitoring 
and control. This problem is not being addressed by equipment 
vendors, as there is a lack of government regulation and end user 
understanding of the vulnerabilities. These issues, and a general need 
to be backward compatible with existing equipment, also result in 
minimal end user demand for changes toward a more secure 
networking environment. 

Over the years, there have been security enhancements to existing 
protocols, but these changes often allow operation in an insecure 
manner to support backward compatibility. This further 
compromises the I&C and networking environment, and leads to 
extensive analysis and testing of production network configurations 
to determine the level of security implemented, and also often results 
in unusual implementations and manual procedures to meet required 
security needs. 

The objective of this project is to describe the framework and 
implementations steps for a secure version of the current HTTPS 
(hypertext transfer protocol (secure)) layer protocol (HTTP over 
TLS (transport layer security)), and to determine the feasibility of 
creating a new, singular specification (herein called HTTPN) that 
would not be subject to backward compatibility issues. The concept 
would also employ state of the art cryptologic techniques to ensure 
authentication, authorization, and auditing of network transactions.  
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Cybersecurity 
Secure Communication 
HTTPS 
HTTPN 
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Deliverable Number: 3002008039 
Product Type: Technical Report  

Product Title: Program on Technology Innovation: HTTPN: Securing Nuclear Network 
Communications in the Age of the Internet of Things 

 
PRIMARY AUDIENCE: Information security and network engineering personnel at new nuclear generating 
facilities 
SECONDARY AUDIENCE: General information security personnel  

KEY RESEARCH QUESTION 

The focus of this research was to determine the feasibility of creating a new, singular communications 
specification based on the existing HTTPS (Hypertext Transfer Protocol (Secure)) protocol (herein called 
HTTPN), that would not necessarily be subject to backward compatibility, and that would employ state of the 
art cryptologic techniques to ensure authentication, authorization, and auditing of network transactions. The 
report explores the use of HTTPN for use in communications, data transfer, and the possibility for use in 
equipment controlling applications. 

RESEARCH OVERVIEW  

Required compatibilities for HTTPN were first characterized based on existing specifications. Existing 
technologies and published solutions were researched and summarized. Public and private key management 
and distribution methods are examined for applicability. A gap analysis between the current specification and 
a future HTTPN specification is assessed. Finally, future work required to push the effort to an Internet 
Engineering Task Force (IETF) (or other) Request for Comments (RFC) specification is outlined. The report 
also provides the results of using a simulation test bed to test the concepts. 

KEY FINDINGS  
• The report describes the background of HTTP and TLS (Transport Layer Security), how they were 

developed, and for what purposes. This background provides the framework for describing a proposed 
enhancement for a new protocol, theoretically called “HTTPN,” that has inherently more secure 
features in a closed network environment 

• The concept of HTTPN would not be constrained by backward-compatibility requirements of current 
Internet Protocol environments. Support for backward-compatibility often generated unintended 
security holes, and the lack of required backward compatibility for HTTPN is supported by the idea 
that a new nuclear plant could be considered an isolated ‘green field’ installation, where backward-
compatibility is not necessarily required, and the security requirements are high enough to support 
any extra overhead. 

• While described in theory, developing a secure network environment for nuclear plant infrastructure 
has a feasible path, but with some important considerations, such as: 

o Developing a specification could require infrastructure devices to meet certain performance 
benchmarks or have specific system timing requirements. 

o Hardware and component networking interfaces need to be able to handle a broader array of 
protocol stack and traffic, while not affecting any of the protocol layers below it, ensuring 
adaptability. 
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o Susceptibility and threat considerations need to remain at the forefront of any new secure 
environment, as even changes to the TLS/SSL (Secure Sockets Layer) protocols envisioned 
for HTTPN could be obsolete quickly. 

• A roadmap for future work and deployment identified several items that should be addressed, including: 
o Timing requirements – specific device timing requirements and use cases for controlling data 

input and output, as well as efficiency 
o Communication characterization – defining communication attributes 
o Investigating other protocols for secure control 
o Investigation into protocol security technologies 

WHY THIS MATTERS 
Industrial instrumentation and control (I&C) network protocols, as well as common networking protocols, are 
generally insecure by design as functionality was the dominating design requirement. These protocols were 
not intended for use in the current and evolving threat environment, which has resulted in serious concerns 
about the security of critical infrastructure, especially those facilities that depend on inherently insecure 
protocols for daily monitoring and control. This problem is not being addressed by equipment vendors as there 
is a lack of demand, through insufficient technical government regulation, or end user understanding of the 
vulnerabilities. These issues, and a general need to be backward compatible with existing equipment, also 
results in minimal demand for changes. 

HOW TO APPLY RESULTS 
The information in this report can be used as a guide and roadmap for future research and development to 
deploy a secure network protocol, both for new power plants and for other operating infrastructure. The 
theoretical protocol concept of HTTPN is based on existing network protocol and makes several assumptions; 
however, the feasibility of implementing such a protocol has a realistic path forward. The Gap Analysis and 
Roadmap for Future Work in the report provides the reader resources to use should such a concept move 
forward toward development and deployment.  

LEARNING AND ENGAGEMENT OPPORTUNITIES 
• The Electric Power Research Institute’s (EPRI’s) Power Delivery and Utilization (PDU) Sector, and the 

Nuclear Sector’s Digital I&C Implementation Group and Advanced Nuclear Technology program are 
actively engaged in network cyber security research 

EPRI CONTACTS: Ron King, Program Manager, rking@epri.com; Matt O’Connor, Sr. Project Manager, 
mcoconnor@epri.com 

PROGRAM: Advanced Nuclear Technology (ANT) 41.08.01 

IMPLEMENTATION CATEGORY: Reference – Early R&D 

0



 

 ix  

 
Commonly Used 

Acronyms 

 

This section provides acronyms for key terms as they are used in this 
report.  

Acronyms and Abbreviations 
AI Analog Input 

AP Access Point 

CA Certificate Authority 

DI&C Digital Instrumentation and Control 

DNP3 Distribuuted Network Protocol 

EMI Electromagnetic Interference  

FISMA Federal Information Security Modernization Act 

HMI Human-Machine Interface 

HTTP(S) Hypertext Transfer Protocol (Secure) 

I&C Instrumentation and Control 

IETF Internet Engineering Task Force 

ICS Industrial Control System 

IoT Internt of Things 

IP Internet Protocol 

IT Information Technology 

LTE Long Term Evolution 

MAC Message Authentication Check 

NIDS Network Intrustion Detection System 

OS Operating System 
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OT Operations Technology 

PCI-DSS Payment Card Industry – Data Security Standard 

PKI Public Key Infrastructure 

QoS Quality of Service 

RA Registration Authority 

REST Representational State Transfer 

RFC Request for Comments 

RFI Radio Frequency Inteference 

SSL Secure Sockets Layer 

TLS Transport Layer Security 

VoIP Voice over IP 

WAF Web Application Firewall 

W3C World Wide Web Consortium 
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Section 1: Introduction 
Industrial instrumentation and control, or I&C, network protocols, as well as 
common networking protocols, are generally insecure by design as functionality 
was the dominating design requirement. Some of the protocols used today were 
designed as many as 25-30 years ago, and were not intended to be used in the 
current and evolving digital threat environment. This has resulted in serious 
concerns about the security of critical infrastructure, especially those facilities that 
depend on inherently insecure protocols for daily monitoring and control. This 
problem is largely not being addressed by equipment vendors as there is a lack of 
pressure to do so, either by regulation or end user demand (often due to a lack of 
understanding of the potential vulnerabilities). These issues, and a general need 
to be backward compatible with existing equipment, also results in minimal end 
user demand for changes. 

Over the years, there have been security enhancement to existing protocols, but 
these changes often allow operation in an insecure manner to support backward 
compatibility. This further compromises the I&C and networking environment 
through increased complexity. This leads to extensive analysis and testing of 
production network configurations to determine the level of security 
implemented, and also often results in unusual implementations and manual 
procedures to meet required security needs. 

Due to the level of backwards compatibly needed and desired by almost all 
industries, there has not been a significant drive to create more secure protocols 
without the cruft and baggage of existing ones. However, with the deployment of 
new nuclear plants, combined with a clearer understating of the potential security 
threat to critical infrastructure, there is an opportunity to develop protocols that 
are secure by design. This may result in protocols that are not necessarily 
backwards compatible, but the isolation and effective ‘green field’ of a new 
nuclear island provides both an opportunity to implement less backwards 
compatible systems, and also a clear incentive for a more secure infrastructure. 

A secure version of an accepted protocol that did not exhibit backward 
compatibility vulnerabilities would provide both an example and an imperative to 
improve I&C network security ahead of an evolving threat. New nuclear plant 
deployment provides a unique opportunity combined with a real security need to 
move forward with these new protocols. Once developed and put into the public 
as open and endorsed protocols, it would open the ability for existing nuclear, 
other energy facilities, and non-energy critical infrastructure, to begin requesting 
equipment that meets the more secure specifications. 
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Application 

The use case for a new protocol specification can be applied across multiple 
sectors within an I&C network. The application can cross between traditional 
information technology, or IT, and operations technology, or OT, sectors of a 
network environment. This includes, but is not limited to: 

 Computer to Computer communications, bidirectional (i.e. moving data over 
the IT system) 

 Computer to Controller communications, bidirectional (i.e. changing values 
on computer screen, that change is reflected to controller, relaying 
instrument metrics back to computer/auditing system) 

 Controller to Device communications, bidirectional (i.e. relaying commands 
from Computer, auditing, testing, reporting instrument metrics) 

 Computer to Device communications, bidirectional (i.e. maintenance, 
auditing and testing purposes.) This suggests the possibility of a future 
architecture where the traditional hierarchy is challenged, and the 
dependency of controllers is lessened.  

Cyber Threats  

Industrial control systems face a unique set of threats and attack vectors 
predicated on the equipment installed at the site. As digital devices become more 
feature-rich, they also become susceptible to the same threats as traditional IT 
networks.  

There are many threats an ICS can face; these include:  

 sabotage  

 destruction  

 theft  

 loss of public confidence 

 even loss of life 

These kinds of attacks could come in many different vectors also seen in 
traditional IT networks. These vectors include:  

 denying availability (ex. shutting down a water pump, disallowing cooling of 
a system)  

 sending valid communication inappropriately, causing an undesired affect 
(i.e. resending previously captured commands) 

 eavesdropping on communications jeopardizing sensitive information  

 masquerading/impersonation (i.e. Man-in-the-Middle attacks) 

 integrity manipulation (i.e. changing error messages to normal) 
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It’s these attack vectors that drive cybersecurity properties when designing secure 
systems. 

Cybersecurity Properties 

When discussing cybersecurity problems, it’s important to understand what each 
solution offers in terms of cybersecurity properties. Traditionally, the main three 
categories are known as the CIA triad – representing Confidentiality, Integrity, 
and Availability. The Federal Information Security Modernization Act, or 
FISMA, outlines these properties as such: 

 Confidentiality, which means “preserving authorized restrictions on access 
and disclosure, including means for protecting personal privacy and 
proprietary information” 

 Integrity, which means “guarding against improper information modification 
or destruction, and includes ensuring information nonrepudiation and 
authenticity” 

 Availability, which means “ensuring timely and reliable access to and use of 
information” 

It’s with these security objectives that cybersecurity solutions should be 
engineered. Unfortunately, proper design in one objective often comes at the 
sacrifice of another. For example, using the best cryptographic methods can 
strengthen a design’s confidentiality, however, it may require a processing delay, 
creating a lower availability. 

System architects must weigh these trade-offs and evaluate which properties are 
most important to the system’s security as well as efficient operation when 
making decisions.  

Market Status 

Currently, there are a few shifting trends that would help the advancement of 
what this report proposes. First, the Internet of Things, or IoT, is growing faster 
than consumers (individual, commercial and industrial) can keep up with. 
Vendors are building in this ability, whether the consumer will use it or not. 
Connected devices are becoming more and more abundant everyday. This is 
opportune for ICSs looking to make that transition from analog to digital or to 
an IP-based communication network.  

Secondly, HTTP is ubiquitous within the Internet, as practically everything that 
runs on the internet can speak it. Using representational state transfer, or REST, 
web services make communication on both sides much easier. REST allows 
developers to quickly tap into the HTTP methods offered. This is much easier 
than developing an application that translates data to the user or device. 

Furthermore, computation and encryption is becoming cheaper. With a full 
computer now fitting in the palm of your hand, high computation at a low cost is 
more readily available than before. Additionally, engineers are getting smarter on 
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how to handle encryption, by offloading it onto separate chips, doing it in 
hardware, etc. For these reasons, devices can be more secure than prior 
generations of technology. 
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Section 2: HTTPS Overview 
Hypertext Transfer Protocol, or HTTP, is a protocol standard used by computers 
to communicate data. HTTP is a request-response protocol between a client, 
typically a web browser (ex. Mozilla, Chrome) and a server (ex. Apache, 
lighttpd). In the most common case, the client requests a webpage from the 
server, and the server responds with the page.  

The Internet Engineering Task Force, or IETF, and the World Wide Web 
Consortium, or W3C, jointly created the standards for HTTP, which amounted 
to RFC 2068 [1] in 1997. HTTP has gone through a few revisions since its 
introduction. RFC 2616 [2] allowed for more persistence in which the same 
connection could allow more HTTP requests. This eliminated a handshake and 
teardown for each request, and cut latency.  

HTTP/2.0 [3], created in May 2015, changed how data was sent, cutting down 
latency by doing small compression techniques, but leaving HTTP syntax and 
semantics the same.  

HTTP was not originally created with security in mind and sends all data in 
plaintext, allowing eavesdroppers visibility into the conversation. Additionally, 
there’s no authentication mechanism built into HTTP or the underlying TCP its 
using. As such, a secure HTTP, or HTTPS [4], was created. This leverages the 
security libraries of Secure Socket Layers, or SSL. SSL has gone through 
revisions itself, and currently has a new name of Transport Layer Security, or 
TLS. Specific features and details of TLS will be discussed in another section.  

HTTP Features 

HTTP typically depends on the Transport Control Protocol, or TCP, for 
reliability in communication to ensure integrity for traffic. HTTP begins after a 
TCP connection has been established, and then uses HTTP actions to do 
communication.  

HTTP offers several commands that nodes use to communicate data. The two 
most common, GET and POST, are seen in normal web browsing. A web 
browser will send an HTTP-GET message to the server, fetching the webpage it 
is hosting. Figure 2-1, for example, demonstrates this interaction.  

In this packet capture, we see the initial TCP handshake, and then an HTTP-
GET request from 192.168.38.1 for the homepage of 192.168.38.152. The 
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purple packets in between packets 4 and 10 is the TCP packets for the data being 
transferred. In packet 10, we see server respond with “200 OK” message, 
indicating the file has been transferred. This is the simplest of examples, 
however, the most fundamental when it comes to web browsing.  

 

Figure 2-1 
TCP Handshake and HTTP GET and OK 

HTTP/2 supports nine total methods (verbs) that represent the actions in the 
protocol. Table 2-1 below summarizes these methods and their high level 
purpose within the protocol. 

Table 2-1 
HTTP Methods 

Method Purpose 

OPTIONS Asks server which methods are supported 

GET Retrieves resource from server 

HEAD Same as GET, without message-body in response 

POST Request the server accepts data from client 

PUT Request that the data be stored under the supplied Request-URI 

DELETE 
Request that the server delete the resource identified in the 

Request-URI 

TRACE Used to invoke loopback of message. For debugging purposes. 

CONNECT Used to convert connection to secure tunnel 

PATCH Used to partially modify resources  

Transport Layer Security 

As discussed earlier, HTTPS was created in response to the obvious demand for 
security in web browsing. Initially, this addition was referred to as SSL, however, 
the fourth revision of that came with a new name change, TLS. At the time of 
this writing, TLS 1.2 [5] is the most current version, with TLS 1.3 in the process 
of development.  
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Use of HTTPS, when properly implemented, gives users a lot more security 
principles not offered in standard HTTP. Referring back to security properties 
discussed in Section 1, TLS provides both confidentiality and integrity, but at the 
expense of additional overhead of some availability (i.e. the processing adds some 
delay). Confidentiality is provided by using symmetric cryptography on the 
transmitted data. Integrity is done by using public-key cryptography, which is 
used to verify to one party the other party is indeed who they say they are. 
Additional integrity is provided by including a message authentication check, or 
MAC, that additionally helps verify the origin of the message and the 
untampered contents.  

For better or worse, TLS was written to support many methods for 
implementing these fundamental aspects of security. At the beginning of a 
connection, the client and server must agree on which key exchange scheme, 
cipher suite and which MAC type to use. This negotiation process can be seen in 
the first two messages between the client and server in Figure 2-2 below, as we 
look at the TLS conversation. 

This flexibility in implementation can actually become a security problem. As 
weaknesses and vulnerabilities in modern cryptography are discovered, some of 
these choices in the negotiation process become overall unsafe to use. Some 
servers are configured to accept older versions of TLS to ensure they can be 
available for their clients; sacrificing security for availability. Further, export 
controls restrict the use of some encryption techniques with countries the U.S. 
government has deemed sensitive. To preserve connectivity with foreign clients 
in these countries, domestically hosted servers must support legacy encryption 
schemes.  
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Figure 2-2 
TLS Handshake 
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Section 3: HTTPS Enhancement (HTTPN) 
Currently, it appears to be an opportunistic time where new nuclear power plants 
are being designed, as well as we are preparing for a future with “smart devices”. 
Because HTTP and other industrial I&C network protocols are not secure by 
design, there is a need for a protocol secure by design that could facilitate such an 
environment’s needs. 

For an environment where security is crucial, sacrifices should not, in most cases, 
be made. Backwards compatibility and fallback to weaker ciphers are ideal for 
widely used situations, but when it comes to air-gapped, locally managed 
networks, having tighter requirements is much more reasonable of an 
expectation.  

Conversely, the best security can come at the expense of time. In an environment 
where availability is imperative, the most secure cryptography methods may not 
be the best selection as they could impose an unacceptable delay.  

It’s with these motivations that a singular, new specification, HTTPN, is being 
examined as a candidate to facilitate secure communications in industrial control 
systems, or ICS like a nuclear power plant (hence the “N” in the acronym). 
Suggestions for the most secure version of HTTPS are given, and then analyzed 
for feasibility.  

HTTPN Features 

Usage 

The use case of HTTPN could be anywhere HTTPS is currently used. This 
would traditionally exist on the enterprise-like environment, consisting of mainly 
desktop computers. However, as we continue to see a growing industry of IoT 
devices, we see a potential for rapid deployment with little overhead assuming 
these devices can handle modern cryptographic computation. The goal is for any 
device in the ICS system, from the lower-level electronics to the operator 
workstations, to be able to utilize HTTPN. 

In a dynamic, changing environment, HTTP methods can be utilized for more 
efficiency in transactions. However, in a more static environment, where a 
controller (server) is actively receiving data from end points (clients), the end 
points can POST data they want to send to the controller. 
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Persistent Communication 

Inherently, however, there is a large problem in using HTTP as a control 
protocol. The trouble in this communication scheme is the intrinsic one-way 
communication in HTTP. Because HTTP is request-response, there’s no easy 
way for the controller to give the end points commands within that same 
connection.  

For services doing fixed, consistent communication, the keep-alive function 
within HTTP should be leveraged. First officially introduced in HTTP/1.1, this 
feature allows nodes to retain the connection between a client and server, without 
having the session reestablishment overhead of the TCP handshake and 
encryption for each unique data exchange. HTTP/1.1 considers all connections 
to be persistent, however, most Apache server versions have a default timeout. 
This parameter can be changed to meet a specific environment’s need. Because of 
the nature of this, components in the network environment must be able to 
handle such connections. This means the controller (server) must be able to 
handle as many connections as end points (clients) its controlling. 

Under the assumption that server initiated communication is needed, there are a 
few ways to address this issue. 

1. Role reversal – each managed endpoint also acts as an HTTPN server, in 
addition to being a client. During the “push” of information to the controller, 
the endpoint is acting as a client. During the “poll” transaction, the controller 
is acting as the client, requesting services/status from the server (endpoint). 
This can stay within existing HTTP specification and permit bidirectional 
communication on-demand, without persistent keep-alive traffic.  

2. Long Polling – the client sends an HTTP-GET request for a page the server 
is hosting. The server holds this request open until it has a command or 
message to deliver. The client retrieves this page and can execute this. The 
drawback of this scheme is unsynchronized requests and overall delayed time 
from request to execution. Simply put, this is a last resort for an environment 
that demands high availability like an ICS. 

3. HTTP Streaming – At the beginning of connections, the client sends a 
request to the server. The server does not send a response until it has a 
command or new data. The request is never closed, and whenever there is 
new data, the server will respond. The drawback with this is always 
maintaining the connection in case the server has a message to send and the 
overall resource exhaustion that comes with this. This is a workaround of 
how HTTP normally operates, however, stays within HTTP specification.  

4. Drastic changes in HTTP – Change the HTTP specification to allow at least 
half-duplex communication. Adding HTTP methods on the server side 
would allow for the server to be able to send commands as needed, without 
waiting or burning resources. A full-duplex solution is offered by a 
technology called WebSocket [6]. An upgrade to this mechanism is 
requested when communication begins, however, the server is not guaranteed 
to support such. Depending on the application, WebSocket may be enough 
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and could be mandatory in the HTTPN specification. Research is 
encouraged to ensure additional development into WebSocket is not needed. 

WebSocket relies on the existing HTTPS setup and handshake with a slight 
addition. The client requests to the server that they upgrade the connection 
to WebSocket. If the server supports it, the server will respond back, 
accepting the upgrade. Bi-directional communication is now supported until 
one side closes the channel.  

Notwithstanding, these options all have their own limitations as well as the 
shared restriction of relying on HTTP. Using a variant of HTTPS as a control 
protocol is definitely possible, however, it may not meet tight timing restrictions 
needed for crucial operation of an ICS, given the overhead associated with the 
workarounds available. With the advent of faster processors, though, overcoming 
the overhead may be possible. Ultimately, this is dependent on the system 
requirements and timing restrictions for the environment. 

Issues with solutions 2 and 3 are addressed in RFC 6202 [7]. Maximal Latency 
was a large concern that is discussed for both of these. Other factors, such as 
overhead, resource allocation and incompatibility with networking intermediators 
are discussed.  

RFC 6202 also gives an overview of existing technologies that allow 
asynchronous messaging from server to client. The Bayeux [8] protocol, for 
example, uses both long polling and HTTP streaming and also uses two 
independent HTTP connections. The most popular implementation of this is 
CometD, which has been successful in deployment for some specific applications.  

Analysis into which of these technologies is best would require a more robust 
definition of the design requirements. Requirements for latency and availability, 
use case for connectivity and bandwidth needed should all be considered and 
evaluated when considering these options. 

Methods 

From the current understanding of how HTTPN would operate within an 
industrial I&C perspective, there are more features within HTTP that are simply 
unneeded that can be stripped away. Ideally, the only two HTTP methods 
needed for components to do what they need to do are HTTP-GET and 
HTTP-POST commands. Without necessity for other methods, these are the 
only methods that should be supported. An abridged table of the necessary 
methods for HTTPN is shown in Table 3-1.  

Table 3-1 
Proposed HTTPN Supported Methods 

Method Purpose 

GET Retrieves resource from server 

POST Request server accepts data from client 
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TLS in HTTPN 

As discussed earlier, a large problem with HTTPS is the allowing of older 
versions of the protocol and weak cryptography. HTTPN would require a more 
hardened version of TLS, offering no TLS/SSL fallback and not allowing 
negotiation of cipher suites; the server would reject any crypto that is not in line 
with pre-approved settings. 

TLS1.2 supports a wide array of key exchange methods, as well as ciphers and 
HMACs. As an example of a pre-selected crypto suite, the following 
recommendations are in Table 3-2. 

Table 3-2 
Proposed HTTPN Crypto Suite 

Purpose Algorithm 

Key Exchange DHE-256 

Cipher AES-256-GCM 

Data Integrity HMAC-SHA384 

Other crypto methods should be considered if the proposed algorithms become 
obsolete or unsafe. HTTPN should be flexible in adapting new algorithms if that 
happens to be the case, but again should not allow negotiation of crypto 
parameters, but should be statically assigned at the time of provisioning. 

Client Authentication 

Referring back to Figure 2-2, the TLS handshake, we see that the server sends its 
certificate to the client to verify authenticity of the server. An optional step 
within TLS is for the client to offer its certificate to the server and the server to 
ensure its identity. This extra step will be enforced in HTTPN, requiring all 
parties to identify themselves. However, since the system is air gapped from 
public certificate authorities, a local certificate store must be utilized. During 
device enrollment in the system, their keys must be loaded into this identity 
management and key distribution mechanism. This is discussed largely in the 
following section. 

HTTPN Handshake 

Putting all of these suggestions together changes the TLS handshake, making it 
more detailed and specific. This is shown below in Figure 3-1.  
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Figure 3-1 
HTTPN TLS Handshake 
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Section 4: Key Management 
Key management is the administration and organization of cryptographic keys 
for a system using cryptography. In a lot of scenarios, key management and 
distribution is the hardest problem for secure communications. Key distribution 
is part of the attack surface, so proper implementation is crucial. In order to 
continue discussing options for this, a quick overview of public key infrastructure, 
or PKI, must be discussed. 

PKI is a construct used to organize public-key encryption. In this configuration, 
every entity has private and public keys. Only the entity knows its private key, 
and it uses that to sign messages it sends. Public keys are public, and are used to 
to verify a message is signed from who it claims it is, providing integrity. 
Furthermore, a device can encrypt a message using the recipients public key, and 
the recipient decrypts it using its private key, providing confidentiality. This 
environment is comprised of one or more of the following entities: 

 Certificate Authority (CA) – the role of manager for certificate registering 
and creation 

 Registration Authority (RA) – the role of validation of a specific certificate; 
typically, CAs act as RAs as well. For the purposes of this environment, we 
will use just CAs 

 Subscriber/Relying Party – services and users of those services, respectively. 
In the context of this environment, all components will act as both in order 
to provide full authentication 

In the public internet, there are hundreds of trusted CAs that act as validators of 
certificates, from both public and private entities. Lists of these CAs are typically 
preloaded into a web browser, and can be configured afterwards. This offloads 
the work of authenticity to other machines, however, it poses a problem as now 
this increases the attack surface as well as requires connectivity outside of your 
network – a problem for a potentially air-gapped network.  

Public Key Pinning 

The overall goal for designing this architecture can be summarized by the 
purposely paranoid axiom of “deny all, allow by exception”. This zero-trust 
philosophy can also help enforce communication policy that has been established 
for devices. This problem can be solved with a private centralized CA or be 
enforced at a lower level depending on the flexibility needed for the system. In 
either case, a technique called public key pinning can be used to harden these 
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communications. Pinning is the practice of associating a public key with a 
specific device. Using pinning can reduce the potential attack surface and reduce 
potential overhead by bypassing a CA. In a design in which a private CA is used, 
each device would need to pin the CA’s public key.  

Private Certificate Authority 

Easier solutions can be achieved, however, when the entire environment is 
controlled, like an air-gapped network. One solution is to create a private, local 
CA that can operate as the authenticator for all devices. This allows for 
authentication without any traffic needing to go outside the environment. This is 
ideal for a large, dynamic private network, where different devices have various 
connectivity requirements.  

Manual Configuration 

A pedantic, yet effective method would be to load all necessary keys manually 
onto each device. As we saw in the previous method, having a CA increased 
administrative scalability in network changes. When working with a network that 
doesn’t have many changes (i.e. new devices being added, communication policy 
changes, etc.) administrative scalability is less of a priority. In such situations, 
manually configuring certificates on the network may be preferred.  

In this method, certificates are saved onto each device manually. There is a bit of 
overhead in initial configuration and setup. However, this allows for strict 
enforcement of network policies. By not adding certificates for machines that are 
not supposed to communicate with, disallowed communication cannot happen.  

A large deterrent of configuration is the necessary labor in the case of the removal 
or addition of a device. Imagine a controller that controls two devices that also 
communicates with another controller, and a higher level controller. Replacing 
this controller would require manually configuring of all the devices it 
communicates with. This presents additional overhead for the system operators 
and potential downtime for the system. One-time enrollment/loading of key 
options may be available as third-party tools mature to better facilitate manual 
configuration. 

Automatic Authentication 

Future work could turn this manual process into an automated one. The idea of 
being able to insert a new device and it begin to work, securely, with no manual 
intervention is appealing, however, there are potential concerns. 

The most difficult challenge would be developing vendor support. Devices could 
come preloaded with certificates signed by a vendor’s private key. A CA-like 
terminal could then verify the device is legitimate, give the appropriate keys to it, 
assign it a new private key for the local network and the device could ideally 
work. This kind of authentication is done, but can be proprietary or specific to a 
vendor. Participation from all vendors (or design-exclusivity of a single vendor) 
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would be needed for this to work. Similar efforts are already done, however, the 
technology is not mature enough to guarantee security from supply-chain attacks. 
For example, this technique is used when enrolling VoIP desk phones in 
enterprise networks. Typically, a provisioning/roll out period is set and any future 
changes are processed manually.  
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Section 5: Network Considerations 
While the discussion for a singular protocol continues, an additional conversation 
on the underlying network also seems appropriate. It’s important to remember 
that shifting into an HTTPN-based world requires a network overhaul into an 
IP-based architecture. From transport medium to existing infrastructure 
appliances, much of the technologies and advances in the traditional IT realm are 
also available to an environment dedicated to HTTPN.  

Media 

Because HTTPS (and HTTPN) runs at the top of the networking stack, the 
specific media on the bottom of the stack is somewhat insignificant. With that 
said, however, discussion of the available mediums and their 
strengths/weaknesses should be had. Older twin copper cables carrying serial 
won’t be sufficient, especially at the availability needed. 

Modern 100BaseT Ethernet should be sufficient for proper function of an 
HTTPN based network, however, scalability and availability of a specific 
network may dictate 1000BaseT. Fiber cabling could prove to be a viable solution 
for some environments, and in fact, many new nuclear plants are installing fiber 
as part of construction. 

A large share of the IoT devices coming into market are largely centered on their 
wireless capabilities. This is often desired for the ease of setup, reduced capital 
costs due to reduced wiring and cable trays, and lack of infrastructure changes 
when adding to a completed design. Additional network access points, or APs, 
would be necessary to accommodate the wireless devices. While there are 
attractive reasons for using wireless, the reliability and network access leakage of 
wireless data, along with potential radio frequency interference, or RFI, and 
electromagnetic interference, or EMI, can complicate wireless use. Note that 
EPRI is currently investigating use of Long Term Evolution, or LTE, 
technology for use in a nuclear power plant. The 300 – 1,000 MHz band that 
LTE operates within appears to be a credible wireless solution, particularly for 
monitoring applications.  

Quality of Service / Fault Tolerance 

Resiliency is crucial for the success of the ICS using HTTPN. Maintaining high 
quality of service, or QoS, and ensuring proper redundancy is necessary for both 
of these missions. Faults within network equipment will happen and when they 
do, proper function of the ICS must continue. This can be achieved by using 
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similar tactics seen in larger IT networks. For example, “dual-homing” devices 
with multiple network interfaces yields reliability when the primary goes down. 
This is especially necessary for safety functions and critical message types.  

Ensuring QoS can still be a problem for some IT networks. Proper load 
balancing of traffic, failure domain management and efficient routing of traffic 
are all necessary considerations to address when creating such an environment. 

IT Infrastructure 

A lot of the problems noted above have solutions. Moreover, making an 
architecture shift to an IP-based environment provides the ability to take 
advantage of solutions already created for an IP-based world. For example, 
managed switches allow flexibility in routing and even priority for specific traffic. 
Network Intrusion Detection Systems, or NIDS, and network sensors allow 
insight into possible incoming attacks and anomalous behavior. Web Application 
Firewalls, or WAFs, allow operators to do parameter/value checking within an 
ICS – something that’s difficult to do for many protocols. Furthermore, 
administration/management of devices is much easier to maintain, as each device 
is accessible. This suggests the ability to do auditing, testing, maintenance and 
even software/firmware updates easily and remotely (or at least from a defined 
control room). In short, there are a lot of available technologies to take advantage 
of in an IP-based network. 
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Section 6: Feasibility 
Quite possibly the biggest hurdle in this push to a more secure architecture for 
ICS networks is on the device support side. Using the most advanced 
cryptography necessitates adequate computation power. In order to provide 
sufficient availability, with no system delay, the overhead of crypto must be met 
by an increase in computation power. Currently, most of the ICS components are 
not equipped to do such. 

These timing requirements need to be emphasized and detailed in a further 
specification. A specification could require a device to meet certain performance 
benchmarks, or having specific system timing requirements. 

The same should be stressed about networking interfaces. Typically, these devices 
support low-level serial bus interfaces. In order to handle HTTPN, these devices 
would need to handle the entire IP stack from Ethernet (or wireless) to HTTP. 
Again, an HTTPN specification should outline these specifics. Changes to 
HTTP and TLS should not affect any of the layers below it, which makes it 
adaptable for any device that can already run an IP stack with merely a software 
or firmware change.  

This rough HTTPN description has explored the system requirements needed 
for deployment and implementation. Those requirements, with vendor support, 
are definitely achievable, with the expected shift from traditional analog devices 
to newer “smart” devices.  

Also, an HTTPN-exclusive system could still be as susceptible as an HTTPS 
environment. Revisions of TLS/SSL have taught us that the best cryptographic 
methods today could be obsolete tomorrow. Therefore, it is crucial for the 
network engineers to update all devices when a newer, stronger cryptographic 
suite is available.  

It is imperative, however, to thoroughly consider what’s been discussed and the 
technical challenges needed to overcome. HTTP was created as an insecure, 
request-response protocol; two large problems for the intended application in an 
ICS environment. This document has discussed technologies that serve as fixes 
to those problems, however, they may ultimately be the biggest restrictions. 
Nevertheless, in theory, this implementation could work with enough support.  

Industry is driving product lines to be “smart”, allowing devices to connect to a 
network, building an ecosystem known as the Internet of Things (on the 
consumer front) and a parallel ecosystem in industry called the Industrial 
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Internet. Having an inherently secure singular specification that all of these 
devices can use would simplify design for future ICS landscapes; HTTPN could 
be a solution for this problem. Investigation into other protocols, like DNP3, as 
well as development of a new protocol that is inherently secure, should also be 
explored as possible solutions. 

In summary, the challenges this kind of deployment would face are: 

 Vendor support in designing crypto-capable devices 

 Vendor support in designing full IP-stack devices for bi-directional 
communications 

 Overcoming/mitigating overhead associated with encryption/decryption 

 Vendor support for device-based authentication (for automated 
authentication) 

 Key management – this is not unique to this environment; it simply remains 
a challenge for any environment that requires high integrity  

HTTPN is more of a configuration change to HTTPS than a technical 
advancement. Many of the Request for Comments, or RFCs, mentioned in this 
document are from the IETF, however, they are not the only standards body that 
can make standards. For example, DNP3, was standardized by the International 
Electrotechnical Commission, or IEC. These groups, however, focus on the 
more technical side. 

An alternative to an RFC from IETF (or the like), is publishing a standard that 
specifies exactly how HTTPN should be configured. This appears to be more 
appropriate for HTTPN. The target standard would be analogous to what the 
Payment Card Industry has created in their Data Security Standard, or PCI-DSS 
for handling credit card information. Their standard contains no technical 
advancements in the field, but merely rules on how data should be handled, 
proper architecture, and sufficient data validation thresholds. 
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Section 7: Gap Analysis 
In this section, protocol differences between current HTTPS specifications and 
what an HTTPN specification might look like are identified. This discussion is 
not exhaustive, but should serve as a good representation for what is intended to 
be accomplished in the HTTPN specification. The purpose of these examples is 
to show how to take out the ambiguity in the specification. 

HTTP Protocol Examples 

 Section 8.1 of RFC 2616: 

Section 8.1 discusses future versions of HTTP having more capability 
as it pertains to persistent connections, and there is still room for 
growth. Adoption of technologies that exist like those discussed in 
Section 3 (of this paper), for example, extend persistence for bi-
directional communication – a necessity for control systems. 
Additionally, correct implementation of this could reduce some 
overhead. 

 Sections 9.2, 9.4, 9.7, 9.8, 9.9 of RFC 2616: 

These sections involve the OPTIONS, HEAD, PUT, DELETE, 
TRACE, CONNECT methods for HTTP. At this point in time, for 
an ICS application, there appears no necessity for those methods. As 
mentioned earlier, only GET and POST should be supported in 
HTTPN. 

 Section 14 of RFC 2616:  

Section 14 describes the Header Field Definitions semantics for HTTP 
methods. Because the intended communication for an ICS is likely not 
file based, there are really only a few suggested file types that HTTPN 
should use. For example, text/plain and text/html should be used for 
transferring basic text or webpages. 

TLS Protocol Examples 

 Section 7.4.4 of RFC 5246 (TLS Protocol) reads: 

A non-anonymous server can optionally request a certificate from the 
client, if appropriate for the selected cipher suite. This message, if sent, 
will immediately follow the ServerKeyExchange message (if it is sent; 
otherwise, this message follows the server's Certificate message). 
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As discussed above and shown in Figure 3-1, HTTPN should not make this 
optional, but require the client to authenticate itself to the server. Verbiage 
for an HTTPN specification would read along the lines of: 

Immediately following the ClientKeyExchange message, the client will 
provide the server with its certificate for the same cipher suite as the 
server provided. Verification of the client’s certificate on the client’s 
side is done prior to any data communication. 

 Section 9 of RFC 5246 (TLS Protocol) reads: 

In the absence of an application profile standard specifying otherwise, a 
TLS-compliant application MUST implement the cipher suite 
TLS_RSA_WITH_AES_128_CBC_SHA (see Appendix A.5 for the 
definition). 

Because HTTPN is disallowing any TLS fallback, there will just one cipher, 
which is the one specified in Table 3-2 above. With that said, HTTPN is 
aggressively forward-compatible; that is to say that when a stronger cipher is 
available, all devices should move to that cipher. It’s imperative the RFC for 
HTTPN reflect that. 

HTTP/TLS Hardening & Best Practices 

Because HTTP was created without security in mind, there have been 
adjustments that strengthen the security of application, both configuration on the 
server side as well as in-message protections. There exist plenty of public 
resources available for hardening an HTTP server and browsers to maintain the 
utmost security and privacy. The following are example suggestions that should 
be examined for exclusion and/or modification for an HTTPN RFC.  

Security Headers 

In a response served from a server, headers are included to tell the client browser 
how to make sense of the response. Enforcement of these headers should be 
policy-driven; however, compliance can be checked on both sides. Some of those 
header options deal with security. Some suggested security header configurations 
include: 

 strict-transport-security – this header forces an HTTP connection to 
upgrade to HTTPS. This should be the de facto standard for HTTPN, and 
all unsecure connection attempts rejected. 

 content-security-policy – this header specifies what resources to accept from 
which origin sites. In an environment where HTTPN is used, content should 
only be served from the server it is communicating with, so a policy 
restricting the default source to itself should be mandatory. 

 x-xss-protections – this header enables the cross-site scripting filter and 
should always be enabled.  
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Server Configuration 

There are also specific settings that can be edited in the server configuration. 
These options are not always seen from the perspective of a browser, like header 
responses. This configuration information is usually stored as a file on the server, 
like apache2.conf, for example, for Apache servers. Enforcement of proper 
configuration can be done by host-based integrity checks, as well as rejection 
(and possibly reporting) on the client side. 

 Disabling deprecated versions of SSL/TLS (ex. SSLProtocol –ALL 
+TLSv2) 

 Accepting specific IP addresses for connections – this could be used to again 
strengthen and enforce communication policies between devices. The 
adaption for extending this to also include MAC addresses would be greatly 
helpful 

 Max clients – another layer on the server side to prevent any unapproved 
devices from connecting to the server 

 Logging – doesn’t directly help in security, however, can be extremely 
valuable for incident response, auditing, debugging, etc. 

 Other traditional security hygiene techniques (ex. running the HTTP server 
as a non-privileged user, segregating web resources) 
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Section 8: Roadmap and Future work 
Getting to a state in which HTTPN would be widely deployable requires a lot of 
intermediate work. There are still many questions that need to be answered 
before any impactful design decisions are made. This section details each step in 
the progression of development, however it is not fully exhaustive. The following 
items should be addressed in the order they are presented.  

1. Timing Requirements – because of the overhead necessary to run a full IP 
stack and handle the best encryption, specific timing requirements must be 
defined. These requirements can define specifically how much total time 
(transmission time + propagation delay + computation time) is acceptable for 
important devices.  

Timing is also dependent on use case. Timing requirements could be broken 
down into tiers of criticality as some devices have more important tasks. 
Control data output, for example, would carry higher importance and be 
more time sensitive than an auditing monitor. Safety systems, obviously, 
would require critical timing. 

In general, without these specified, it’s difficult to measure the efficiency and 
feasibility of using HTTP as a control protocol. This will also help drive the 
specifications needed for device requirements. 

2. Communication characterization – defining communication attributes (ex. 
how often changes are made, average bytes of data sent). This relates to the 
timing requirements, but should be more specific as far as details with respect 
to the amount of data needed.  

Tasks 1 and 2 should be done in unison, and would likely require data sets 
(and potentially site visits) from active digital power plants or alternate 
industrial control systems that utilize IP-based communications. Deployed 
devices should be cataloged and examined for feasibility testing of modern 
cryptography. It is difficult to estimate a realistic timeframe in which these 
tasks could be completed in, as control systems vary in these requirements. 
The more data collection, the better these systems can be modeled. At a 
minimum, 6 months of data acquisition (or roughly 12 distinct ICS site 
visits) and 6 months of analysis would be getting close to accurately 
characterizing the communication. 

3. Investigation into other protocols – this document describes the feasibility of 
using HTTP as a secure control protocol. Other protocols, such as DNP3, 
should be investigated for ensuring that HTTP is best for the application 
use. This is driven by Tasks 1 and 2 and would estimate about 6 months to 
completely evaluate. It’s important to remember at this task, moving forward, 
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that a diverse group of subject matter experts should be involved to engineer 
the most robust approach. 

4. Investigation into protocol security technologies – there exists other secure 
communication technologies that have been introduced that operate at 
different levels of the communication stack. For example, IPSec [9] is a 
security protocol that provides secure communication, but on the network 
layer of the network stack. Likewise, tcpcrypt [10] is a protocol in draft, that 
provides encryption at the transport level. Using a technology like these 
would allow any application at high levels, and not be bound to HTTP 
overhead and actions.  

This task should be examined for 6 to 12 months, depending on if physical 
implementation of a test network is needed; it is suggested on a small scale. 

5. Initial Specification Draft – At this point, the framework of how HTTPN 
would work would be set, and concrete details can begin to be drafted. 
Deciding on where the specification will be submitted is also necessary at this 
stage. Targeting the correct audience would be vital here to continue the 
advancement of HTTPN. A fair estimate for an RFC for HTTPN would be 
about 12 months, as it largely uses other RFCs. 

6. Request for Comments and Review –At some point in this process, 
workgroups comprised of industry experts from various organizations would 
begin to detail specification nuances, and begin to challenge it. Review and 
rewrite iterations could take anywhere from 12 months to 5 years, depending 
on the activity. Note: This is a rough estimate, there is no set schedule for 
standardizing. 

A visual representation of these steps is showing the following Gantt chart, 
Figure 8-1. 

0



 

 8-3  

  Time (in months) 
  3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54+ 

Ta
sk

s 

Timing 
Req.                   

Comm. 
Char.                   

Other 
Protocols                   

Protocol 
Security                   

Spec. 
Draft                   

RFC & 
Review                   

Figure 8-1 
Estimated Timeline of Future Work 

 

 

 

 

0



0



 

 9-1  

 

Section 9: References 
1. Internet Engineering Task Force. Hypertext Transfer Protocol – HTTP 1.1, 

1997. RFC 2068. https://tools.ietf.org/html/rfc2068 [IETF RFC] 

2. Internet Engineering Task Force. Hypertext Transfer Protocol – HTTP 1.1, 
1999. RFC 2616. https://tools.ietf.org/html/rfc2616 [IETF RFC] 

3. Internet Engineering Task Force. Hypertext Transfer Protocol Version 2 
(HTTP/2), 2015. RFC 7540. https://tools.ietf.org/html/rfc7540 [IETF 
RFC] 

4. Internet Engineering Task Force. HTTP over TLS, 2000. RFC 7540. 
https://tools.ietf.org/html/rfc2818 [IETF RFC] 

5. Internet Engineering Task Force. The Transport Layer Security (TLS) Protocol 
Version 1.2, 2008. RFC 5246. https://tools.ietf.org/html/rfc5246 [IETF 
RFC] 

6. Internet Engineering Task Force. The WebSocket Protocol, 2011. RFC 6455. 
https://tools.ietf.org/html/rfc6455 [IETF RFC] 

7. Internet Engineering Task Force. Known Issues and Best Practices for the 
Use of Long Polling and Streaming in Bidirectional HTTP, 2011. RFC 
6202. https://tools.ietf.org/html/rfc6202 [IETF RFC] 

8. Guarnacci, Nino. Oracle. Introduction to Bayeux Protocol (HTTP Publish-
Subscribe), 2009. 
https://blogs.oracle.com/slc/entry/introduction_to_bayeux_protoco 
[Blog/Presentation] 

9. Internet Engineering Task Force. Security Architecture for the Internet Protocol, 
2005. RFC 4301. https://tools.ietf.org/html/rfc4301 [IETF RFC] 

10. Tcpcrypt Org. Tcpcrypt – Encrypting the Internet. 
http://www.tcpcrypt.org/index.php [Website] 

 

 

0

https://tools.ietf.org/html/rfc2068
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc7540
https://tools.ietf.org/html/rfc2818
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc6202
https://blogs.oracle.com/slc/entry/introduction_to_bayeux_protoco
https://tools.ietf.org/html/rfc4301
http://www.tcpcrypt.org/index.php


0



 

 A-1  

 

Appendix A: HTTPN Experiments 
Measuring TLS Overhead 

A large concern in researching HTTPN has been the latency associated with the 
given security. In order to realize this impact, a quick experiment looking at the 
latency of packets on the wire was completed. In this scenario, the default 
Apache2 server was installed on a virtual machine, using a base Debian OS 
image. 

As the control, the Apache2 server was installed with no SSL/TLS, and a fetch 
from the host machine was done to get the home page of the server. From this, it 
was observed that it took approximately 6.031 milliseconds from the beginning 
TCP handshake to the final acknowledgement of the data sent. The last two 
packets show the ending acknowledgement in the transaction, likely due to 
timeout. 

Following this, SSL/TLS was enabled on the webserver. To accurately 
characterize HTTPN, the server was configured with the cryptographic suite 
suggested in Table 3-2 of this paper, 
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384. A capture of this is 
shown in Figure A-2. 

In this experiment, it was observed that the same transaction took about 27.360 
milliseconds to complete, over three times the duration for the first test. This is 
due to the necessary communication done to configure encryption.  

It should be acknowledged, however, that this overhead would not be realized on 
every transaction. The TLS handshake need not be done for each transaction, if 
the connection remains active. Overtime, the overhead would diminish to the 
overall burden of the transaction. 
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 A-2  

 

Figure A-1 
GET of Homepage without SSL/TLS 
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Figure A-2 
GET of Homepage with SSL/TLS 
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 A-4  

Testbed Overview 

During the development of the standards needed for HTTPN as a control 
protocol, it is important to understand the impact any design decisions will have 
on the control system itself. In order to better understand these effects, a 
platform that allows testing on a physical control system is needed.  

The use of this testbed will ensure that when the HTTPN standards are 
finalized, they will not be found to be unusable on an actual control network due 
to excessive demands on the system, or due to any other concerns that may arise. 
For example, hardware typically found in control networks, such as 
Programmable Logic Controllers, or PLCs, and Remote Terminal Units or 
RTUs, generally do not have encryption capabilities built in. Adding these 
requirements will significantly increase the processing requirements of these 
components, which we must ensure does not slow down the network enough 
such that it degrades its ability to exert control over the physical system it runs. 
By testing the HTTPN protocol in the lab and ensuring it can be applied in a 
control environment without adversely affecting the performance of the system, 
these issues can be avoided. 

Testbed Setup 

This testbed consists of 4 Raspberry Pis and 2 Beaglebone Blacks, which have 
been connected through a Cisco SG300 switch. The 4 Pis run Ubuntu MATE 
and have been purposed to act as a Certificate Authority (CA), a Human 
Machine Interface (HMI), a Controller, and another for various functions such 
as a web server or historian. The 2 Beaglebones act as Remote Terminal Units 
(RTUs) and run the Angstrom distribution of Linux. This network is shown in 
Figure A-1. 

Currently a simple PID control loop has been implemented for the controller. A 
12-volt fan is used as the actuator for this system, while the sensor is an 
anemometer. The variable of interest is the speed of the anemometer. Both the 
actuator and sensor are operated locally by a RTU, which acts to provide input 
and output for the system. The necessary connections for wiring the Beaglebones 
to the system hardware can be seen in the figures below. A 14-volt Tripp-Lite 
power supply is used to provide steady power for the fans and servo motor. 

Also, note that this control loop must compensate for outside disturbances, 
which are provided by a second fan which sits on top of a servo motor. Both the 
second fan and the servo are not part of the control loop itself, but are there to 
provide for random environmental input to the system. 
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 A-5  

Sample Experiment 

A simple experiment for this testbed was conducted to show what occurs with 
high latency issues inside the control loop. This is done by incorporating an 
artificial delay in the code that slows down network communications, which 
could potentially be caused by taking too long to process the signals or also by 
attacks such as Denial-of-Service, or DOS. If this latency causes the network 
communication to slow down enough that this delay is higher than the delay 
margin of the system, it will cause instability. 

Experiment Analysis 

Results from the experiment were about as expected. With induced delay, 
instability within the system rose, putting the system out of equilibrium. The 
exact threshold needed to create this is unknown, as it was not trivial finding 
exactly when it began.  

Furthermore, the most difficult process in doing this experiment is configuration 
of the server and different endpoints. In this case, it was representative of 
problems operators would face in real world deployments. Additionally, the 
testbed proved valuable in that it is necessary for rapid development. Testing out 
different configurations is also very helpful for evaluating benefits in the system. 
This could be useful in measuring overhead and availability. 

Further experimentation could also include: 

 Inclusion of real hardware (PLCs, real server boxes as CA) 

 Inclusion of industry common software (HMI displays, 
reporting/monitoring, etc.) 

 Use of different HTTP persistence techniques 

 Wireless compatibility, or other possible mediums. 
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 A-6  

Network Diagrams 

 

Figure A-3 
Block Diagram of HTTPN Testbed 
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Figure A-4 
HTTPN Testbed Circuit Schematic 
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