
2016 TECHNICAL REPORT

Electric Power Research Institute
3420 Hillview Avenue, Palo Alto, California 94304-1338 • PO Box 10412, Palo Alto, California 94303-0813 USA

800.313.3774 • 650.855.2121 • askepri@epri.com • www.epri.com

Program on Technology Innovation: HTTPN
Securing Nuclear Network Communications in the Age of the Internet of Things

0

0

 EPRI Project Managers
 R. King
 M. O’Connor

 3420 Hillview Avenue
 Palo Alto, CA 94304-1338
 USA

 PO Box 10412
 Palo Alto, CA 94303-0813
 USA

 800.313.3774
 650.855.2121

 askepri@epri.com 3002008039
 www.epri.com Final Report, December 2016

Program on Technology
Innovation: HTTPN

Securing Nuclear Network Communications
in the Age of the Internet of Things

All or a portion of the requirements of the EPRI Nuclear
Quality Assurance Program apply to this product.

0

mailto:askepri@epri.com
http://www.epri.com/

DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES

THIS DOCUMENT WAS PREPARED BY THE ORGANIZATION(S) NAMED BELOW AS AN ACCOUNT OF
WORK SPONSORED OR COSPONSORED BY THE ELECTRIC POWER RESEARCH INSTITUTE, INC. (EPRI).
NEITHER EPRI, ANY MEMBER OF EPRI, ANY COSPONSOR, THE ORGANIZATION(S) BELOW, NOR ANY
PERSON ACTING ON BEHALF OF ANY OF THEM:

(A) MAKES ANY WARRANTY OR REPRESENTATION WHATSOEVER, EXPRESS OR IMPLIED, (I) WITH RESPECT
TO THE USE OF ANY INFORMATION, APPARATUS, METHOD, PROCESS, OR SIMILAR ITEM DISCLOSED IN
THIS DOCUMENT, INCLUDING MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, OR (II) THAT
SUCH USE DOES NOT INFRINGE ON OR INTERFERE WITH PRIVATELY OWNED RIGHTS, INCLUDING ANY
PARTY'S INTELLECTUAL PROPERTY, OR (III) THAT THIS DOCUMENT IS SUITABLE TO ANY PARTICULAR USER'S
CIRCUMSTANCE; OR

(B) ASSUMES RESPONSIBILITY FOR ANY DAMAGES OR OTHER LIABILITY WHATSOEVER (INCLUDING ANY
CONSEQUENTIAL DAMAGES, EVEN IF EPRI OR ANY EPRI REPRESENTATIVE HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES) RESULTING FROM YOUR SELECTION OR USE OF THIS DOCUMENT OR
ANY INFORMATION, APPARATUS, METHOD, PROCESS, OR SIMILAR ITEM DISCLOSED IN THIS DOCUMENT.

REFERENCE HEREIN TO ANY SPECIFIC COMMERCIAL PRODUCT, PROCESS, OR SERVICE BY ITS TRADE
NAME, TRADEMARK, MANUFACTURER, OR OTHERWISE, DOES NOT NECESSARILY CONSTITUTE OR IMPLY
ITS ENDORSEMENT, RECOMMENDATION, OR FAVORING BY EPRI.

THE FOLLOWING ORGANIZATION, UNDER CONTRACT TO EPRI, PREPARED THIS REPORT:

Sandia National Laboratories

THE TECHNICAL CONTENTS OF THIS PRODUCT WERE NOT PREPARED IN ACCORDANCE WITH THE EPRI
QUALITY PROGRAM MANUAL THAT FULFILLS THE REQUIREMENTS OF 10 CFR 50, APPENDIX B. THIS
PRODUCT IS NOT SUBJECT TO THE REQUIREMENTS OF 10 CFR PART 21.

NOTE

For further information about EPRI, call the EPRI Customer Assistance Center at 800.313.3774 or
e-mail askepri@epri.com.

Electric Power Research Institute, EPRI, and TOGETHER…SHAPING THE FUTURE OF ELECTRICITY are
registered service marks of the Electric Power Research Institute, Inc.

Copyright © 2016 Electric Power Research Institute, Inc. All rights reserved.

0

This publication is a corporate
document that should be cited in the

literature in the following manner:

Program on Technology Innovation:
HTTPN, Securing Nuclear Network

Communications in the Age of the
Internet of Things.

EPRI, Palo Alto, CA: 2016.
3002008039.

 iii 

Acknowledgments

The following organization, under contract to the Electric Power
Research Institute (EPRI), prepared this report:

Sandia National Laboratories
1515 Eubank
Albuquerque, NM 87123

Principal Investigator
J. Baker

This report describes research sponsored by EPRI.

0

0

 v 

Abstract

Industrial instrumentation and control (I&C) network protocol, as
well as common networking protocols, are generally insecure by
design as functionality was the dominating design requirement.
These protocols were not intended for use in the current and
evolving threat environment. This has resulted in serious concerns
about the security of critical infrastructure, especially those facilities
that depend on inherently insecure protocols for daily monitoring
and control. This problem is not being addressed by equipment
vendors, as there is a lack of government regulation and end user
understanding of the vulnerabilities. These issues, and a general need
to be backward compatible with existing equipment, also result in
minimal end user demand for changes toward a more secure
networking environment.

Over the years, there have been security enhancements to existing
protocols, but these changes often allow operation in an insecure
manner to support backward compatibility. This further
compromises the I&C and networking environment, and leads to
extensive analysis and testing of production network configurations
to determine the level of security implemented, and also often results
in unusual implementations and manual procedures to meet required
security needs.

The objective of this project is to describe the framework and
implementations steps for a secure version of the current HTTPS
(hypertext transfer protocol (secure)) layer protocol (HTTP over
TLS (transport layer security)), and to determine the feasibility of
creating a new, singular specification (herein called HTTPN) that
would not be subject to backward compatibility issues. The concept
would also employ state of the art cryptologic techniques to ensure
authentication, authorization, and auditing of network transactions.

Keywords
Cyber Security
Cybersecurity
Secure Communication
HTTPS
HTTPN

0

0

 EXECUTIVE SUMMARY

 vii 

Deliverable Number: 3002008039
Product Type: Technical Report

Product Title: Program on Technology Innovation: HTTPN: Securing Nuclear Network
Communications in the Age of the Internet of Things

PRIMARY AUDIENCE: Information security and network engineering personnel at new nuclear generating
facilities
SECONDARY AUDIENCE: General information security personnel

KEY RESEARCH QUESTION

The focus of this research was to determine the feasibility of creating a new, singular communications
specification based on the existing HTTPS (Hypertext Transfer Protocol (Secure)) protocol (herein called
HTTPN), that would not necessarily be subject to backward compatibility, and that would employ state of the
art cryptologic techniques to ensure authentication, authorization, and auditing of network transactions. The
report explores the use of HTTPN for use in communications, data transfer, and the possibility for use in
equipment controlling applications.

RESEARCH OVERVIEW

Required compatibilities for HTTPN were first characterized based on existing specifications. Existing
technologies and published solutions were researched and summarized. Public and private key management
and distribution methods are examined for applicability. A gap analysis between the current specification and
a future HTTPN specification is assessed. Finally, future work required to push the effort to an Internet
Engineering Task Force (IETF) (or other) Request for Comments (RFC) specification is outlined. The report
also provides the results of using a simulation test bed to test the concepts.

KEY FINDINGS
• The report describes the background of HTTP and TLS (Transport Layer Security), how they were

developed, and for what purposes. This background provides the framework for describing a proposed
enhancement for a new protocol, theoretically called “HTTPN,” that has inherently more secure
features in a closed network environment

• The concept of HTTPN would not be constrained by backward-compatibility requirements of current
Internet Protocol environments. Support for backward-compatibility often generated unintended
security holes, and the lack of required backward compatibility for HTTPN is supported by the idea
that a new nuclear plant could be considered an isolated ‘green field’ installation, where backward-
compatibility is not necessarily required, and the security requirements are high enough to support
any extra overhead.

• While described in theory, developing a secure network environment for nuclear plant infrastructure
has a feasible path, but with some important considerations, such as:

o Developing a specification could require infrastructure devices to meet certain performance
benchmarks or have specific system timing requirements.

o Hardware and component networking interfaces need to be able to handle a broader array of
protocol stack and traffic, while not affecting any of the protocol layers below it, ensuring
adaptability.

0

 EXECUTIVE SUMMARY

Together...Shaping the Future of Electricity®

Electric Power Research Institute
3420 Hillview Avenue, Palo Alto, California 94304-1338 • PO Box 10412, Palo Alto, California 94303-0813 USA

800.313.3774 • 650.855.2121 • askepri@epri.com • www.epri.com
© 2016 Electric Power Research Institute (EPRI), Inc. All rights reserved. Electric Power Research Institute, EPRI, and

TOGETHER...SHAPING THE FUTURE OF ELECTRICITY are registered service marks of the Electric Power Research Institute, Inc.

o Susceptibility and threat considerations need to remain at the forefront of any new secure
environment, as even changes to the TLS/SSL (Secure Sockets Layer) protocols envisioned
for HTTPN could be obsolete quickly.

• A roadmap for future work and deployment identified several items that should be addressed, including:
o Timing requirements – specific device timing requirements and use cases for controlling data

input and output, as well as efficiency
o Communication characterization – defining communication attributes
o Investigating other protocols for secure control
o Investigation into protocol security technologies

WHY THIS MATTERS
Industrial instrumentation and control (I&C) network protocols, as well as common networking protocols, are
generally insecure by design as functionality was the dominating design requirement. These protocols were
not intended for use in the current and evolving threat environment, which has resulted in serious concerns
about the security of critical infrastructure, especially those facilities that depend on inherently insecure
protocols for daily monitoring and control. This problem is not being addressed by equipment vendors as there
is a lack of demand, through insufficient technical government regulation, or end user understanding of the
vulnerabilities. These issues, and a general need to be backward compatible with existing equipment, also
results in minimal demand for changes.

HOW TO APPLY RESULTS
The information in this report can be used as a guide and roadmap for future research and development to
deploy a secure network protocol, both for new power plants and for other operating infrastructure. The
theoretical protocol concept of HTTPN is based on existing network protocol and makes several assumptions;
however, the feasibility of implementing such a protocol has a realistic path forward. The Gap Analysis and
Roadmap for Future Work in the report provides the reader resources to use should such a concept move
forward toward development and deployment.

LEARNING AND ENGAGEMENT OPPORTUNITIES
• The Electric Power Research Institute’s (EPRI’s) Power Delivery and Utilization (PDU) Sector, and the

Nuclear Sector’s Digital I&C Implementation Group and Advanced Nuclear Technology program are
actively engaged in network cyber security research

EPRI CONTACTS: Ron King, Program Manager, rking@epri.com; Matt O’Connor, Sr. Project Manager,
mcoconnor@epri.com

PROGRAM: Advanced Nuclear Technology (ANT) 41.08.01

IMPLEMENTATION CATEGORY: Reference – Early R&D

0

 ix 

Commonly Used

Acronyms

This section provides acronyms for key terms as they are used in this
report.

Acronyms and Abbreviations
AI Analog Input

AP Access Point

CA Certificate Authority

DI&C Digital Instrumentation and Control

DNP3 Distribuuted Network Protocol

EMI Electromagnetic Interference

FISMA Federal Information Security Modernization Act

HMI Human-Machine Interface

HTTP(S) Hypertext Transfer Protocol (Secure)

I&C Instrumentation and Control

IETF Internet Engineering Task Force

ICS Industrial Control System

IoT Internt of Things

IP Internet Protocol

IT Information Technology

LTE Long Term Evolution

MAC Message Authentication Check

NIDS Network Intrustion Detection System

OS Operating System

0

 x 

OT Operations Technology

PCI-DSS Payment Card Industry – Data Security Standard

PKI Public Key Infrastructure

QoS Quality of Service

RA Registration Authority

REST Representational State Transfer

RFC Request for Comments

RFI Radio Frequency Inteference

SSL Secure Sockets Layer

TLS Transport Layer Security

VoIP Voice over IP

WAF Web Application Firewall

W3C World Wide Web Consortium

0

 xi 

Table of Contents

Abstract ... V

Executive Summary .. VII

Section 1: Introduction .. 1-1
Application ... 1-2
Cyber Threats .. 1-2
Cybersecurity Properties .. 1-3
Market Status... 1-3

Section 2: HTTPS Overview 2-1
HTTP Features .. 2-1
Transport Layer Security .. 2-2

Section 3: HTTPS Enhancement (HTTPN) 3-1
HTTPN Features ... 3-1

Usage ... 3-1
Persistent Communication 3-2
Methods .. 3-3
TLS in HTTPN ... 3-4
Client Authentication ... 3-4
HTTPN Handshake .. 3-4

Section 4: Key Management 4-1
Public Key Pinning .. 4-1
Private Certificate Authority ... 4-2
Manual Configuration .. 4-2
Automatic Authentication .. 4-2

Section 5: Network Considerations 5-1
Media 5-1
Quality of Service / Fault Tolerance 5-1
IT Infrastructure .. 5-2

Section 6: Feasibility ... 6-1

0

 xii 

Section 7: Gap Analysis 7-1
HTTP Protocol Examples .. 7-1
TLS Protocol Examples .. 7-1
HTTP/TLS Hardening & Best Practices 7-2

Security Headers .. 7-2
Server Configuration ... 7-3

Section 8: Roadmap and Future work 8-1

Section 9: References .. 9-1

Appendix A: HTTPN Experiments A-1
Measuring TLS Overhead .. A-1
Testbed Overview .. A-4
Testbed Setup .. A-4
Sample Experiment... A-5
Experiment Analysis ... A-5
Network Diagrams ... A-6

0

 xiii 

List of Figures

Figure 2-1 TCP Handshake and HTTP GET and OK 2-2

Figure 2-2 TLS Handshake .. 2-4

Figure 3-1 HTTPN TLS Handshake 3-5

Figure 8-1 Estimated Timeline of Future Work 8-3

Figure A-1 GET of Homepage without SSL/TLS A-2

Figure A-2 GET of Homepage with SSL/TLS A-3

Figure A-3 Block Diagram of HTTPN Testbed A-6

Figure A-4 HTTPN Testbed Circuit Schematic A-7

0

0

 xv 

List of Tables

Table 2-1 HTTP Methods .. 2-2

Table 3-1 Proposed HTTPN Supported Methods 3-3

Table 3-2 Proposed HTTPN Crypto Suite 3-4

0

0

 1-1 

Section 1: Introduction
Industrial instrumentation and control, or I&C, network protocols, as well as
common networking protocols, are generally insecure by design as functionality
was the dominating design requirement. Some of the protocols used today were
designed as many as 25-30 years ago, and were not intended to be used in the
current and evolving digital threat environment. This has resulted in serious
concerns about the security of critical infrastructure, especially those facilities that
depend on inherently insecure protocols for daily monitoring and control. This
problem is largely not being addressed by equipment vendors as there is a lack of
pressure to do so, either by regulation or end user demand (often due to a lack of
understanding of the potential vulnerabilities). These issues, and a general need
to be backward compatible with existing equipment, also results in minimal end
user demand for changes.

Over the years, there have been security enhancement to existing protocols, but
these changes often allow operation in an insecure manner to support backward
compatibility. This further compromises the I&C and networking environment
through increased complexity. This leads to extensive analysis and testing of
production network configurations to determine the level of security
implemented, and also often results in unusual implementations and manual
procedures to meet required security needs.

Due to the level of backwards compatibly needed and desired by almost all
industries, there has not been a significant drive to create more secure protocols
without the cruft and baggage of existing ones. However, with the deployment of
new nuclear plants, combined with a clearer understating of the potential security
threat to critical infrastructure, there is an opportunity to develop protocols that
are secure by design. This may result in protocols that are not necessarily
backwards compatible, but the isolation and effective ‘green field’ of a new
nuclear island provides both an opportunity to implement less backwards
compatible systems, and also a clear incentive for a more secure infrastructure.

A secure version of an accepted protocol that did not exhibit backward
compatibility vulnerabilities would provide both an example and an imperative to
improve I&C network security ahead of an evolving threat. New nuclear plant
deployment provides a unique opportunity combined with a real security need to
move forward with these new protocols. Once developed and put into the public
as open and endorsed protocols, it would open the ability for existing nuclear,
other energy facilities, and non-energy critical infrastructure, to begin requesting
equipment that meets the more secure specifications.

0

 1-2 

Application

The use case for a new protocol specification can be applied across multiple
sectors within an I&C network. The application can cross between traditional
information technology, or IT, and operations technology, or OT, sectors of a
network environment. This includes, but is not limited to:

 Computer to Computer communications, bidirectional (i.e. moving data over
the IT system)

 Computer to Controller communications, bidirectional (i.e. changing values
on computer screen, that change is reflected to controller, relaying
instrument metrics back to computer/auditing system)

 Controller to Device communications, bidirectional (i.e. relaying commands
from Computer, auditing, testing, reporting instrument metrics)

 Computer to Device communications, bidirectional (i.e. maintenance,
auditing and testing purposes.) This suggests the possibility of a future
architecture where the traditional hierarchy is challenged, and the
dependency of controllers is lessened.

Cyber Threats

Industrial control systems face a unique set of threats and attack vectors
predicated on the equipment installed at the site. As digital devices become more
feature-rich, they also become susceptible to the same threats as traditional IT
networks.

There are many threats an ICS can face; these include:

 sabotage

 destruction

 theft

 loss of public confidence

 even loss of life

These kinds of attacks could come in many different vectors also seen in
traditional IT networks. These vectors include:

 denying availability (ex. shutting down a water pump, disallowing cooling of
a system)

 sending valid communication inappropriately, causing an undesired affect
(i.e. resending previously captured commands)

 eavesdropping on communications jeopardizing sensitive information

 masquerading/impersonation (i.e. Man-in-the-Middle attacks)

 integrity manipulation (i.e. changing error messages to normal)

0

 1-3 

It’s these attack vectors that drive cybersecurity properties when designing secure
systems.

Cybersecurity Properties

When discussing cybersecurity problems, it’s important to understand what each
solution offers in terms of cybersecurity properties. Traditionally, the main three
categories are known as the CIA triad – representing Confidentiality, Integrity,
and Availability. The Federal Information Security Modernization Act, or
FISMA, outlines these properties as such:

 Confidentiality, which means “preserving authorized restrictions on access
and disclosure, including means for protecting personal privacy and
proprietary information”

 Integrity, which means “guarding against improper information modification
or destruction, and includes ensuring information nonrepudiation and
authenticity”

 Availability, which means “ensuring timely and reliable access to and use of
information”

It’s with these security objectives that cybersecurity solutions should be
engineered. Unfortunately, proper design in one objective often comes at the
sacrifice of another. For example, using the best cryptographic methods can
strengthen a design’s confidentiality, however, it may require a processing delay,
creating a lower availability.

System architects must weigh these trade-offs and evaluate which properties are
most important to the system’s security as well as efficient operation when
making decisions.

Market Status

Currently, there are a few shifting trends that would help the advancement of
what this report proposes. First, the Internet of Things, or IoT, is growing faster
than consumers (individual, commercial and industrial) can keep up with.
Vendors are building in this ability, whether the consumer will use it or not.
Connected devices are becoming more and more abundant everyday. This is
opportune for ICSs looking to make that transition from analog to digital or to
an IP-based communication network.

Secondly, HTTP is ubiquitous within the Internet, as practically everything that
runs on the internet can speak it. Using representational state transfer, or REST,
web services make communication on both sides much easier. REST allows
developers to quickly tap into the HTTP methods offered. This is much easier
than developing an application that translates data to the user or device.

Furthermore, computation and encryption is becoming cheaper. With a full
computer now fitting in the palm of your hand, high computation at a low cost is
more readily available than before. Additionally, engineers are getting smarter on

0

 1-4 

how to handle encryption, by offloading it onto separate chips, doing it in
hardware, etc. For these reasons, devices can be more secure than prior
generations of technology.

0

 2-1 

Section 2: HTTPS Overview
Hypertext Transfer Protocol, or HTTP, is a protocol standard used by computers
to communicate data. HTTP is a request-response protocol between a client,
typically a web browser (ex. Mozilla, Chrome) and a server (ex. Apache,
lighttpd). In the most common case, the client requests a webpage from the
server, and the server responds with the page.

The Internet Engineering Task Force, or IETF, and the World Wide Web
Consortium, or W3C, jointly created the standards for HTTP, which amounted
to RFC 2068 [1] in 1997. HTTP has gone through a few revisions since its
introduction. RFC 2616 [2] allowed for more persistence in which the same
connection could allow more HTTP requests. This eliminated a handshake and
teardown for each request, and cut latency.

HTTP/2.0 [3], created in May 2015, changed how data was sent, cutting down
latency by doing small compression techniques, but leaving HTTP syntax and
semantics the same.

HTTP was not originally created with security in mind and sends all data in
plaintext, allowing eavesdroppers visibility into the conversation. Additionally,
there’s no authentication mechanism built into HTTP or the underlying TCP its
using. As such, a secure HTTP, or HTTPS [4], was created. This leverages the
security libraries of Secure Socket Layers, or SSL. SSL has gone through
revisions itself, and currently has a new name of Transport Layer Security, or
TLS. Specific features and details of TLS will be discussed in another section.

HTTP Features

HTTP typically depends on the Transport Control Protocol, or TCP, for
reliability in communication to ensure integrity for traffic. HTTP begins after a
TCP connection has been established, and then uses HTTP actions to do
communication.

HTTP offers several commands that nodes use to communicate data. The two
most common, GET and POST, are seen in normal web browsing. A web
browser will send an HTTP-GET message to the server, fetching the webpage it
is hosting. Figure 2-1, for example, demonstrates this interaction.

In this packet capture, we see the initial TCP handshake, and then an HTTP-
GET request from 192.168.38.1 for the homepage of 192.168.38.152. The

0

 2-2 

purple packets in between packets 4 and 10 is the TCP packets for the data being
transferred. In packet 10, we see server respond with “200 OK” message,
indicating the file has been transferred. This is the simplest of examples,
however, the most fundamental when it comes to web browsing.

Figure 2-1
TCP Handshake and HTTP GET and OK

HTTP/2 supports nine total methods (verbs) that represent the actions in the
protocol. Table 2-1 below summarizes these methods and their high level
purpose within the protocol.

Table 2-1
HTTP Methods

Method Purpose

OPTIONS Asks server which methods are supported

GET Retrieves resource from server

HEAD Same as GET, without message-body in response

POST Request the server accepts data from client

PUT Request that the data be stored under the supplied Request-URI

DELETE
Request that the server delete the resource identified in the

Request-URI

TRACE Used to invoke loopback of message. For debugging purposes.

CONNECT Used to convert connection to secure tunnel

PATCH Used to partially modify resources

Transport Layer Security

As discussed earlier, HTTPS was created in response to the obvious demand for
security in web browsing. Initially, this addition was referred to as SSL, however,
the fourth revision of that came with a new name change, TLS. At the time of
this writing, TLS 1.2 [5] is the most current version, with TLS 1.3 in the process
of development.

0

 2-3 

Use of HTTPS, when properly implemented, gives users a lot more security
principles not offered in standard HTTP. Referring back to security properties
discussed in Section 1, TLS provides both confidentiality and integrity, but at the
expense of additional overhead of some availability (i.e. the processing adds some
delay). Confidentiality is provided by using symmetric cryptography on the
transmitted data. Integrity is done by using public-key cryptography, which is
used to verify to one party the other party is indeed who they say they are.
Additional integrity is provided by including a message authentication check, or
MAC, that additionally helps verify the origin of the message and the
untampered contents.

For better or worse, TLS was written to support many methods for
implementing these fundamental aspects of security. At the beginning of a
connection, the client and server must agree on which key exchange scheme,
cipher suite and which MAC type to use. This negotiation process can be seen in
the first two messages between the client and server in Figure 2-2 below, as we
look at the TLS conversation.

This flexibility in implementation can actually become a security problem. As
weaknesses and vulnerabilities in modern cryptography are discovered, some of
these choices in the negotiation process become overall unsafe to use. Some
servers are configured to accept older versions of TLS to ensure they can be
available for their clients; sacrificing security for availability. Further, export
controls restrict the use of some encryption techniques with countries the U.S.
government has deemed sensitive. To preserve connectivity with foreign clients
in these countries, domestically hosted servers must support legacy encryption
schemes.

0

 2-4 

Figure 2-2
TLS Handshake

0

 3-1 

Section 3: HTTPS Enhancement (HTTPN)
Currently, it appears to be an opportunistic time where new nuclear power plants
are being designed, as well as we are preparing for a future with “smart devices”.
Because HTTP and other industrial I&C network protocols are not secure by
design, there is a need for a protocol secure by design that could facilitate such an
environment’s needs.

For an environment where security is crucial, sacrifices should not, in most cases,
be made. Backwards compatibility and fallback to weaker ciphers are ideal for
widely used situations, but when it comes to air-gapped, locally managed
networks, having tighter requirements is much more reasonable of an
expectation.

Conversely, the best security can come at the expense of time. In an environment
where availability is imperative, the most secure cryptography methods may not
be the best selection as they could impose an unacceptable delay.

It’s with these motivations that a singular, new specification, HTTPN, is being
examined as a candidate to facilitate secure communications in industrial control
systems, or ICS like a nuclear power plant (hence the “N” in the acronym).
Suggestions for the most secure version of HTTPS are given, and then analyzed
for feasibility.

HTTPN Features

Usage

The use case of HTTPN could be anywhere HTTPS is currently used. This
would traditionally exist on the enterprise-like environment, consisting of mainly
desktop computers. However, as we continue to see a growing industry of IoT
devices, we see a potential for rapid deployment with little overhead assuming
these devices can handle modern cryptographic computation. The goal is for any
device in the ICS system, from the lower-level electronics to the operator
workstations, to be able to utilize HTTPN.

In a dynamic, changing environment, HTTP methods can be utilized for more
efficiency in transactions. However, in a more static environment, where a
controller (server) is actively receiving data from end points (clients), the end
points can POST data they want to send to the controller.

0

 3-2 

Persistent Communication

Inherently, however, there is a large problem in using HTTP as a control
protocol. The trouble in this communication scheme is the intrinsic one-way
communication in HTTP. Because HTTP is request-response, there’s no easy
way for the controller to give the end points commands within that same
connection.

For services doing fixed, consistent communication, the keep-alive function
within HTTP should be leveraged. First officially introduced in HTTP/1.1, this
feature allows nodes to retain the connection between a client and server, without
having the session reestablishment overhead of the TCP handshake and
encryption for each unique data exchange. HTTP/1.1 considers all connections
to be persistent, however, most Apache server versions have a default timeout.
This parameter can be changed to meet a specific environment’s need. Because of
the nature of this, components in the network environment must be able to
handle such connections. This means the controller (server) must be able to
handle as many connections as end points (clients) its controlling.

Under the assumption that server initiated communication is needed, there are a
few ways to address this issue.

1. Role reversal – each managed endpoint also acts as an HTTPN server, in
addition to being a client. During the “push” of information to the controller,
the endpoint is acting as a client. During the “poll” transaction, the controller
is acting as the client, requesting services/status from the server (endpoint).
This can stay within existing HTTP specification and permit bidirectional
communication on-demand, without persistent keep-alive traffic.

2. Long Polling – the client sends an HTTP-GET request for a page the server
is hosting. The server holds this request open until it has a command or
message to deliver. The client retrieves this page and can execute this. The
drawback of this scheme is unsynchronized requests and overall delayed time
from request to execution. Simply put, this is a last resort for an environment
that demands high availability like an ICS.

3. HTTP Streaming – At the beginning of connections, the client sends a
request to the server. The server does not send a response until it has a
command or new data. The request is never closed, and whenever there is
new data, the server will respond. The drawback with this is always
maintaining the connection in case the server has a message to send and the
overall resource exhaustion that comes with this. This is a workaround of
how HTTP normally operates, however, stays within HTTP specification.

4. Drastic changes in HTTP – Change the HTTP specification to allow at least
half-duplex communication. Adding HTTP methods on the server side
would allow for the server to be able to send commands as needed, without
waiting or burning resources. A full-duplex solution is offered by a
technology called WebSocket [6]. An upgrade to this mechanism is
requested when communication begins, however, the server is not guaranteed
to support such. Depending on the application, WebSocket may be enough

0

 3-3 

and could be mandatory in the HTTPN specification. Research is
encouraged to ensure additional development into WebSocket is not needed.

WebSocket relies on the existing HTTPS setup and handshake with a slight
addition. The client requests to the server that they upgrade the connection
to WebSocket. If the server supports it, the server will respond back,
accepting the upgrade. Bi-directional communication is now supported until
one side closes the channel.

Notwithstanding, these options all have their own limitations as well as the
shared restriction of relying on HTTP. Using a variant of HTTPS as a control
protocol is definitely possible, however, it may not meet tight timing restrictions
needed for crucial operation of an ICS, given the overhead associated with the
workarounds available. With the advent of faster processors, though, overcoming
the overhead may be possible. Ultimately, this is dependent on the system
requirements and timing restrictions for the environment.

Issues with solutions 2 and 3 are addressed in RFC 6202 [7]. Maximal Latency
was a large concern that is discussed for both of these. Other factors, such as
overhead, resource allocation and incompatibility with networking intermediators
are discussed.

RFC 6202 also gives an overview of existing technologies that allow
asynchronous messaging from server to client. The Bayeux [8] protocol, for
example, uses both long polling and HTTP streaming and also uses two
independent HTTP connections. The most popular implementation of this is
CometD, which has been successful in deployment for some specific applications.

Analysis into which of these technologies is best would require a more robust
definition of the design requirements. Requirements for latency and availability,
use case for connectivity and bandwidth needed should all be considered and
evaluated when considering these options.

Methods

From the current understanding of how HTTPN would operate within an
industrial I&C perspective, there are more features within HTTP that are simply
unneeded that can be stripped away. Ideally, the only two HTTP methods
needed for components to do what they need to do are HTTP-GET and
HTTP-POST commands. Without necessity for other methods, these are the
only methods that should be supported. An abridged table of the necessary
methods for HTTPN is shown in Table 3-1.

Table 3-1
Proposed HTTPN Supported Methods

Method Purpose

GET Retrieves resource from server

POST Request server accepts data from client

0

 3-4 

TLS in HTTPN

As discussed earlier, a large problem with HTTPS is the allowing of older
versions of the protocol and weak cryptography. HTTPN would require a more
hardened version of TLS, offering no TLS/SSL fallback and not allowing
negotiation of cipher suites; the server would reject any crypto that is not in line
with pre-approved settings.

TLS1.2 supports a wide array of key exchange methods, as well as ciphers and
HMACs. As an example of a pre-selected crypto suite, the following
recommendations are in Table 3-2.

Table 3-2
Proposed HTTPN Crypto Suite

Purpose Algorithm

Key Exchange DHE-256

Cipher AES-256-GCM

Data Integrity HMAC-SHA384

Other crypto methods should be considered if the proposed algorithms become
obsolete or unsafe. HTTPN should be flexible in adapting new algorithms if that
happens to be the case, but again should not allow negotiation of crypto
parameters, but should be statically assigned at the time of provisioning.

Client Authentication

Referring back to Figure 2-2, the TLS handshake, we see that the server sends its
certificate to the client to verify authenticity of the server. An optional step
within TLS is for the client to offer its certificate to the server and the server to
ensure its identity. This extra step will be enforced in HTTPN, requiring all
parties to identify themselves. However, since the system is air gapped from
public certificate authorities, a local certificate store must be utilized. During
device enrollment in the system, their keys must be loaded into this identity
management and key distribution mechanism. This is discussed largely in the
following section.

HTTPN Handshake

Putting all of these suggestions together changes the TLS handshake, making it
more detailed and specific. This is shown below in Figure 3-1.

0

 3-5 

Figure 3-1
HTTPN TLS Handshake

0

0

 4-1 

Section 4: Key Management
Key management is the administration and organization of cryptographic keys
for a system using cryptography. In a lot of scenarios, key management and
distribution is the hardest problem for secure communications. Key distribution
is part of the attack surface, so proper implementation is crucial. In order to
continue discussing options for this, a quick overview of public key infrastructure,
or PKI, must be discussed.

PKI is a construct used to organize public-key encryption. In this configuration,
every entity has private and public keys. Only the entity knows its private key,
and it uses that to sign messages it sends. Public keys are public, and are used to
to verify a message is signed from who it claims it is, providing integrity.
Furthermore, a device can encrypt a message using the recipients public key, and
the recipient decrypts it using its private key, providing confidentiality. This
environment is comprised of one or more of the following entities:

 Certificate Authority (CA) – the role of manager for certificate registering
and creation

 Registration Authority (RA) – the role of validation of a specific certificate;
typically, CAs act as RAs as well. For the purposes of this environment, we
will use just CAs

 Subscriber/Relying Party – services and users of those services, respectively.
In the context of this environment, all components will act as both in order
to provide full authentication

In the public internet, there are hundreds of trusted CAs that act as validators of
certificates, from both public and private entities. Lists of these CAs are typically
preloaded into a web browser, and can be configured afterwards. This offloads
the work of authenticity to other machines, however, it poses a problem as now
this increases the attack surface as well as requires connectivity outside of your
network – a problem for a potentially air-gapped network.

Public Key Pinning

The overall goal for designing this architecture can be summarized by the
purposely paranoid axiom of “deny all, allow by exception”. This zero-trust
philosophy can also help enforce communication policy that has been established
for devices. This problem can be solved with a private centralized CA or be
enforced at a lower level depending on the flexibility needed for the system. In
either case, a technique called public key pinning can be used to harden these

0

 4-2 

communications. Pinning is the practice of associating a public key with a
specific device. Using pinning can reduce the potential attack surface and reduce
potential overhead by bypassing a CA. In a design in which a private CA is used,
each device would need to pin the CA’s public key.

Private Certificate Authority

Easier solutions can be achieved, however, when the entire environment is
controlled, like an air-gapped network. One solution is to create a private, local
CA that can operate as the authenticator for all devices. This allows for
authentication without any traffic needing to go outside the environment. This is
ideal for a large, dynamic private network, where different devices have various
connectivity requirements.

Manual Configuration

A pedantic, yet effective method would be to load all necessary keys manually
onto each device. As we saw in the previous method, having a CA increased
administrative scalability in network changes. When working with a network that
doesn’t have many changes (i.e. new devices being added, communication policy
changes, etc.) administrative scalability is less of a priority. In such situations,
manually configuring certificates on the network may be preferred.

In this method, certificates are saved onto each device manually. There is a bit of
overhead in initial configuration and setup. However, this allows for strict
enforcement of network policies. By not adding certificates for machines that are
not supposed to communicate with, disallowed communication cannot happen.

A large deterrent of configuration is the necessary labor in the case of the removal
or addition of a device. Imagine a controller that controls two devices that also
communicates with another controller, and a higher level controller. Replacing
this controller would require manually configuring of all the devices it
communicates with. This presents additional overhead for the system operators
and potential downtime for the system. One-time enrollment/loading of key
options may be available as third-party tools mature to better facilitate manual
configuration.

Automatic Authentication

Future work could turn this manual process into an automated one. The idea of
being able to insert a new device and it begin to work, securely, with no manual
intervention is appealing, however, there are potential concerns.

The most difficult challenge would be developing vendor support. Devices could
come preloaded with certificates signed by a vendor’s private key. A CA-like
terminal could then verify the device is legitimate, give the appropriate keys to it,
assign it a new private key for the local network and the device could ideally
work. This kind of authentication is done, but can be proprietary or specific to a
vendor. Participation from all vendors (or design-exclusivity of a single vendor)

0

 4-3 

would be needed for this to work. Similar efforts are already done, however, the
technology is not mature enough to guarantee security from supply-chain attacks.
For example, this technique is used when enrolling VoIP desk phones in
enterprise networks. Typically, a provisioning/roll out period is set and any future
changes are processed manually.

0

0

 5-1 

Section 5: Network Considerations
While the discussion for a singular protocol continues, an additional conversation
on the underlying network also seems appropriate. It’s important to remember
that shifting into an HTTPN-based world requires a network overhaul into an
IP-based architecture. From transport medium to existing infrastructure
appliances, much of the technologies and advances in the traditional IT realm are
also available to an environment dedicated to HTTPN.

Media

Because HTTPS (and HTTPN) runs at the top of the networking stack, the
specific media on the bottom of the stack is somewhat insignificant. With that
said, however, discussion of the available mediums and their
strengths/weaknesses should be had. Older twin copper cables carrying serial
won’t be sufficient, especially at the availability needed.

Modern 100BaseT Ethernet should be sufficient for proper function of an
HTTPN based network, however, scalability and availability of a specific
network may dictate 1000BaseT. Fiber cabling could prove to be a viable solution
for some environments, and in fact, many new nuclear plants are installing fiber
as part of construction.

A large share of the IoT devices coming into market are largely centered on their
wireless capabilities. This is often desired for the ease of setup, reduced capital
costs due to reduced wiring and cable trays, and lack of infrastructure changes
when adding to a completed design. Additional network access points, or APs,
would be necessary to accommodate the wireless devices. While there are
attractive reasons for using wireless, the reliability and network access leakage of
wireless data, along with potential radio frequency interference, or RFI, and
electromagnetic interference, or EMI, can complicate wireless use. Note that
EPRI is currently investigating use of Long Term Evolution, or LTE,
technology for use in a nuclear power plant. The 300 – 1,000 MHz band that
LTE operates within appears to be a credible wireless solution, particularly for
monitoring applications.

Quality of Service / Fault Tolerance

Resiliency is crucial for the success of the ICS using HTTPN. Maintaining high
quality of service, or QoS, and ensuring proper redundancy is necessary for both
of these missions. Faults within network equipment will happen and when they
do, proper function of the ICS must continue. This can be achieved by using

0

 5-2 

similar tactics seen in larger IT networks. For example, “dual-homing” devices
with multiple network interfaces yields reliability when the primary goes down.
This is especially necessary for safety functions and critical message types.

Ensuring QoS can still be a problem for some IT networks. Proper load
balancing of traffic, failure domain management and efficient routing of traffic
are all necessary considerations to address when creating such an environment.

IT Infrastructure

A lot of the problems noted above have solutions. Moreover, making an
architecture shift to an IP-based environment provides the ability to take
advantage of solutions already created for an IP-based world. For example,
managed switches allow flexibility in routing and even priority for specific traffic.
Network Intrusion Detection Systems, or NIDS, and network sensors allow
insight into possible incoming attacks and anomalous behavior. Web Application
Firewalls, or WAFs, allow operators to do parameter/value checking within an
ICS – something that’s difficult to do for many protocols. Furthermore,
administration/management of devices is much easier to maintain, as each device
is accessible. This suggests the ability to do auditing, testing, maintenance and
even software/firmware updates easily and remotely (or at least from a defined
control room). In short, there are a lot of available technologies to take advantage
of in an IP-based network.

0

 6-1 

Section 6: Feasibility
Quite possibly the biggest hurdle in this push to a more secure architecture for
ICS networks is on the device support side. Using the most advanced
cryptography necessitates adequate computation power. In order to provide
sufficient availability, with no system delay, the overhead of crypto must be met
by an increase in computation power. Currently, most of the ICS components are
not equipped to do such.

These timing requirements need to be emphasized and detailed in a further
specification. A specification could require a device to meet certain performance
benchmarks, or having specific system timing requirements.

The same should be stressed about networking interfaces. Typically, these devices
support low-level serial bus interfaces. In order to handle HTTPN, these devices
would need to handle the entire IP stack from Ethernet (or wireless) to HTTP.
Again, an HTTPN specification should outline these specifics. Changes to
HTTP and TLS should not affect any of the layers below it, which makes it
adaptable for any device that can already run an IP stack with merely a software
or firmware change.

This rough HTTPN description has explored the system requirements needed
for deployment and implementation. Those requirements, with vendor support,
are definitely achievable, with the expected shift from traditional analog devices
to newer “smart” devices.

Also, an HTTPN-exclusive system could still be as susceptible as an HTTPS
environment. Revisions of TLS/SSL have taught us that the best cryptographic
methods today could be obsolete tomorrow. Therefore, it is crucial for the
network engineers to update all devices when a newer, stronger cryptographic
suite is available.

It is imperative, however, to thoroughly consider what’s been discussed and the
technical challenges needed to overcome. HTTP was created as an insecure,
request-response protocol; two large problems for the intended application in an
ICS environment. This document has discussed technologies that serve as fixes
to those problems, however, they may ultimately be the biggest restrictions.
Nevertheless, in theory, this implementation could work with enough support.

Industry is driving product lines to be “smart”, allowing devices to connect to a
network, building an ecosystem known as the Internet of Things (on the
consumer front) and a parallel ecosystem in industry called the Industrial

0

 6-2 

Internet. Having an inherently secure singular specification that all of these
devices can use would simplify design for future ICS landscapes; HTTPN could
be a solution for this problem. Investigation into other protocols, like DNP3, as
well as development of a new protocol that is inherently secure, should also be
explored as possible solutions.

In summary, the challenges this kind of deployment would face are:

 Vendor support in designing crypto-capable devices

 Vendor support in designing full IP-stack devices for bi-directional
communications

 Overcoming/mitigating overhead associated with encryption/decryption

 Vendor support for device-based authentication (for automated
authentication)

 Key management – this is not unique to this environment; it simply remains
a challenge for any environment that requires high integrity

HTTPN is more of a configuration change to HTTPS than a technical
advancement. Many of the Request for Comments, or RFCs, mentioned in this
document are from the IETF, however, they are not the only standards body that
can make standards. For example, DNP3, was standardized by the International
Electrotechnical Commission, or IEC. These groups, however, focus on the
more technical side.

An alternative to an RFC from IETF (or the like), is publishing a standard that
specifies exactly how HTTPN should be configured. This appears to be more
appropriate for HTTPN. The target standard would be analogous to what the
Payment Card Industry has created in their Data Security Standard, or PCI-DSS
for handling credit card information. Their standard contains no technical
advancements in the field, but merely rules on how data should be handled,
proper architecture, and sufficient data validation thresholds.

0

 7-1 

Section 7: Gap Analysis
In this section, protocol differences between current HTTPS specifications and
what an HTTPN specification might look like are identified. This discussion is
not exhaustive, but should serve as a good representation for what is intended to
be accomplished in the HTTPN specification. The purpose of these examples is
to show how to take out the ambiguity in the specification.

HTTP Protocol Examples

 Section 8.1 of RFC 2616:

Section 8.1 discusses future versions of HTTP having more capability
as it pertains to persistent connections, and there is still room for
growth. Adoption of technologies that exist like those discussed in
Section 3 (of this paper), for example, extend persistence for bi-
directional communication – a necessity for control systems.
Additionally, correct implementation of this could reduce some
overhead.

 Sections 9.2, 9.4, 9.7, 9.8, 9.9 of RFC 2616:

These sections involve the OPTIONS, HEAD, PUT, DELETE,
TRACE, CONNECT methods for HTTP. At this point in time, for
an ICS application, there appears no necessity for those methods. As
mentioned earlier, only GET and POST should be supported in
HTTPN.

 Section 14 of RFC 2616:

Section 14 describes the Header Field Definitions semantics for HTTP
methods. Because the intended communication for an ICS is likely not
file based, there are really only a few suggested file types that HTTPN
should use. For example, text/plain and text/html should be used for
transferring basic text or webpages.

TLS Protocol Examples

 Section 7.4.4 of RFC 5246 (TLS Protocol) reads:

A non-anonymous server can optionally request a certificate from the
client, if appropriate for the selected cipher suite. This message, if sent,
will immediately follow the ServerKeyExchange message (if it is sent;
otherwise, this message follows the server's Certificate message).

0

 7-2 

As discussed above and shown in Figure 3-1, HTTPN should not make this
optional, but require the client to authenticate itself to the server. Verbiage
for an HTTPN specification would read along the lines of:

Immediately following the ClientKeyExchange message, the client will
provide the server with its certificate for the same cipher suite as the
server provided. Verification of the client’s certificate on the client’s
side is done prior to any data communication.

 Section 9 of RFC 5246 (TLS Protocol) reads:

In the absence of an application profile standard specifying otherwise, a
TLS-compliant application MUST implement the cipher suite
TLS_RSA_WITH_AES_128_CBC_SHA (see Appendix A.5 for the
definition).

Because HTTPN is disallowing any TLS fallback, there will just one cipher,
which is the one specified in Table 3-2 above. With that said, HTTPN is
aggressively forward-compatible; that is to say that when a stronger cipher is
available, all devices should move to that cipher. It’s imperative the RFC for
HTTPN reflect that.

HTTP/TLS Hardening & Best Practices

Because HTTP was created without security in mind, there have been
adjustments that strengthen the security of application, both configuration on the
server side as well as in-message protections. There exist plenty of public
resources available for hardening an HTTP server and browsers to maintain the
utmost security and privacy. The following are example suggestions that should
be examined for exclusion and/or modification for an HTTPN RFC.

Security Headers

In a response served from a server, headers are included to tell the client browser
how to make sense of the response. Enforcement of these headers should be
policy-driven; however, compliance can be checked on both sides. Some of those
header options deal with security. Some suggested security header configurations
include:

 strict-transport-security – this header forces an HTTP connection to
upgrade to HTTPS. This should be the de facto standard for HTTPN, and
all unsecure connection attempts rejected.

 content-security-policy – this header specifies what resources to accept from
which origin sites. In an environment where HTTPN is used, content should
only be served from the server it is communicating with, so a policy
restricting the default source to itself should be mandatory.

 x-xss-protections – this header enables the cross-site scripting filter and
should always be enabled.

0

 7-3 

Server Configuration

There are also specific settings that can be edited in the server configuration.
These options are not always seen from the perspective of a browser, like header
responses. This configuration information is usually stored as a file on the server,
like apache2.conf, for example, for Apache servers. Enforcement of proper
configuration can be done by host-based integrity checks, as well as rejection
(and possibly reporting) on the client side.

 Disabling deprecated versions of SSL/TLS (ex. SSLProtocol –ALL
+TLSv2)

 Accepting specific IP addresses for connections – this could be used to again
strengthen and enforce communication policies between devices. The
adaption for extending this to also include MAC addresses would be greatly
helpful

 Max clients – another layer on the server side to prevent any unapproved
devices from connecting to the server

 Logging – doesn’t directly help in security, however, can be extremely
valuable for incident response, auditing, debugging, etc.

 Other traditional security hygiene techniques (ex. running the HTTP server
as a non-privileged user, segregating web resources)

0

0

 8-1 

Section 8: Roadmap and Future work
Getting to a state in which HTTPN would be widely deployable requires a lot of
intermediate work. There are still many questions that need to be answered
before any impactful design decisions are made. This section details each step in
the progression of development, however it is not fully exhaustive. The following
items should be addressed in the order they are presented.

1. Timing Requirements – because of the overhead necessary to run a full IP
stack and handle the best encryption, specific timing requirements must be
defined. These requirements can define specifically how much total time
(transmission time + propagation delay + computation time) is acceptable for
important devices.

Timing is also dependent on use case. Timing requirements could be broken
down into tiers of criticality as some devices have more important tasks.
Control data output, for example, would carry higher importance and be
more time sensitive than an auditing monitor. Safety systems, obviously,
would require critical timing.

In general, without these specified, it’s difficult to measure the efficiency and
feasibility of using HTTP as a control protocol. This will also help drive the
specifications needed for device requirements.

2. Communication characterization – defining communication attributes (ex.
how often changes are made, average bytes of data sent). This relates to the
timing requirements, but should be more specific as far as details with respect
to the amount of data needed.

Tasks 1 and 2 should be done in unison, and would likely require data sets
(and potentially site visits) from active digital power plants or alternate
industrial control systems that utilize IP-based communications. Deployed
devices should be cataloged and examined for feasibility testing of modern
cryptography. It is difficult to estimate a realistic timeframe in which these
tasks could be completed in, as control systems vary in these requirements.
The more data collection, the better these systems can be modeled. At a
minimum, 6 months of data acquisition (or roughly 12 distinct ICS site
visits) and 6 months of analysis would be getting close to accurately
characterizing the communication.

3. Investigation into other protocols – this document describes the feasibility of
using HTTP as a secure control protocol. Other protocols, such as DNP3,
should be investigated for ensuring that HTTP is best for the application
use. This is driven by Tasks 1 and 2 and would estimate about 6 months to
completely evaluate. It’s important to remember at this task, moving forward,

0

 8-2 

that a diverse group of subject matter experts should be involved to engineer
the most robust approach.

4. Investigation into protocol security technologies – there exists other secure
communication technologies that have been introduced that operate at
different levels of the communication stack. For example, IPSec [9] is a
security protocol that provides secure communication, but on the network
layer of the network stack. Likewise, tcpcrypt [10] is a protocol in draft, that
provides encryption at the transport level. Using a technology like these
would allow any application at high levels, and not be bound to HTTP
overhead and actions.

This task should be examined for 6 to 12 months, depending on if physical
implementation of a test network is needed; it is suggested on a small scale.

5. Initial Specification Draft – At this point, the framework of how HTTPN
would work would be set, and concrete details can begin to be drafted.
Deciding on where the specification will be submitted is also necessary at this
stage. Targeting the correct audience would be vital here to continue the
advancement of HTTPN. A fair estimate for an RFC for HTTPN would be
about 12 months, as it largely uses other RFCs.

6. Request for Comments and Review –At some point in this process,
workgroups comprised of industry experts from various organizations would
begin to detail specification nuances, and begin to challenge it. Review and
rewrite iterations could take anywhere from 12 months to 5 years, depending
on the activity. Note: This is a rough estimate, there is no set schedule for
standardizing.

A visual representation of these steps is showing the following Gantt chart,
Figure 8-1.

0

 8-3 

 Time (in months)
 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54+

Ta
sk

s

Timing
Req.

Comm.
Char.

Other
Protocols

Protocol
Security

Spec.
Draft

RFC &
Review

Figure 8-1
Estimated Timeline of Future Work

0

0

 9-1 

Section 9: References
1. Internet Engineering Task Force. Hypertext Transfer Protocol – HTTP 1.1,

1997. RFC 2068. https://tools.ietf.org/html/rfc2068 [IETF RFC]

2. Internet Engineering Task Force. Hypertext Transfer Protocol – HTTP 1.1,
1999. RFC 2616. https://tools.ietf.org/html/rfc2616 [IETF RFC]

3. Internet Engineering Task Force. Hypertext Transfer Protocol Version 2
(HTTP/2), 2015. RFC 7540. https://tools.ietf.org/html/rfc7540 [IETF
RFC]

4. Internet Engineering Task Force. HTTP over TLS, 2000. RFC 7540.
https://tools.ietf.org/html/rfc2818 [IETF RFC]

5. Internet Engineering Task Force. The Transport Layer Security (TLS) Protocol
Version 1.2, 2008. RFC 5246. https://tools.ietf.org/html/rfc5246 [IETF
RFC]

6. Internet Engineering Task Force. The WebSocket Protocol, 2011. RFC 6455.
https://tools.ietf.org/html/rfc6455 [IETF RFC]

7. Internet Engineering Task Force. Known Issues and Best Practices for the
Use of Long Polling and Streaming in Bidirectional HTTP, 2011. RFC
6202. https://tools.ietf.org/html/rfc6202 [IETF RFC]

8. Guarnacci, Nino. Oracle. Introduction to Bayeux Protocol (HTTP Publish-
Subscribe), 2009.
https://blogs.oracle.com/slc/entry/introduction_to_bayeux_protoco
[Blog/Presentation]

9. Internet Engineering Task Force. Security Architecture for the Internet Protocol,
2005. RFC 4301. https://tools.ietf.org/html/rfc4301 [IETF RFC]

10. Tcpcrypt Org. Tcpcrypt – Encrypting the Internet.
http://www.tcpcrypt.org/index.php [Website]

0

https://tools.ietf.org/html/rfc2068
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc7540
https://tools.ietf.org/html/rfc2818
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc6202
https://blogs.oracle.com/slc/entry/introduction_to_bayeux_protoco
https://tools.ietf.org/html/rfc4301
http://www.tcpcrypt.org/index.php

0

 A-1 

Appendix A: HTTPN Experiments
Measuring TLS Overhead

A large concern in researching HTTPN has been the latency associated with the
given security. In order to realize this impact, a quick experiment looking at the
latency of packets on the wire was completed. In this scenario, the default
Apache2 server was installed on a virtual machine, using a base Debian OS
image.

As the control, the Apache2 server was installed with no SSL/TLS, and a fetch
from the host machine was done to get the home page of the server. From this, it
was observed that it took approximately 6.031 milliseconds from the beginning
TCP handshake to the final acknowledgement of the data sent. The last two
packets show the ending acknowledgement in the transaction, likely due to
timeout.

Following this, SSL/TLS was enabled on the webserver. To accurately
characterize HTTPN, the server was configured with the cryptographic suite
suggested in Table 3-2 of this paper,
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384. A capture of this is
shown in Figure A-2.

In this experiment, it was observed that the same transaction took about 27.360
milliseconds to complete, over three times the duration for the first test. This is
due to the necessary communication done to configure encryption.

It should be acknowledged, however, that this overhead would not be realized on
every transaction. The TLS handshake need not be done for each transaction, if
the connection remains active. Overtime, the overhead would diminish to the
overall burden of the transaction.

0

 A-2 

Figure A-1
GET of Homepage without SSL/TLS

0

 A-3 

Figure A-2
GET of Homepage with SSL/TLS

0

 A-4 

Testbed Overview

During the development of the standards needed for HTTPN as a control
protocol, it is important to understand the impact any design decisions will have
on the control system itself. In order to better understand these effects, a
platform that allows testing on a physical control system is needed.

The use of this testbed will ensure that when the HTTPN standards are
finalized, they will not be found to be unusable on an actual control network due
to excessive demands on the system, or due to any other concerns that may arise.
For example, hardware typically found in control networks, such as
Programmable Logic Controllers, or PLCs, and Remote Terminal Units or
RTUs, generally do not have encryption capabilities built in. Adding these
requirements will significantly increase the processing requirements of these
components, which we must ensure does not slow down the network enough
such that it degrades its ability to exert control over the physical system it runs.
By testing the HTTPN protocol in the lab and ensuring it can be applied in a
control environment without adversely affecting the performance of the system,
these issues can be avoided.

Testbed Setup

This testbed consists of 4 Raspberry Pis and 2 Beaglebone Blacks, which have
been connected through a Cisco SG300 switch. The 4 Pis run Ubuntu MATE
and have been purposed to act as a Certificate Authority (CA), a Human
Machine Interface (HMI), a Controller, and another for various functions such
as a web server or historian. The 2 Beaglebones act as Remote Terminal Units
(RTUs) and run the Angstrom distribution of Linux. This network is shown in
Figure A-1.

Currently a simple PID control loop has been implemented for the controller. A
12-volt fan is used as the actuator for this system, while the sensor is an
anemometer. The variable of interest is the speed of the anemometer. Both the
actuator and sensor are operated locally by a RTU, which acts to provide input
and output for the system. The necessary connections for wiring the Beaglebones
to the system hardware can be seen in the figures below. A 14-volt Tripp-Lite
power supply is used to provide steady power for the fans and servo motor.

Also, note that this control loop must compensate for outside disturbances,
which are provided by a second fan which sits on top of a servo motor. Both the
second fan and the servo are not part of the control loop itself, but are there to
provide for random environmental input to the system.

0

 A-5 

Sample Experiment

A simple experiment for this testbed was conducted to show what occurs with
high latency issues inside the control loop. This is done by incorporating an
artificial delay in the code that slows down network communications, which
could potentially be caused by taking too long to process the signals or also by
attacks such as Denial-of-Service, or DOS. If this latency causes the network
communication to slow down enough that this delay is higher than the delay
margin of the system, it will cause instability.

Experiment Analysis

Results from the experiment were about as expected. With induced delay,
instability within the system rose, putting the system out of equilibrium. The
exact threshold needed to create this is unknown, as it was not trivial finding
exactly when it began.

Furthermore, the most difficult process in doing this experiment is configuration
of the server and different endpoints. In this case, it was representative of
problems operators would face in real world deployments. Additionally, the
testbed proved valuable in that it is necessary for rapid development. Testing out
different configurations is also very helpful for evaluating benefits in the system.
This could be useful in measuring overhead and availability.

Further experimentation could also include:

 Inclusion of real hardware (PLCs, real server boxes as CA)

 Inclusion of industry common software (HMI displays,
reporting/monitoring, etc.)

 Use of different HTTP persistence techniques

 Wireless compatibility, or other possible mediums.

0

 A-6 

Network Diagrams

Figure A-3
Block Diagram of HTTPN Testbed

0

 A-7 

Figure A-4
HTTPN Testbed Circuit Schematic

0

0

0

Electric Power Research Institute
3420 Hillview Avenue, Palo Alto, California 94304-1338 • PO Box 10412, Palo Alto, California 94303-0813 USA

800.313.3774 • 650.855.2121 • askepri@epri.com • www.epri.com

The Electric Power Research Institute, Inc. (EPRI, www.epri.com)

conducts research and development relating to the generation, delivery

and use of electricity for the benefit of the public. An independent,

nonprofit organization, EPRI brings together its scientists and engineers

as well as experts from academia and industry to help address

challenges in electricity, including reliability, efficiency, affordability,

health, safety and the environment. EPRI members represent 90% of the

electric utility revenue in the United States with international participation

in 35 countries. EPRI’s principal offices and laboratories are located in

Palo Alto, Calif.; Charlotte, N.C.; Knoxville, Tenn.; and Lenox, Mass.

Together...Shaping the Future of Electricity

© 2016 Electric Power Research Institute (EPRI), Inc. All rights reserved. Electric Power
Research Institute, EPRI, and TOGETHER...SHAPING THE FUTURE OF ELECTRICITY are
registered service marks of the Electric Power Research Institute, Inc.

Export Control Restrictions
Access to and use of EPRI Intellectual Property is granted with the spe-

cific understanding and requirement that responsibility for ensuring full

compliance with all applicable U.S. and foreign export laws and regu-

lations is being undertaken by you and your company. This includes

an obligation to ensure that any individual receiving access hereunder

who is not a U.S. citizen or permanent U.S. resident is permitted access

under applicable U.S. and foreign export laws and regulations. In the

event you are uncertain whether you or your company may lawfully

obtain access to this EPRI Intellectual Property, you acknowledge that it

is your obligation to consult with your company’s legal counsel to deter-

mine whether this access is lawful. Although EPRI may make available

on a case-by-case basis an informal assessment of the applicable U.S.

export classification for specific EPRI Intellectual Property, you and your

company acknowledge that this assessment is solely for informational

purposes and not for reliance purposes. You and your company ac-

knowledge that it is still the obligation of you and your company to make

your own assessment of the applicable U.S. export classification and

ensure compliance accordingly. You and your company understand and

acknowledge your obligations to make a prompt report to EPRI and the

appropriate authorities regarding any access to or use of EPRI Intellec-

tual Property hereunder that may be in violation of applicable U.S. or

foreign export laws or regulations.

Program:

Technology Innovation

3002008039

0

	Section 1: Introduction
	Application
	Cyber Threats
	Cybersecurity Properties
	Market Status

	Section 2: HTTPS Overview
	HTTP Features
	Transport Layer Security

	Section 3: HTTPS Enhancement (HTTPN)
	HTTPN Features
	Usage
	Persistent Communication
	Methods
	TLS in HTTPN
	Client Authentication
	HTTPN Handshake

	Section 4: Key Management
	Public Key Pinning
	Private Certificate Authority
	Manual Configuration
	Automatic Authentication

	Section 5: Network Considerations
	Media
	Quality of Service / Fault Tolerance
	IT Infrastructure

	Section 6: Feasibility
	Section 7: Gap Analysis
	HTTP Protocol Examples
	TLS Protocol Examples
	HTTP/TLS Hardening & Best Practices
	Security Headers
	Server Configuration

	Section 8: Roadmap and Future work
	Section 9: References
	Appendix A: HTTPN Experiments
	Measuring TLS Overhead
	Testbed Overview
	Testbed Setup
	Sample Experiment
	Experiment Analysis
	Network Diagrams

