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ABSTRACT 
The spatial and temporal variability of renewables have important economic implications for 
investments and system operations. This study describes a method for selecting representative 
hours to preserve key distributional requirements for regional load, wind, and solar time series 
with a two-orders-of-magnitude reduction in dimensionality. We describe the implementation of 
this procedure in the US-REGEN model and compare impacts on energy system decisions with 
more common approaches. The results demonstrate how power sector modeling and capacity 
planning decisions are sensitive to representation of intra-annual variation and how our proposed 
approach significantly outperforms simple heuristic selection procedures with lower resolution. 
The representative hour approach preserves key properties of the joint underlying hourly 
distributions, whereas seasonal average approaches over-value wind and solar at higher 
penetration levels and under-value investment in firm capacity by inaccurately capturing the 
corresponding residual load duration curves. 

Keywords 
Capacity planning  
Intermittent renewables 
Market integration 
Power system modeling 
Representative hours 
Variability 
 
 

0



0



 

vii 

CONTENTS 
ABSTRACT ............................................................................................................................... V 
EXECUTIVE SUMMARY ......................................................................................................... VII 
1 INTRODUCTION ..................................................................................................................1-1 

2 METHODS ............................................................................................................................2-1 
2.1 Representative Hours Method: “Extreme” Hour Selection ............................................2-1 
2.2 Representative Hours Method: “Cluster” Hour Selection ..............................................2-3 
2.3 Representative Hours Method: Hour Weighting ............................................................2-3 
2.4 Alternative Method (“Seasonal Average” Approach) .....................................................2-4 

3 RESULTS .............................................................................................................................3-1 
3.1 Diagnostic Results ........................................................................................................3-1 
3.2 Dynamic Model Results ................................................................................................3-3 

4 DISCUSSION AND CONCLUSION ......................................................................................4-1 

5 REFERENCES .....................................................................................................................5-1 

A MODEL AND DIAGNOSTIC RESULTS .............................................................................. A-1 
Scenario Details for the Static Analysis ............................................................................. A-7 
Scenario Details for the Dynamic Analysis ........................................................................ A-7 

 

 

0



0



 

ix 

LIST OF FIGURES 
Figure 2-1 Normalized hourly load, wind, and solar data for the Texas region, bubbles 

around corner points, and chosen segments from the hour selection procedure. ...............2-2 
Figure 3-1 Duration curves for load, wind, and solar in Texas. The hourly duration curve is 

approximated with 103 segments and 9 segments. ............................................................3-1 
Figure 3-2 Residual Load Duration curves with 80 GW wind and 80 GW solar. The hourly 

duration curve is approximated with 103 segments and 9 segments. Solid lines at the top 
of each panel show curves without renewable deployment, and dotted lines show wind 
and solar penetration scenarios..........................................................................................3-2 

Figure 3-3 Marginal value curves for wind and solar using the full hourly data, representative 
hour approach, and seasonal average approach. ...............................................................3-3 

Figure 3-4 Cumulative electric sector capacity investments through 2050 (GW) for three 
carbon policy scenarios under the representative hour approach and seasonal average 
approach. ...........................................................................................................................3-4 

Figure A-1 Regional structure of the US-REGEN model. ........................................................ A-1 
Figure A-2 Duration curves for load, wind, and solar in the Northwest Central region. The 

hourly duration curve is approximated with 103 segments using the representative hour 
approach and 9 segments using the seasonal average method. ....................................... A-4 

Figure A-3 Duration curves for load, wind, and solar in California. .......................................... A-4 
Figure A-4 Correlation coefficient comparison for load and wind and load and solar across 

all 15 model regions for all 8760 hours, the 103-segment approximation, and 9-segment 
approximation. ................................................................................................................... A-5 

Figure A-5 Interregional correlation coefficients for existing wind resources. ........................... A-6 
Figure A-6 Annual regional trade (TWh) under the $50/t-CO2 carbon tax scenario under the 

representative hour and seasonal averageapproaches. Negative values indicate that 
flows move in the opposite direction of the arrow in a given period. .................................. A-9 

 

 

0



0



 

xi 

LIST OF TABLES 
Table 2-1 Relationship between bubble tolerance are number of selected extreme hours. ......2-3 
Table A-1 Comparison of the average, maximum, and minimum hourly values for the annual 

time-series data for load, wind, and solar. Each section compares the underlying hourly 
data (8760), the representative hour approach (103), and the seasonal average 
method (9). Columns represent the 15 model regions. ...................................................... A-2 

Table A-2 Cost assumptions for the marginal value curve analysis. ........................................ A-7 
 

 

0



0



 

1-1 

1  
INTRODUCTION 
A key research question for energy system modeling is what role wind and solar could or should 
play in the transition to a low-carbon energy system. To explore this question effectively, a 
model must capture the strong effect of hourly and spatial variability on the fundamental 
economics of intermittent renewable energy. While maintaining full hourly resolution in a 
model is possible in applications with limited scope, more compact alternatives are required for 
use in energy system or integrated assessment models with national or global coverage and long 
timeframes. In this paper we propose the “representative hours” method for capturing the 
essential economic implications of intra-annual variability in a computationally efficient manner, 
namely with resolution two orders of magnitude lower than hourly. 

Prior to the recent emergence of wind and solar power as major potential sources of electricity 
supply, the capturing of intra-annual variability in energy system models required the capturing 
of the variability of electricity demand alone. Many existing studies show the relevance of 
increased temporal resolution to model outputs when wind and solar power are options (Ludig 
et al., 2011; Nicolosi et al., 2011; Pina et al., 2011) and provide overviews of approaches to 
incorporate this increased source of variability in models (Merrick, 2016; Nahmmacher et al., 
2014). Examples of such approaches are varied (Swider and Weber, 2007; Ueckerdt et al., 2015; 
Van der Weijde and Hobbs, 2012). Note that in a static setting where wind and solar power 
capacity is fixed, load can be translated into residual load (demand net of wind and solar 
production), and the relevant variability can again be reduced to a single dimension (De Sisternes 
et al., 2015). The modeling challenge arises in a dynamic setting in which investment in 
renewable energy is a decision variable, so that the approach must be robust to any level of 
deployment of wind and solar power. 

The generalized objective of any such approach is to find the unique hours of the year, not only 
in terms of electricity demand, but in terms of joint demand and wind and solar availability 
(Merrick, 2016). This framing suggests the use of clustering methods, which are employed 
elsewhere to find the number of unique hours (Merrick, 2016; Nahmmacher et al., 2014). The 
operations research literature on aggregation of linear programs also points to clustering methods 
and associated guarantees on model accuracy (Rogers et al., 1991). For a sample dataset 
(Merrick, 2016), a clustering method reduced the number of hours from 8760 to the order of 
1000 while maintaining the characteristics of the original problem. 

However, this order of magnitude is still intractably high for a detailed electricity model. 
Currently, most numerical applications in a dynamic investment (i.e., capacity planning) context 
are only able to reflect intra-annual variability with resolution on the order of 100 hours due to 
computational limitations. Our novel representative hours method, used by the US-REGEN 
model (EPRI, 2014; Blanford et al., 2013), consists of strategic selection of particular hours 
during a calibration year that satisfy simultaneously key distributional requirements for load, 
wind, and solar series across multiple inter-connected model regions. In particular, to reduce the 
resolution from thousands to hundreds of hours, we use a priori information about the relevance 
of different hours to the model solution. A key principle of the representative hours method is 
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that the extreme points of the annual load, wind, and solar distributions must be captured. These 
hours are important for representing potential capacity shortfalls as well as the potential extent of 
surplus renewable energy production. The relevant extremes include not only the peaks and 
minimums of the individual series, but crucially also the joint extremes, for example the 
moments when load is high and both wind and solar are low, represented for each region. 
However, while extreme hours are essential, by themselves they do not suitably reflect the 
distribution across the entire year. To supplement the selected extreme hours, we also include 
several hours identified by a standard clustering algorithm to represent the interior of the 
distribution. 

The selected hours are then weighted to sum to a full year while minimizing the sum of errors 
between the approximated and hourly duration curves for each regional series. See the Methods 
section for further details on implementation. The resulting set of “representative hours” is used 
as the domain for dispatch of electric generation and transmission capacity in the model, where 
load and wind and solar availability factors are equal to their levels in the actual underlying hour 
and the duration is equal to the weight. We provide a range of diagnostic tests demonstrating the 
method’s performance, as well as a comparison to a more typical approach of choosing a small 
number of points calculated as seasonal averages (see Section 2). This “seasonal average” 
approach uses a limited number of segments traditionally defined to capture the load curve 
(peak, shoulder, and base in summer, winter, and fall/spring) and assigns wind and solar 
coefficients to each segment based on average resource availability during the corresponding 
load period. While such simpler approaches can be effective at reproducing a load duration curve 
and average wind and solar capacity factors, they poorly represent the distribution and co-
variation with load of renewable resources, as well as the co-variation among regions needed to 
effectively model power transmission. 

The most meaningful metric presented here is an ex-post calculation of marginal value curves for 
wind and solar using a static model with full hourly resolution as well as approximations based 
on our method and the more typical approach. We show that the “representative hours” method 
reproduces far more closely the value of wind and solar as measured in the hourly model. A 
presentation and discussion of our results follow. In the methods section at the end of the paper, 
we provide a brief literature review of modeling approaches to aggregation of intra-annual hours, 
a description of the underlying data and US-REGEN modeling context, and an exposition of the 
three components of the “representative hours” method: (a) selection of “extreme” hours; 
(b) selection of “cluster” hours; and (c) weighting of hours. We also briefly describe our 
implementation of the more typical approach based on seasonal averages. Further 
methodological details are provided in Appendix A. 
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2  
METHODS 
The representative hours method has been implemented in the US-REGEN model, a detailed 
equilibrium model of electricity investment and dispatch with 15 distinct sub-regions of the 
continental US (see Figure A-1 in Appendix A for regional definitions). Parameterization is 
based on synchronized hourly data series for each region for load, as provided by FERC at the 
service territory level (FERC, 2010), and for renewable resource availability. Profiles for 
potential wind and solar output were developed for the model by AWS Truepower based on 
detailed simulations at potential sites in each region, as described in (EPRI, 2014). Although the 
simulations produced a range of profiles in each region corresponding to differentiated quality 
classes, which are represented in the model, for the purposes of representative hour selection we 
consider only a single profile for each region averaged over all classes. It is also possible to 
include multiple classes in certain regions, as discussed in the Appendix A. In this analysis, all 
profiles are based on data from 2010. The model can be solved as a dynamic optimization 
through 2050 with five-year time steps, or alternatively as a static equilibrium with dispatch and 
capacity rental for a single year using full hourly resolution as well as more aggregate 
configurations. 

2.1 Representative Hours Method: “Extreme” Hour Selection 
The first phase of the hour selection algorithm is to identify a minimal set of hours that 
adequately covers each relevant extreme in each region. To begin, the algorithm identifies 
the hours with minimum and maximum values of load, wind, and solar individually, that is, 
six hours per region. Next, the algorithm identifies the hours at each vertex of the three two-
dimensional planes (four each), and of the three-dimensional load-wind-solar space, that is, 
eight hours corresponding to each possible combination of maximum and minimum in each 
dimension, again in each region. If there were no overlap among these selected extremes, this 
would result in 26 points in 15 regions, or 390 candidate hours. However, the two- and three-
dimensional extremes often coincide, and one extreme is sometimes represented by the same 
hour in multiple regions. For our 2010 profiles, overlap between dimensions and regions reduces 
this total to 223 unique extreme hours. 

The simplest approach might be simply to proceed using all 223 extreme hours. However, 
though the extremes themselves are unique, other hours may be quite similar in terms of their 
joint values in the three dimensions of load, wind, and solar, and moreover may be near extremes 
in multiple (usually neighboring) regions. Thus it is possible to reduce substantially the number 
of hours needed to adequately represent the extremes by allowing other “qualifying” hours 
within a certain radius (based on a Euclidean norm) from the true extreme. Geometrically, 
one may imagine a “bubble” around each extreme point in each region (in one, two, or three 
dimensions respectively), as shown in Figure 2-1 for the three-dimensional space in Texas. The 
selection algorithm is designed to find the minimum number of hours such that all 390 bubbles 
are populated with at least one hour. The algorithm is implemented as a straightforward integer 
programming problem in GAMS/CPLEX with a binary decision variable for each hour 
corresponding to whether it is selected, a constraint that the sum of selected qualifying hours 

0



 

2-2 

for each extreme is greater than or equal to one, and a minimand equal to the sum of selected 
hours. If the radius for each bubble is set to zero, the algorithm must choose the extremes 
themselves, that is, the 223 unique extreme hours. With a non-zero bubble radius, the algorithm 
can take advantage of hours that are near-extreme in multiple regions or dimensions and choose 
fewer total hours. Some bubbles may be more important than others and thus may be assigned a 
smaller radius or tolerance. There is naturally a trade-off here between accuracy and 
computational tractability of the model, whose solution time is convex in the number of hours. 
Our goal is to arrive at a configuration on the order of 100 hours, including the cluster hours 
described in the next section. Table 2-1 summarizes the relationship between radii of the various 
bubbles and the minimum number of spanning hours. The current analysis uses the configuration 
shown in bold with 76 extreme hours. 

 
Figure 2-1 
Normalized hourly load, wind, and solar data for the Texas region (red), bubbles around corner 
points (black), and chosen segments from the hour selection procedure (blue). 
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Table 2-1 
Relationship between bubble tolerance are number of selected extreme hours. 

Extreme Description [number] Bubble radius 
(% difference from true extreme allowed in each dimension) 

1D load max/min [2] 0 1 1 1 5 
1D wind/solar max/min [4] 0 1 1 5 5 
2D load max vs. wind/solar min [2] 0 1 1 1 5 
2D load min vs. wind/solar max [2] 0 1 1 5 5 
2D load max vs. wind/solar max [2] 0 1 5 10 10 
2D load min vs. wind/solar min [2] 0 1 5 10 10 
2D wind vs. solar max/min [4] 0 1 5 10 10 
3D load max and wind or solar min [3]  0 1 5 5 10 
3D load min or wind and solar max [5]  0 1 5 10 10 
Number of Selected Hours 223 177 123 83 56 

2.2 Representative Hours Method: “Cluster” Hour Selection 
By design, the first phase has focused only on characterizing the convex hull of the three-
dimensional space in each region. While extreme hours in one region may in fact be interior 
points that are more centrally located in another region (as illustrated in Figure 2-1), it is clear 
that the interior of the load-wind-solar space remains under-sampled by the algorithm described 
above. Thus we add a second phase in which a second set of hours is selected based on a 
standard clustering algorithm. In contrast to the first phase, such an algorithm will by design 
identify hours near the center of the joint distribution. Whereas in the first phase, the number of 
selected hours was an outcome of the algorithm (and the choice of qualifying radii), in a 
clustering algorithm the number of clusters is an input. With one cluster, the algorithm will 
attempt to find the centroid of the entire distribution. With multiple clusters, the algorithm will 
first partition the space into clusters and then identify the centroid of each cluster, with the 
objective of minimizing the sum of distances from each point to its corresponding centroid. By 
definition, the hours nearest the selected cluster centroids will have virtually no overlap with the 
hours identified as extremes, thus providing a complementary subset. Again, there is a trade-off 
between sampling accuracy and computational tractability. In this analysis we applied the cluster 
algorithm phase with a target of 20 hours, for a total of 103 representative hours. 

2.3 Representative Hours Method: Hour Weighting 
Finally, the representative hour method must calculate weights for the hours selected by the first 
two phases such that the sum equals 8760, or a full year. The weights are chosen to minimize 
the error not only with respect the annual average, but also with respect to the shape of the 
cumulative distribution function (i.e., sorted duration curve) of each series in each region. The 
objective of the error minimization is the sum of squared differences between each representative 
hour’s sort position in the full hourly curve and its sort position in the representative weighted 
curve. An additional subtlety is that errors are more heavily weighted at points where the sorted 
duration curve is steeper, that is, where errors in the sort position will lead to a greater distortion 
of the shape of the curve. We note that the residual error after optimal weights are chosen is an 
indicator of whether the number of selected hours by the first two phases has been sufficient. 
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2.4 Alternative Method (“Seasonal Average” Approach) 
Traditionally, modeling the electric sector in a reduced-form context required only a relatively 
simple representation of the load duration curve, with a small number of segments, typically less 
than ten or even five, capturing the peak, shoulder, and base load periods.  Many models were 
developed with this structure, which allows a reasonably effective approximation of trade-offs 
between high fixed-cost / low variable-cost base load generators and low fixed-cost / high 
variable-cost peaking generators in a conventional power system. However, with the growing 
importance of intermittent renewable energy, models with this type of structure face challenges 
in adding variation in wind and solar to the framework. A typical response to these challenges is 
illustrated by the National Energy Modeling System (NEMS) used and made publicly available 
by the U.S. Energy Information Administration (EIA). The NEMS model, as described recently 
in EIA (2014), uses nine segments traditionally defined to capture the load curve (peak, shoulder, 
and base in summer, winter, and fall/spring), and assigns wind and solar coefficients to each 
segment based on average resource availability during the corresponding load period. For this 
analysis, we have reproduced a similar set of coefficients based on the same 2010 hourly data 
used in our representative hours method. 

The difficulty with this type of approach is that it insufficiently describes both the individual 
distributions of wind and solar resource availability and the joint distribution of wind and solar 
with load. It also makes no attempt to capture regional correlation, meaning that transmission 
between model regions during a given segment occurs with non-simultaneous conditions on the 
two ends of the transaction. Although the NEMS model also employs other ad hoc constraints to 
account for potential moments of both low and high renewable output, its underlying approach of 
using a small number of load-based segments with averaged wind and solar coefficients is quite 
common and can lead to a substantial misrepresentation of the value of renewable technologies. 
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3  
RESULTS 
3.1 Diagnostic Results 
We begin with an assessment of the representative hour (103 segments) and the seasonal average 
(9 segments) methods with respect to preserving distributional characteristics of the underlying 
hourly time series for load, wind, and solar. While the peak, minimum, and average of each 
series are preserved to a high degree of accuracy by construction in the representative hour 
method, the seasonal average method only ensures accurate capture of the averages and the peak 
load (see Table A-1 in Appendix A). Figure 3-1 shows duration curves (values sorted in 
descending order and weighted by segment length) for both the hourly and the approximated 
series for Texas. Results are qualitatively similar across other model regions, as shown in the 
Appendix A. The representative hour method successfully captures the shape of the annual 
distribution for all three individually, but the seasonal average method underestimates variation 
in wind and solar. Most importantly, we assess the performance of each method with respect to 
correlation among the series by examining residual load duration curves. Residual load is 
calculated as demand less the available generation from intermittent renewable resources, which 
represents load that must be met through dispatchable assets. We illustrate residual load in Texas 
with a hypothetical introduction of 80 GW of wind and solar respectively (roughly equivalent to 
peak load in 2010), re-sorted to form a duration curve. 

 
Figure 3-1 
Duration curves for load (left panel), wind (middle panel), and solar (right panel) in Texas. The 
hourly duration curve (black) is approximated with 103 segments (red) and 9 segments (blue). 

As shown in Figure 3-2, the hourly residual load duration curves indicates two important 
properties of wind and solar: (i) they alone contribute little to capacity needs, as peak residual 
load is unaffected by large renewable capacity additions; and (ii) they provide energy 
disproportionately at hours with low residual load. These two properties drive decreasing returns 
to renewable energy over the long term, as discussed below and elsewhere in the literature 
(Grubb, 1991; Fripp and Wiser, 2008; Edenhofer et al., 2013). The representative hour method 
preserves both properties with a limited downward shift in residual on the left side of the curve 
and a much larger downward shift on the right side. By contrast, the seasonal average method  
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results in a larger contribution to the residual peak and a more limited contribution at the low end 
of the residual load curve. These results indicate that the representative hour method is much 
more likely to preserve key economic properties of intermittent renewable technologies in a 
reduced-form model than the more typical seasonal average approach. 

 
Figure 3-2 
Residual Load Duration curves with 80 GW wind (left panel) and 80 GW solar (right panel). The 
hourly duration curve (black) is approximated with 103 segments (red) and 9 segments (blue). 
Solid lines at the top of each panel show curves without renewable deployment, and dotted lines 
show wind and solar penetration scenarios. 

We have also examined correlations between multiple time series (e.g., between load and 
resources, between different resource types, and across regions). In particular, models should 
reflect the joint distribution of load, wind, and solar characteristics to reflect the economics of 
intermittent renewable technologies. As shown in Figure A-2, the representative hour method 
captures correlation coefficients between load and renewable output well, but the simplified 
seasonal average approach does not sufficiently represent these characteristics. In addition to 
the interdependence of load and renewables, correlations between different regions can be an 
important dynamic in trade outcomes and large-scale system balancing. Figure A-3 shows how 
the representative hours capture the cross-correlations in the underlying data better than the 
heuristic approach, which understates the heterogeneity across regions. Additional correlation 
statistics are examined in the Appendix A. 

We now turn to a comparison of model outputs. We begin with an illustrative analysis using the 
static version of the model, described above, in which the full hourly resolution can be used (as 
well as the two approximation methods). The experiment, based on EPRI (2015), consists of a 
series of static model simulations where the cost of wind (resp. solar) is systematically varied 
from current levels down to zero. As the cost decreases (and all other system parameters remain 
unchanged), total wind (resp. solar) deployed in the U.S. increases, thus revealing a marginal 
value curve for each resource. This measurement of value is a strong indicator for the role of 
renewable technologies in a dynamic simulation where costs and other components of the system 
evolve over time. Figure 3-3 shows the results of this analysis using hourly resolution as well as  
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the reduced-form methods. Again, the representative hour method closely matches the results 
from the hourly simulation, while the seasonal average method, which fails to account for key 
distributional impacts on the value of renewable energy profiles, significantly overestimates the 
marginal value curve for this dataset. 

 
Figure 3-3 
Marginal value curves for wind (left panel) and solar (right panel) using the full hourly data (black), 
representative hour approach (red), and seasonal average approach (blue). 

3.2 Dynamic Model Results 
To characterize the electric sector transition to a long-run equilibrium and to evaluate the impacts 
of model representations of annual variation on these outcomes, we conduct a dynamic analysis 
in US-REGEN through 2050 using the representative hour and season average approaches 
described above. These two variability specifications are run under three policy scenarios: 
1. Reference (no additional climate policies); 2. Carbon tax of $25/t-CO2 beginning in 2025; 
3. Carbon tax of $50/t-CO2. Scenario assumptions are detailed in the Appendix A. 

These experiments demonstrate how model results are sensitive to the segment selection 
procedure and its accuracy in approximating temporal and spatial distributions of load, wind, and 
solar. Model recommendations for capacity investments (Figure 3-4) as well as other dispatch, 
emissions, and cost metrics (Appendix A) are sensitive to these specifications across a range of 
market settings but are most responsive under scenarios that incentivize low-carbon 
technologies. The seasonal average approach described above does not account for the 
correlations between intermittent resources and load, which ceteris paribus incorrectly values 
these resources and operational flexibility of other assets. Cumulative investments through 2050 
in solar (wind) are 113 GW (35 GW) larger with the seasonal average approach under baseline 
policy conditions and 217 GW (156 GW) larger under a $50/t-CO2 tax compared with the 
representative hour approach. Moreover, investments in conventional capacity, in particular gas 
combined cycle and gas turbines, are considerably lower in the seasonal average approach. An 
assessment of capacity adequacy of the dynamic model solution against the true underlying 
hourly distribution shows that the seasonal average approach leads to a capacity shortfall of as 
much as 200 GW nationally, while the representative hour approach, which explicitly accounts 
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for extreme hours driving capacity needs, falls short by a maximum of only 34 GW. Although 
the specifications above lead the seasonal average approach to overestimate the value of 
renewables, the direction of the bias depends strongly on the implementation details and data of 
different approaches (Merrick, 2016). 

 
Figure 3-4 
Cumulative electric sector capacity investments through 2050 (GW) for three carbon policy 
scenarios under the representative hour approach (left) and seasonal average approach (right). 
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4  
DISCUSSION AND CONCLUSION 
The results described here demonstrate how power sector modeling and capacity planning 
decisions are sensitive to the representation of intra-annual variation and how our proposed 
approach significantly outperforms simple heuristic selection procedures while maintaining 
computational tractability. In particular, the value of intermittent renewable energy from wind 
and solar is inextricably linked with the timing of their production relative to load. Clustering 
methods have been shown to guarantee that a model with aggregated temporal resolution will 
reproduce the outputs of a model with full hourly resolution (Merrick, 2016). Since such a 
resolution is still too great for a dynamic, national-level model, we have reduced the resolution 
further by drawing upon knowledge of the influence of extreme hours on electric sector 
investments. The goal of our representative hour approach is to model dynamic investment 
decisions that reflect as accurately as possible (within computational feasibility) the true 
economic implications of intermittency. 

We first demonstrate that key properties of the joint underlying distributions are well-preserved 
by the representative hour approach for our comprehensive U.S. dataset. The changing shape of 
the residual load duration curve with increasing penetration of wind and solar capacity is an 
essential attribute of renewable value, and the approximated curve with weighted representative 
hours closely matches that based on hourly data. By contrast, the seasonal average approach 
yields a much poorer fit for residual load. We note that Ueckerdt et al. (2015) has focused on 
parameterizing directly the relationship between wind and solar capacity and the shape of the 
residual load duration curve, which is a compact and useful approach for modeling a single 
region. However, because our method is based on a sampling of simultaneous hourly data across 
multiple interconnected regions, we are able to reflect spatial variation of resources, including 
spatial variation in temporal correlations, as well as transmission capacity requirements. In this 
regard, the representative hour approach is a significantly more powerful (though 
computationally intensive) aggregation method, and one more suitable for detailed regional 
electricity dispatch and investment models, than the approach of Ueckerdt et al. (2015). 
Moreover, in the conventional seasonal average approach, each region’s averages are derived 
separately, so that only seasonal correlation between regions is retained, making it very difficult 
to relate transmission flows in a given model segment to actual capacity requirements. 

We next demonstrate that model results using the representative hour approach for aggregation 
align closely with results from an otherwise identical hourly model. The marginal value curve, 
which describes how the value of wind and solar additions at the margin falls with cumulative 
national capacity, can be calculated in a rental context with a single year at hourly resolution, 
making it an ideal point of comparison for alternative aggregation approaches. Again, the 
seasonal average approach misses the mark, over-valuing wind and solar at higher levels of 
penetration as a result of not accurately capturing the corresponding residual load duration 
curves. Finally, we show results for a dynamic simulation with alternative carbon policies. 
Consistent with the marginal value curve results, the seasonal average approach leads to a greater 
deployment of wind and solar and lower investment in firm capacity than the representative hour 
approach, particularly at higher carbon prices. Although the hourly benchmark is not available in 
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this setting, the capacity results from the aggregate model can be compared to the hourly data, 
which reveals much larger shortfalls in the seasonal average approach due to its lack of attention 
to extreme moments. Overall, these experiments illustrate how a representative hour approach 
can provide more reliable energy modeling insights and accurate asset valuation relative to 
simplified approaches that appear in many similarly oriented models. 

One important limitation of the representative hour approach, and indeed of the simpler seasonal 
average and any similar approach, is that the chronology of hours is not preserved. Thus, it is not 
possible to explicitly model electricity storage (unless one makes an unrealistic assumption of 
unlimited reservoir size) or operational constraints on ramp rates and start-up/shut-down cycles. 
While it is possible to study these issues with full hourly resolution, and in the case of 
operational constraints with a unit commitment formulation, it is not currently possible to 
conduct national-level dynamic investment analysis in such a context. One idea is to represent 
the year with a small number of full weeks, possibly at slightly less than hourly resolution, and 
examine the deployment of electricity storage, subject to reservoir constraints, within each of 
these “representative weeks.”  However, it is unclear whether such an approach sufficiently 
captures annual variation at the hourly level, nor whether a weekly horizon is sufficient to 
capture the potential value of storage. A more conservative approach is to complement dynamic 
investment modeling using representative hours with separate but harmonized supplementary 
analysis using hourly resolution for a single year. For example, EPRI (2015) shows that unless 
costs of electricity storage become far lower than they are today, bulk storage does not 
significantly change the optimal mix of generation technology in a static equilibrium for a range 
of policy scenarios. A key research question for future work is to what extent opportunities for 
electricity storage and operational constraints fundamentally change the value of generation 
investments and the trade-offs between intermittent renewable and dispatchable technologies 
during the transformation to a low-carbon energy system. 
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A  
MODEL AND DIAGNOSTIC RESULTS 

 
Figure A-1 
Regional structure of the US-REGEN model. 

The U.S. Regional Economy, Greenhouse Gas, and Energy (US-REGEN) model and analysis in 
this paper is organized into 15 state-based regions, as shown in Figure S1.  For two regions, 
South-Atlantic (VA, NC, and SC) and Florida, a wind series was not simulated by AWS 
Truepower because of the low quality of wind resources in those regions.  Otherwise, a single 
series for wind and for solar is assigned in each region based on a weighted average of identified 
potential sites across a range of quality classes.  These classes are represented individually in the 
model, with the same hours and weights derived in the methodology described in this paper 
based on the weighted average regional series.  There is typically a strong correlation within a 
region between different quality classes, and we have not observed large errors with this 
approach.  However, it is relatively straightforward to explicitly include multiple quality classes 
within a region, for example a high-quality wind class in a region that is expected to be important 
in the model solution.  Rather than add an additional wind dimension for this class, we have 
found it more practical to add a duplicate region with a new wind series and unchanged values 
for the load and solar series. 
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Table  A-1 
Comparison of the average, maximum, and minimum hourly values for the annual time-series data for load, wind, and solar. Each 
section compares the underlying hourly data (8760), the representative hour approach (103), and the seasonal average method (9). 
Columns represent the 15 model regions. 

  NE NY MA SA FL NEC -D NEC -R SEC NWC SWC TX MTN-S MTN-N PAC CA 

Load-Avg    

8760 0.552 0.558 0.563 0.616 0.531 0.640 0.595 0.622 0.638 0.592 0.564 0.688 0.570 0.616 0.541 

103 0.552 0.557 0.563 0.616 0.532 0.639 0.596 0.622 0.638 0.592 0.564 0.687 0.570 0.616 0.541 

9 0.555 0.558 0.563 0.616 0.531 0.640 0.595 0.622 0.639 0.592 0.564 0.688 0.570 0.616 0.541 

Load-Max  

8760 1.000 1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

103 0.999 0.999 0.992 0.993 1.000 0.996 1.000 0.997 0.990 0.996 1.000 0.996 1.000 1.000 0.998 

9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Load-Min    

8760 0.338 0.355 0.342 0.350 0.282 0.408 0.376 0.380 0.438 0.378 0.347 0.499 0.397 0.411 0.378 

103 0.346 0.361 0.352 0.359 0.288 0.412 0.381 0.388 0.444 0.383 0.347 0.505 0.400 0.421 0.388 

9 0.431 0.432 0.430 0.456 0.385 0.512 0.468 0.474 0.515 0.460 0.432 0.588 0.462 0.510 0.452 

Wind-Avg    

8760 0.303 0.293 0.271 0.266 0.000 0.289 0.280 0.206 0.368 0.300 0.406 0.350 0.265 0.245 0.241 

103 0.342 0.301 0.289 0.295 0.000 0.269 0.287 0.217 0.361 0.320 0.428 0.314 0.250 0.225 0.236 

9 0.323 0.308 0.297 0.000 0.000 0.293 0.335 0.241 0.359 0.403 0.420 0.413 0.369 0.285 0.308 

Wind-Max     

8760 0.955 0.930 0.964 0.938 0.000 0.938 0.942 0.936 0.916 0.913 0.944 0.887 0.845 0.925 0.873 

103 0.930 0.883 0.914 0.906 0.000 0.911 0.902 0.887 0.909 0.870 0.922 0.847 0.800 0.891 0.873 

9 0.392 0.404 0.429 0.000 0.000 0.364 0.408 0.347 0.435 0.509 0.534 0.481 0.431 0.325 0.367 
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Table A-1 (continued) 
Comparison of the average, maximum, and minimum hourly values for the annual time-series data for load, wind, and solar. Each 
section compares the underlying hourly data (8760), the representative hour approach (103), and the seasonal average method (9). 
Columns represent the 15 model regions. 

  NE NY MA SA FL NEC -D NEC -R SEC NWC SWC TX MTN-S MTN-N PAC CA 

Wind-Min  

8760 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.012 0.003 0.004 0.013 0.009 0.001 0.002 

103 0.005 0.002 0.000 0.020 0.000 0.010 0.006 0.001 0.051 0.014 0.008 0.029 0.026 0.004 0.028 

9 0.233 0.218 0.151 0.000 0.000 0.145 0.189 0.057 0.251 0.267 0.185 0.321 0.292 0.248 0.240 

Solar-Avg  

8760 0.137 0.135 0.139 0.150 0.153 0.138 0.140 0.150 0.157 0.160 0.186 0.158 0.184 0.154 0.191 

103 0.142 0.131 0.134 0.150 0.161 0.133 0.133 0.154 0.156 0.158 0.188 0.156 0.187 0.155 0.200 

9 0.131 0.132 0.131 0.146 0.150 0.132 0.141 0.148 0.159 0.173 0.184 0.159 0.180 0.156 0.189 

Solar-Max  

8760 0.728 0.726 0.785 0.752 0.691 0.754 0.739 0.710 0.769 0.752 0.803 0.787 0.780 0.787 0.806 

103 0.691 0.682 0.748 0.735 0.677 0.747 0.739 0.692 0.769 0.728 0.763 0.752 0.765 0.760 0.790 

9 0.324 0.353 0.373 0.399 0.373 0.372 0.415 0.389 0.440 0.516 0.518 0.438 0.398 0.373 0.364 

Solar-Min  

8760 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

103 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

9 0.000 0.002 0.061 0.045 0.041 0.054 0.054 0.040 0.062 0.035 0.030 0.016 0.067 0.056 0.000 
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Table A-1 compares summary statistics for the load, wind, and solar time-series data across the 
three approaches on a regional basis. The underlying hourly data (8760) is compared with the 
results from the representative hour approach (103) and seasonal average method (9) for the 
average, maximum, and minimum values in each time series. The peaks, minimums, and 
averages are preserved to a high degree of accuracy by construction in the representative hour 
method; however, the seasonal average method only ensures that the averages and peak load are 
accurately characterized. The other extreme values are notably not high enough (for the 
maximum values) and too high (for the minimum values). 

 
Figure  A-2 
Duration curves for load (left panel), wind (middle panel), and solar (right panel) in the Northwest 
Central region. The hourly duration curve (black) is approximated with 103 segments (red) using 
the representative hour approach and 9 segments (blue) using the seasonal average method. 

 
Figure  A-3 
Duration curves for load (left), wind (middle), and solar (right) in California. 

Figures A-2 and A-3 demonstrate how the duration curves for these data fit these same trends for 
California and the Northwest Central region. For both regions, the US-REGEN representative 
hour values (red) closely approximate the distributions for the 8760 data (black). The seasonal 
average values (blue) only capture the average characteristics. 

We have also examined correlations between multiple time series (e.g., between load and 
resources, between different resource types, and across regions). In particular, models should 
reflect the joint distribution of load, wind, and solar characteristics to reflect the economics of 
intermittent renewable technologies. Lamont (2008) shows how the marginal value of a 
generating technology depends both on a generator’s average capacity factor and also on the  
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covariance between marginal system costs and output from that generator. Thus, this theoretical 
insight motivates the importance of examining the correlation coefficients between load and 
renewable availability as metrics for systematically testing the quality of variability 
approximations. 

As shown in Figure A-2, the simplified load-targeting approach captures load crudely but does 
not sufficiently represent the full variability spectrum for wind and solar availability let alone its 
interdependence. Extreme hours in wind and solar availability are poorly captured with the load-
targeting approach due to its focus on averaging renewable characteristics during applicable 
seasons and load segments, which dampens the resource fluctuations. 

 
Figure  A-4 
Correlation coefficient comparison for load and wind (left panel) and load and solar (right panel) 
across all 15 model regions for all 8760 hours (blue), the 103-segment approximation (green), and 
9-segment approximation (yellow). 
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Demand, wind speeds, and solar radiation not only vary within a region but also between model 
regions. Correlations between different regions can be an important dynamic in trade outcomes 
and large-scale system balancing. Figure S3 shows the interregional correlation coefficients 
across US-REGEN model regions for the actual 2010 data (left panel) and two approximations 
(middle and right panels).1 The 86-segement data capture the cross-correlations in the complete 
data better than the 9-segment approach, which understates the heterogeneity across regions. 

 
Figure  A-5 
Interregional correlation coefficients for existing wind resources. 

                                                      
 
1 Data were not available for the South Atlantic and Florida model regions, since no wind capacity was installed in 
2010. 
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Scenario Details for the Static Analysis 
Table  A-2 
Cost assumptions for the marginal value curve analysis. 

 

Scenario Details for the Dynamic Analysis 
The scenario specification for the dynamic analysis uses many common assumptions across the 
reference (i.e., no policy) case and the two carbon tax cases. For this study, we use the electric 
sector version of the US-REGEN model. Additional documentation about the model structure 
and assumptions can be found in EPRI (2014). For each of the three scenarios in these numerical 
experiments, all model features are held constant save for the representation of temporal 
variability. 

All scenarios use fuel prices from the 2015 Annual Energy Outlook (EIA, 2015). Technology 
cost and performance assumptions come from the most recent EPRI Integrated Generation 
Technology Options report. In line with AEO 2015 assumptions, there are no forced retirements 
for existing coal units in the reference case, though retirements for economic reasons are possible 
in any period. Limitations on new transmission and nuclear capacity additions are based on EPRI 
expertise and historical experience. 

Charge 
Capacity 
($/kW)

Storage 
Capacity
($/kWh)

Charge 
Penalty

Storage $800 $120 25%

Investment 
Cost 

($/kW)

Lifetime 
(years)

Annualized 
@ 7% 

($/kW-yr)*

Fixed 
O&M 

($/kW-yr)

Variable 
O&M 

($/MWh)

Heat Rate 
(th.btu/ 
MWh)

Fuel price 
($/mmbtu)

Nuclear $6,000 70 $423 $80 $2 10,000 $0.5

Coal $2,500 50 $181 $40 $3 10,000 $2

NGCC $1,200 50 $87 $20 $3 7,000 $5

GT $800 30 $64 $20 $4 11,000 $5

*Annualized investment (rental) cost is equal to total investment cost multiplied by a capital charge rate.  

The charge rate c is based on discount rate r and technology lifetime n: 

Default assumption, varied in analysis

Transmission Capacity costs $3.85M per mile for a 6.4 GW line = $270/kW between CA and Mtn-S

0
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Policies in all scenarios include existing state RPS requirements (as of January 2013), MATS, 
CWA § 316(b), RCRA CCR, and CAA § 111(b) performance standards for fossil units. 
Performance standards under CAA § 111(d) for existing sources (i.e., the Clean Power Plan) are 
not included. Other state and regional policies include RGGI and California’s AB32. Extensions 
of the ITC and PTC are not assumed. Rooftop solar is modeled as a “behind-the-meter” 
technology and, as per current regulatory practice, receives the retail rate for generated electricity 
instead of the wholesale price. The carbon tax scenarios apply rates of the $25/t-CO2 and $25/t-
CO2 to power sector CO2 emissions beginning in 2025. 

Figure A-6 provides an additional comparison between the representative hour and seasonal 
average approaches for regional trade flows. 
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Figure  A-6 
Annual regional trade (TWh) under the $50/t-CO2 carbon tax scenario under the representative 
hour (top) and seasonal average (bottom) approaches. Negative values indicate that flows move in 
the opposite direction of the arrow in a given period. 
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