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ABSTRACT 
A number of studies in the literature have concluded that dislocation loops, irradiation-induced 
hardening, and radiation-induced segregation at the grain boundary are not sufficient indices to 
assess susceptibility to irradiation assisted stress corrosion cracking (IASCC). Irradiation 
induced hardening and dislocation loop density and size, as determined by transmission electron 
microscopy (TEM), no longer change significantly past 5 dpa. However, studies of IASCC crack 
initiation of field-retrieved materials suggest fluence is an important factor up to 20-25 dpa. It is 
therefore not possible to diagnose relative degrees of IASCC susceptibility based on these 
parameters. This update reviews the data in EPRI’s Program on Technology Innovation: Effects 
of Post Irradiation Annealing on IASCC (3002005475) along with other studies that apply TEM 
to quantify radiation-induced dislocation loops and atom probe tomography to quantify 
radiation-induced solute clusters. 

The aggregate data suggest that proton-irradiated and light water reactor (LWR)-neutron-
irradiated stainless steels have different values of the following ratio: solute cluster number 
density/Frank loop number density. The data also suggest that the ratio continues to increase 
beyond 5 dpa when the Frank loop number density and size saturate, driven by the increase in 
solute cluster number density. It is therefore important to investigate and establish whether 
clusters affect irradiated materials behavior, particularly past 5 dpa. If they do, then changes in 
solute cluster number density, size, volume fraction, or cluster/Frank loop ratio may serve as an 
index of susceptibility that can guide IASCC risk assessment. 

Keywords 
Atom probe tomography 
Irradiated stainless steel 
Irradiated microstructure 
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Frank loops 
Irradiation assisted stress corrosion cracking (IASCC) 
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1  
REVIEW OF AVAILABLE DATA IN THE LITERATURE 
Several studies in the literature, including the work documented in Program on Technology 
Innovation: Effects of Post Irradiation Annealing on IASCC. EPRI, Palo Alto, CA: 2015. 
3002005475, have now applied transmission electron microscopy (TEM) to quantify dislocation 
loops and atom probe tomography (APT) to quantify solute clusters [1, 3, 4, 6, 7] in the 
irradiated microstructure of stainless steels. It is of interest to review, in this brief update, the 
observations and the reported cluster/loop ratios, which also touch upon differences that may 
exist between proton-irradiated and LWR-irradiated microstructures. 

Currently, different researchers can apply different parameters to quantify APT data within the 
IVAS analysis software provided by the manufacturer, Cameca1, and a few groups use 
proprietary algorithms. Therefore, data from different researchers cannot be simply collected 
together and analyzed, except with caution and caveats. For this reason, EPRI and EDF have 
sponsored an APT Round Robin, involving 10 international organizations, to achieve better 
agreement on how APT data should be collected and analyzed; one of the co-PI’s of EPRI 
3002005475, Emmanuelle Marquis, is the technical advisor to the Round Robin, and the other 
co-PIs are participants. 

However, several BWR-irradiated stainless steels in the range of 3.5-13 dpa have been analyzed 
by Marquis and coworkers [7], according to the same protocol as this study2 [6]. Therefore, these 
data (both neutron-irradiated and proton-irradiated) can be considered together with assurance 
and are plotted in Figure 1-1. Only Ni-Si clusters are considered because they are strongly 
associated with dislocation loops, whereas Al-enriched clusters and Cu-enriched clusters are not 
[7]. Their number densities are compared to the Frank loop number densities via a ratio.   

The (BWR) neutron-irradiated cluster/loop ratio vary from 0.1 at 3.5 dpa to 1.7 at 13 dpa. APT 
analysis indicates that Ni-Si-rich clusters are observed primarily on Si-segregated dislocation 
loops and fragments [7].  This is not surprising, since dislocation loops can serve as sites of 
heterogeneous nucleation.   

In contrast, the proton-irradiated CP304 of EPRI 3002005475 has a much higher cluster/loop 
ratio of 14.6, suggesting that a substantial number of “free clusters” is present. The linear density 
of Ni-Si rich clusters on dislocations, as determined by APT, is 12 clusters per 100 nm. The 
average dislocation loop diameter according to APT is 9.4 nm (Table 3-4 of EPRI 3002005475) 
[or 7.4 nm according to TEM (Table 3-3 of EPRI 3002005475)]. Therefore, there are ~3.5 
clusters are associated with the average dislocation loop.  Consequently, approximately 
(3.5/14.6)x100%=24% of the clusters are associated with dislocation loops while the majority 
~76% should be “free clusters.”  

1 Cameca became the only manufacturer of atom probe tomographs, after its acquisition of Imago in 2010. 
2 The raw APT datasets were collected by CRIEPI (Japan) within a CRIEPI-EPRI collaboration using voltage-only 
mode (no laser assist), as are the data of this study. 
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Figure 1-1 
The ratio of (cluster number density/Frank loop number density) has been plotted versus dose. 
These datasets have been analyzed according to the same protocol. The datapoint in green 
(proton-irradiated 304SS) comes from EPRI 3002005475. The datapoints in blue [(BWR) neutron-
irradiated 304L SS] comes from the CRIEPI-EPRI-UMich study [7]. Note that the proton-irradiated 
dose of 10 dpa “full-cascade” has been divided by 2 to convert it to 5 dpa “Khinchin-Pease” to 
facilitate comparison to (BWR) neutron-irradiated data [9]. Only Ni/Si clusters have been plotted 
because the CRIEPI-EPRI-UMich study indicate that they are strongly associated with dislocation 
loops, whereas Al-enriched clusters and Cu-enriched clusters are not. 

The existence of “free clusters” might be somewhat puzzling, since homogeneous nucleation is 
difficult. One possible explanation is that as cluster decoration of dislocation loops progress past, 
say, 4 clusters, the dislocation loops are consumed and becomes a larger cluster. Dislocation loop 
density saturates around 2 dpa and their size saturate around 5 dpa. [10] Clusters might therefore 
have a role in maintaining the steady-state dislocation loop density, balancing their creation and 
annihilation. 

Four additional data points are added to the same plot in Figure 1-2. The APT data analysis was 
conducted according to different protocols, so they must be considered with caution and, at 
most, we can only interpret trends. But it is interesting to note that:  

• The two additional proton-irradiated data points [3, 5] also indicate high cluster/loop ratios 
relative to neutron-irradiated data points at comparable dose. 
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• The (PWR) neutron-irradiated data point at 24 dpa (cluster/loop ratio of 6.9) [4], when 
considered together with the BWR neutron-irradiated data points, suggests that the 
cluster/loop ratio can continue to increase with dose. Since dislocation loop density saturates 
at relatively low doses (although there is scatter) [10], the increase in the cluster/loop ratio is 
driven by the increase in the cluster number density. 

• The (PWR) neutron-irradiated data point from CW 316SS at 74 dpa (cluster/loop ratio of 
38.5) [8], may suggest that the cluster/loop ratio can continue to increase with dose, but may 
also suggest that network dislocations associated with cold work act as nucleation sites that 
enhance the formation of solute clusters.3 In this context, it should be noted that there is only 
one data point from CW 316SS in Figure 1-2. More data is clearly necessary.   

Although Figure 1-2 can be interpreted to suggest that the cluster/loop ratio can continue to 
increase with dose, the increase cannot, of course, persist indefinitely, since Si is the “limiting 
reactant” and will run out earlier or later, depending on the amount of Si from heat to heat. For 
example, in their study, Jiao and Was [3, 5] indicated that at 4.5% volume fraction of Ni-Si 
clusters, 19-34% of the available Si in their material were consumed by Ni-Si clusters. (The data 
points from their study are included in Figure 1-2.)   

Broader assessment of the details discussed here requires more consistent, accurate 
quantification among different studies.   

The reason such questions are of practical interest is that dislocation loop density and size 
generally saturates (no longer changes significantly) past ~5 dpa [10], but studies of IASCC 
crack initiation of field-retrieved materials suggest fluence is an important factor up to 20-25 
dpa. Therefore, it has not been possible to “diagnose” relative degrees of IASCC susceptibility 
based on past microstructural examinations that focused on TEM quantification of dislocation 
loops. 

It is therefore important to investigate and establish whether clusters affect irradiated materials 
behavior, particularly past 5 dpa. If they do, then changes in cluster number density, size, volume 
fraction, or cluster/loop ratio may serve as an index of susceptibility that can guide IASCC risk 
assessment. 

 

3 The network dislocations associated with cold-worked stainless steels are typically removed by ~20 dpa under 
neutron irradiation, but prior to their disappearance, they may influence the formation of solute clusters. 
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Figure 1-2 
The ratio of (cluster number density/Frank loop number density) plotted versus dose, including 
four data points not in Figure 1-1, whose APT data not analyzed by the same protocol. Two 
additional data points from proton-irradiated stainless steels, at 2.5 dpa came from [3, 5]; one 
additional data point from PWR-irradiated 304SS came from [4]; and one additional data from 
PWR-irradiated CW 316SS came from [8]. For proton irradiation, “full-cascade” dose values 
calculated by SRIM has been divided by 2 to convert them to “Khinchin-Pease” dose values to 
facilitate comparison to neutron-irradiated data [9]. Only Ni/Si clusters have been plotted because 
the CRIEPI-EPRI-UMich study [7] indicate that they are strongly associated with dislocation loops, 
whereas Al-enriched clusters and Cu-enriched clusters are not.   
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