

Risk Priority Number Analysis of Photovoltaic Power Plants

3002011719

Risk Priority Number Analysis of Photovoltaic Power Plants

3002011719

Technical Update, February 2018

EPRI Project Manager C. Libby

DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES

THIS DOCUMENT WAS PREPARED BY THE ORGANIZATION(S) NAMED BELOW AS AN ACCOUNT OF WORK SPONSORED OR COSPONSORED BY THE ELECTRIC POWER RESEARCH INSTITUTE, INC. (EPRI). NEITHER EPRI, ANY MEMBER OF EPRI, ANY COSPONSOR, THE ORGANIZATION(S) BELOW, NOR ANY PERSON ACTING ON BEHALF OF ANY OF THEM:

(A) MAKES ANY WARRANTY OR REPRESENTATION WHATSOEVER, EXPRESS OR IMPLIED, (I) WITH RESPECT TO THE USE OF ANY INFORMATION, APPARATUS, METHOD, PROCESS, OR SIMILAR ITEM DISCLOSED IN THIS DOCUMENT, INCLUDING MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, OR (II) THAT SUCH USE DOES NOT INFRINGE ON OR INTERFERE WITH PRIVATELY OWNED RIGHTS, INCLUDING ANY PARTY'S INTELLECTUAL PROPERTY, OR (III) THAT THIS DOCUMENT IS SUITABLE TO ANY PARTICULAR USER'S CIRCUMSTANCE; OR

(B) ASSUMES RESPONSIBILITY FOR ANY DAMAGES OR OTHER LIABILITY WHATSOEVER (INCLUDING ANY CONSEQUENTIAL DAMAGES, EVEN IF EPRI OR ANY EPRI REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES) RESULTING FROM YOUR SELECTION OR USE OF THIS DOCUMENT OR ANY INFORMATION, APPARATUS, METHOD, PROCESS, OR SIMILAR ITEM DISCLOSED IN THIS DOCUMENT.

REFERENCE HEREIN TO ANY SPECIFIC COMMERCIAL PRODUCT, PROCESS, OR SERVICE BY ITS TRADE NAME, TRADEMARK, MANUFACTURER, OR OTHERWISE, DOES NOT NECESSARILY CONSTITUTE OR IMPLY ITS ENDORSEMENT, RECOMMENDATION, OR FAVORING BY EPRI.

THE FOLLOWING ORGANIZATION, UNDER CONTRACT TO EPRI, PREPARED THIS REPORT:

Arizona State University

This is an EPRI Technical Update report. A Technical Update report is intended as an informal report of continuing research, a meeting, or a topical study. It is not a final EPRI technical report.

NOTE

For further information about EPRI, call the EPRI Customer Assistance Center at 800.313.3774 or e-mail askepri@epri.com.

Electric Power Research Institute, EPRI, and TOGETHER...SHAPING THE FUTURE OF ELECTRICITY are registered service marks of the Electric Power Research Institute, Inc.

Copyright © 2018 Electric Power Research Institute, Inc. All rights reserved.

ACKNOWLEDGMENTS

The following organization, under contract to the Electric Power Research Institute (EPRI), prepared this report:

Arizona State University Photovoltaic Reliability Laboratory T-LABS building 7349 East Innovation Way South Mesa, Arizona 85212

Principal Investigator G. TamizhMani

This report describes research sponsored by EPRI.

This publication is a corporate document that should be cited in the literature in the following manner:

Risk Priority Number Analysis of Photovoltaic Power Plants. EPRI, Palo Alto, CA: 2018. 3002011719.

ABSTRACT

Over the course of their lifetime in the field, photovoltaic (PV) modules develop defects and undergo performance degradation. The type of defects and rate of degradation depend upon semiconductor/technology type, module construction type, installer workmanship, manufacturer quality control, and the installed environment. Some defects are purely cosmetic, while others may pose safety risks or cause degradation. Simply reporting the observed number (or percentage) of defect types in a plant is of little use to stakeholders, unless each defect is quantitatively correlated with the degradation rate corresponding to that defect. This quantitative correlation can be achieved using a risk priority number (RPN) approach to assess the risk associated with module defects, and determine the appropriate action, such as panel removal for warranty claims or safety reasons. This report presents RPN for observed performance and safety defects at seven PV plants covering three climatic conditions: hot-dry (Arizona), cold-dry (New York), and temperate (Colorado).

Keywords

Reliability Durability Degradation rate Defect Risk priority number (RPN) Warranty claims

ABSTRACT	v
1 INTRODUCTION	1-1
1.1 Project Background	1-1
1.2 Objectives	1-3
2 METHODOLOGY	2-1
2.1 Defect Inspection	2-1
2.2 Risk Priority Number	2-7
2.3 RPN Software	2-10
3 RESULTS	3-1
3.1 Site AZ2: RPN and Rd	3-1
3.2 Site AZ3: RPN and Rd	3-3
3.3 Site AZ6: RPN and Rd	3-4
3.4 Site AZ7: RPN and Rd	3-6
3.5 Site AZ8: RPN and Rd	3-7
3.6 Site NY1: RPN and Rd	3-8
3.7 Site CO2: RPN and Rd	3-9
3.8 Annual Degradation Rates of Different Technologies	3-10
4 CONCLUSIONS	4-1
5 REFERENCES	5-1
A DEFECTS AND FAILURES BY CATEGORY	A-1

CONTENTS

LIST OF FIGURES

Figure 1-1 Seven site survey locations for RPN analysis	.1-1
Figure 3-1 Global RPN for site AZ2 (hot-dry climate)	.3-2
Figure 3-2 Performance parameter affecting the Pmax degradation rate of defect containing modules for site AZ2 (hot-dry climate)	.3-2
Figure 3-3 Global RPN for site AZ3 (hot-dry climate)	.3-3
Figure 3-4 Parameters affecting the Pmax degradation rate of defect containing modules for site AZ3 (hot-dry climate)	.3-4
Figure 3-5 Global RPN for Site AZ6 (hot-dry climate)	.3-5
Figure 3-6 Parameters affecting the Pmax degradation rate of defect containing modules for site AZ6 (hot-dry climate)	.3-5
Figure 3-7 Global RPN for Site AZ7 (hot-dry climate)	.3-6
Figure 3-8 Parameters affecting the Pmax degradation rate of defect containing modules for site AZ7 (hot-dry climate)	.3-6
Figure 3-9 Global RPN for Site AZ8 (hot-dry climate)	.3-7
Figure 3-10 Parameters affecting the Pmax degradation rate of defect containing modules for site AZ8 (hot-dry climate)	.3-7
Figure 3-11 Global RPN for Site NY1 (cold-dry climate)	.3-8
Figure 3-12 Parameters affecting the Pmax degradation rate for site NY1 (cold-dry climate)	.3-8
Figure 3-13 Global RPN for Site CO2 (temperate climate)	.3-9
Figure 3-14 Parameters affecting the Pmax degradation rate of defect containing modules for site CO2 (temperate climate)	.3-9
Figure 3-15 Comparison of module and string degradation rates of multiple technologies in diverse climates of hot-dry (AZ), cold-dry (NY), hot-humid (TX) and temperate (CO)3	8-10

LIST OF TABLES

Table 2-1 Potential effect of each defect on performance parameters and detection method for each defect [the non- visual inspection detection methods are highlighted in yellow for quick tracking of non-visual methods; VI=visual inspection, IV=current- voltage measurement, IR=infrared, LIT=lock-in thermography, UV=UV fluorescence, CC=circuit continuity] [9].	2-2
Table 2-2 Selection of appropriate accelerated tests to induce specific field failure modes (Credit: Alliance for Sustainable Energy, LLC) [10]	2-6
Table 2-3 Severity ranking table (Rd, degradation rate per year, %/year; remote safety failures are not of immediate safety concern but they could turn out to be safety concerns depending on the degradation rate level and bypass diode operating	2.0
condition)	Ζ-8
Table 2-4 Occurrence ranking table	2-8
Table 2-5 Detection ranking table	2-9
Table 2-6 Sample IV data input for the degradation rate spreadsheet (Degradation rate is calculated based on age, nameplate data, and measured data.)	2-10
Table 2-7 Sample IV data input for the defects spreadsheet (0=absence of defect; 1=presence of defect)	2-10
Table A-1 Performance defects/failures by category (61 defects)	A-2
Table A-2 Safety defects/failures by category (25 defects)	A-3

1 INTRODUCTION

1.1 Project Background

Cumulative installations of photovoltaic (PV) modules in the United States have increased significantly over the last decade to levels of ~10 gigawatts (GW) installed capacity on an annual basis. Today commercially available PV modules typically have a 20-25-year warranty, but estimates show them capable of producing acceptable power for 30 years or more. Over the course of their lifetime in the field, PV modules develop defects and experience performance degradation. The defect type and rate of degradation depend upon semiconductor and technology type, module construction type, manufacturer quality control, installer workmanship, and the installed environment. Some defects are purely cosmetic, while others may pose safety risks or cause degradation. Simply reporting the observed number (or percentage) of defect types in a plant is of little or no use to stakeholders, unless each defect is quantitatively correlated with the degradation rate or safety risk corresponding to each defect. This quantitative correlation can be achieved using a risk priority number (RPN) approach to assess the risk associated with each module defect, and determine the appropriate action, such as panel removal for warranty claims or safety reasons. This report presents RPN for observed performance and safety defects at seven PV plants covering three climatic conditions: hot-dry (Arizona), cold-dry (New York), and temperate (Colorado).

Figure 1-1 Seven site survey locations for RPN analysis

The RPN analysis of the seven plants was based on safety and performance evaluations performed as part of EPRI's PV Life Cycle Analysis project.¹ As part of the supplemental project scope, site condition surveys were conducted at over 30 PV systems across the U.S. Systems were evaluated on an engineering basis to support determination of the optimal action, i.e., system maintenance, re-powering or project decommissioning. The project also included development of an economic analysis tool that allows developers to consider the full life cycle costs of different project options, and to support owners of aging PV systems in making informed decisions regarding repair or decommissioning.

Methodologies for system decommissioning, disposal, and recycling were established. Finally, a technical manual² containing the methodologies and tools developed above was provided to help the broader solar industry and its stakeholders conduct site condition surveys and understand PV life cycle considerations.

End-of-life diagnoses for PV plants are predominantly due to age-related PV module material defects and degradation, which vary depending on the local weather conditions. The key indicator of the presence of material defects and degradation is a decrease in system performance. PV systems are unique in design, installation and location. As such, each system has unique aging and performance degradation characteristics. For example, a system installed near a body of salt-water may age differently relative to a system installed in an inland location.

As the number of photovoltaic systems installed continues to increase, understanding the range of degradation rates and defects and factors influencing them will be valuable to determine the likely power output and the financial risk of future projects. In this project, this was accomplished using the RPN technique developed by Kuitche et al. [1] and Shrestha et al. [2, 3]. RPN values were further classified into three categories: Safety RPN (S-RPN), Performance RPN (P-RPN) and Global RPN (G-RPN) [4], [5]. The G-RPN is the sum of the S-RPN and the P-RPN. It is intended to provide a measure of the overall health of a plant from both a safety and performance perspective. Currently, PV module manufacturers provide two kinds of warranties material defects and workmanship warranty; and power/performance warranty. Using MATLAB software developed by Moorthy et al. at Arizona State University's Photovoltaic Reliability Laboratory (ASU-PRL) [5], RPN was statistically and automatically generated for all of the modules in the plants that were surveyed. This information can be used by PV plant owners to support decisions regarding panel removal based on S-RPN and whether to make warranty claims under "Material Defect and Workmanship Issues" based on P-RPN for each defect type. The Material Defect and Workmanship claims are typically done within 5 years of installation. In addition to the Material Defect and Workmanship warranty claims, the performance data (the measured power, for example) can also be used for the power/performance warranty claims (exceeding the agreed upon degradation rate per year, for example) anytime during the specified warranty period.

¹ Additional sites were surveyed as part of the project, but module degradation rates could not be determined for some systems due to poor weather conditions that prevented current-voltage (IV) curve measurements from being taken. Some systems that were surveyed were too early in their lifetimes (3-5 years old) with few or no visual defects present, for RPN analysis to be practical.

² Solar Photovoltaic Life Cycle Analysis: A Practical Handbook for Solar Photovoltaic Power Plant Owners and Operators. EPRI, Palo Alto, CA: 2016. 3002008832.

1.2 Objectives

Climate-specific durability and reliability of PV modules are the main factors that determine the lifetime of PV modules [6]. There is a dire need in the industry to develop climate-specific and mode/defect-specific accelerated tests for existing and new modules. Performance degradation rate and visual inspection data from seven PV plants in the continental United States were gathered, and the RPN values were automatically calculated for the overall plant and for every defect in each plant. Performance degradation rates for individual PV modules were determined by comparing measured IV curves with the module's nameplate rating (IV data obtained at the time of commissioning weren't available). In this work, two objectives were pursued using defect-level and plant-level RPN data:

- 1. Establish the defects affecting the Pmax degradation for different climatic conditions (hotdry, cold-dry and temperate) by statistically analyzing multiple power plants and assigning a RPN to each of the performance defects found in these power plants so the plant owners can make warranty claims under "Material Defect and Workmanship Issues".
- 2. Determine dominant defects in each climatic condition and assign an RPN to quantify each defect so that manufacturers, investors, and other stakeholders can come up with climate-specific accelerated tests to mitigate the effects of dominant defects. This also creates a possibility to develop defect-specific (or mode-specific) accelerated tests for the most dominant defects, independent of the climate.

2 METHODOLOGY

2.1 Defect Inspection

To generate RPN values for a plant, two databases must be created: a defect database and a degradation rate database. For larger plants, the necessary size of the databases, specifically, the number of strings and modules, can be statistically determined, as described in [7, 8]. The sample size is typically determined based on 95% confidence level and 5% confidence interval.

The National Renewable Energy Laboratory (NREL) and ASU-PRL have developed a visual inspection checklist containing 86 different types of performance defects and safety failures [6] (see Appendix A for details). Of these, 61 defect types are categorized as performance defect types that affect PV module power output and 25 defect types are categorized as safety failures that affect safety (mechanical/electrical safety or fire hazard).

Of the 61 performance defect types, 7 defect types are known to affect glass (front/rear), 22 defect types affect the cell (hotspot defect detected using IR camera), 5 defect types affect the frame, 4 defect types affect the edge seal, 5 defect types affect the encapsulant, 8 defect types affect the junction box, 3 defect types affect the backsheet, 3 defect types are specific to thin film PV modules, 1 defect type affects bypass diode short-circuit (detected using a circuit continuity detector), and 1 defect type affects wires/cables/connectors. Also, 2 more invisible defect types—module mismatch and solder bond fatigue/failure (identified through I-V measurements)—were identified to be responsible for performance loss.

Of the 25 safety failures, 4 failures affect glass (front/rear), 5 failures affect frames, 5 failures affect junction boxes, 3 failures affect wires/cables/connectors, 5 failures affect backsheets, 2 failures affect cells (hotspots are detected using an IR camera), and 1 failure affects bypass diode open-circuit (detected using a circuit continuity detector). Defects and failures grouped by module components are listed in Appendix A. The potential effects of each defect on the electrical performance parameters, short circuit current (Isc), open circuit voltage (Voc), and fill factor (FF) and the detection method for each defect are comprehensively provided in Table 2-1 [9]. The typical accelerated tests used to induce the corresponding defects or failure modes observed in the field are shown in Table 2-2 [10].

Table 2-1

Potential effect of each defect on performance parameters and detection method for each defect [the non- visual inspection detection methods are highlighted in yellow for quick tracking of non-visual methods; VI=visual inspection, IV=current-voltage measurement, IR=infrared, LIT=lock-in thermography, UV=UV fluorescence, CC=circuit continuity] [9].

Defect #	Defect – Performance Defect	Detection Method: VI/IV/IR/CC	Parameter Affected: Isc	Parameter Affected: Voc	Parameter Affected: FF
1	Front glass lightly soiled	VI	Y		
2	Front glass heavily soiled	VI	Y		
3	Front glass crazing	VI	Y		
4	Front glass chip	VI	Y/N		
5	Front glass milky discoloration	VI	Y		
6	Rear glass crazing*	VI			Y/N
7	Rear glass chipped	VI	Y/N		
8	Edge seal delamination	VI			Y
9	Edge seal moisture penetration	VI/ <mark>IV</mark>			Y
10	Edge seal discoloration	VI			Y/N
11	Edge seal squeezed / pinched out	VI			Y/N
12	Frame bent	VI	Y/N		
13	Frame discoloration	VI			Y/N
14	Frame adhesive degraded	VI			Y/N
15	Frame adhesive oozed out	VI			Y/N
16	Frame adhesive missing in areas	VI			Y/N
17	Bypass diode short circuit (Equipment needed**)	IV/IR/CC		Y	Y
18	Junction box lid loose	VI			Y/N
19	Junction box lid crack	VI			Y/N
20	Junction box warped	VI			Y/N
21	Junction box weathered	VI			Y/N
22	Junction box adhesive loose	VI/ <mark>wet</mark> <mark>megger</mark>			Y/N
23	Junction box adhesive fell off	VI			Y/N

Table 2-1 (continued)

Defect #	Defect – Performance Defect	Detection Method: VI/IV/IR/CC	Parameter Affected: Isc	Parameter Affected: Voc	Parameter Affected: FF
24	Junction box wire attachments loose	VI			Y
25	Junction box wire attachments fell off	VI	Y/N	Y/N	Y/N
26	Junction box wire attachments arced	VI	Y/N	Y/N	Y/N
27	Wires corroded	VI			Y/N
28	Backsheet wavy	VI	Y/N		Y/N
29	Backsheet discoloration	VI	Y/N		
30	Backsheet bubble	VI	Y/N		Y/N
31	Gridline discoloration	VI	Y/N		Y
32	Gridline blossoming	VI	Y/N		Y
33	Busbar discoloration	VI	Y/N		Y
34	Busbar corrosion	VI	Y/N		Y
35	Busbar burn marks	VI	Y/N	Y	Y
36	Busbar misaligned	VI			Y
37	Cell interconnect ribbon discoloration	VI	Y/N		Y
38	Cell interconnect ribbon corrosion	VI	Y/N		Y
39	Cell interconnect ribbon burn mark	VI	Y/N	Y	Y
40	Cell interconnect ribbon break	VI	Y	Y	Y
41	String interconnect discoloration	VI	Y/N		Y
42	String interconnect corrosion	VI	Y/N		Y
43	String interconnect burn mark	VI	Y/N	Y	Y
44	String interconnect break	VI	Y	Y	Y
45	Cell discoloration	VI	Y/N		Y
46	Cell burn mark	VI		Y/N	Y
47	Cell chipping/crack	VI	Y/N	Y/N	
48	Cell moisture penetration	VI	Y/N	Y/N	Y

Defect #	Defect – Performance Defect	Detection Method: VI/IV/IR/CC	Parameter Affected: Isc	Parameter Affected: Voc	Parameter Affected: FF
49	Cell worm mark (snail tracks)	VI	Y	Y	Y
50	Cell foreign particle embedded	VI	Y/N		
51	Interconnect discoloration	VI	Y/N		Y
52	Solder bond fatigue / failure	IV/LIT			Y
53	Hotspot less than 20°C	IR			Y
54	Encapsulant delamination over the cell	VI/UV	Y	Y	Y
55	Encapsulant delamination under the cell	VI			Y
56	Encapsulant delamination over the junction box	VI	Y	Y	Y
57	Encapsulent delamination near interconnect or fingers	VI	Y		Y
58	Encapsulant discoloration (yellowing/browning)	VI/ <mark>UV</mark>	Y		
59	Thin film module discoloration	VI	Y/N		Y
60	Thin film module delamination - absorber/TCO layer	VI	Y	Y	Y
61	Thin film module delamination - AR coating	VI	Y		
62	Module mismatch	VI/ <mark>string IV</mark>	Y		
	Defect - Safety Failures				
63	Front glass crack	VI	Y	Y	Y
64	Front glass shattered	VI	Y	Y	Y
65	Rear glass crack	VI	Y	Y	Y
66	Rear glass shattered	VI	Y	Y	Y
67	Frame grounding severe corrosion	VI			N
68	Frame grounding minor corrosion	VI			N
69	Frame major corrosion	VI			N

Table 2-1 (continued)

Defect #	Defect - Safety Failures	Detection Method: VI/IV/IR/CC	Parameter Affected: Isc	Parameter Affected: Voc	Parameter Affected: FF	
70	Frame joint separation	VI			N	
71	Frame cracking	VI	Y/N		Ν	
72	Bypass diode failure	IR/CC	Y/N		Y/N	
73	Junction box crack	VI	Y/N		Y	
74	Junction box burn	VI	Y/N		Y	
75	Junction box loose	VI	Y/N		Y	
76	Junction box lid fell off	VI	Y/N		Y	
77	Wires insulation cracked / disintegrated	VI			Y	
78	Wires burnt	VI	Y/N		Y	
79	Wires animal bites / marks	VI			Y	
80	Backsheet peeling	VI	Y	Y	Y	
81	Backsheet delamination	VI	Y	Y	Y	
82	Backsheet burn mark	VI	Y	Y	Y	
83	Backsheet crack /cut under cell	VI			Y	
84	Backsheet crack /cut between cells	VI			Y	
85	String interconnect arc tracks	VI	Y/N		Y	
86	Hotspot over 20°C	IR	Y	Y	Y	

Table 2-1 (continued)

* Crazing is a phenomenon caused by a cluster of microcracks on the rear glass surface which could theoretically lead to glass cracks.

** Some defects, such as bypass diode failure, cannot be detected through visual inspection alone. For example, to detect a bypass diode failure, an IR camera or circuit continuity tester is needed.

Table 2-2Selection of appropriate accelerated tests to induce specific field failure modes (Credit: Alliancefor Sustainable Energy, LLC) [10]

Accelerated Stress	Failure Mode
Thermal Cycle	Broken interconnect
	Broken cell
	Solder bond failures
	Junction box adhesion
	Module connection open circuits
	Open circuits leading to arcing
Damp Heat Exposure	Corrosion
	Delamination of encapsulant
	Encapsulant loss of adhesion & elasticity
	Junction box adhesion
	Electrochemical corrosion of TCO
	Inadequate edge deletion
Humidity Freeze	Delamination of encapsulant
	Junction box adhesion
	Inadequate edge deletion
UV Test	Delamination of encapsulant
	Encapsulant loss of adhesion & elasticity
	Encapsulant discoloration
	Ground fault due to backsheet degradation
Mechanical Load	Broken interconnect
	Broken cell
	Solder bond failures
	Broken glass
	Structural failures
Dray and Wet Insulation Resistance	Delamination of encapsulant
	Ground Faults
	Electrochemical corrosion of TCO
	Inadequate edge deletion
Hot Spot Test	Hot spots
	Shunts at the scribe lines
Hail Test	Broken cells
	Broken glass
Bypass Diode Thermal Test	Bypass diode failures

2.2 Risk Priority Number

The RPN was categorically determined for each visual defect at the seven PV power plants that were surveyed. During the site visits to these power plants, thorough visual inspections were conducted to identify the defects shown in Table 1-1. RPN numbers were calculated for each defect using Equation 1.

Where:

S - Severity (maximum 10) which is a measure of how strongly a system or a user is effected because of the effects of the defect present.

O - Occurrence (sometimes termed as likelihood; maximum 10) which denotes how probable it is for that failure mode to occur for a predetermined time period

D - Detection (maximum 10) which is an approximation of how easily the defect or the failure mode can be identified before the failure reaches the customer.

The RPN value can reach as high as 1000. If the typical 80/20 rule³ is applied, the defect with RPN above 200 may be considered risky, and a warranty claim may be made for this specific defect. The severity of each defect is primarily a function of the performance degradation rate (Rd) for severity rankings between 1 and 7. Severity rankings between 8 and 10 are determined based both on performance degradation and the level of safety risk ('remote' safety risk for rankings of 8 and 9, and 'catastrophic' risk for a 10 ranking). Any module having a safety severity level of 8 or higher should be replaced even if the RPN is lower than 200 due to low frequency of failure occurrence. RPN can be calculated without including "Detectability" as it is a subjective factor for some defects. Work is underway to replace the detectability factor with a "Causality" factor, which would be an objective factor that makes the RPN approach more comprehensive and robust. Causality reflects the likelihood of a detected failure mode being responsible for the power loss severity. Currently in the RPN calculation, the detection term was defined on a scale from 1-10 based on the ease of detecting the failure mode. While this term has meaning within a failure mode effect and criticality analysis (FMECA) application, where the reliability of the measurement system is being included as part of the reliability of a larger system, for the PV plant evaluation methodology, the ease of detection has less relevance. Also, similar to the RPN, a cost priority number (CPN) can also be used as an extension of RPN to determine the costs corresponding to annual O&M and energy loss associated with each defect.

Due to the large sample of data used, a MATLAB program was developed [5] to calculate the RPN for each module at the seven plants based on the severity, occurrence and detectability of the defects. The Severity (Table 2-3), Occurrence (Table 2-4) and Detection (Table 2-5) ranking tables are shown below.

³ PV modules are typically given a warranty of 80% of original power over 20 or 25 years.

Table 2-3

Severity ranking table (Rd, degradation rate per year, %/year; remote safety failures are not of immediate safety concern but they could turn out to be safety concerns depending on the degradation rate level and bypass diode operating condition)

Severity Ranking	Severity Criteria
1	No effect, Rd < 0.3%
2	Insignificant, Rd approx. 0.3%
3	Minor cosmetic defect, Rd < 0.5%
4	Cosmetic defect, Rd < 0.6%
5	Reduced performance, Rd < 0.8%
6	Performance loss approx. to typical warranty, Rd approx. 1%
7	Significant degradation, Rd approx. 1.5%
8	Remote safety concerns, 1.5% < Rd ≤ 2% for performance defects with bypass diode open circuit failure
9	Remote safety concerns, Rd > 2% without bypass diode open circuit failure
10	Safety hazard, eighteen catastrophic safety failures (shown in Table A-2) irrespective of degradation rate.

Table 2-4Occurrence ranking table

Failure Mode Occurrence	Frequency CNF/1000	Ranking
Remote: Failure is unlikely	\leq 0.01 modules per thousand per year	1
Low: Relatively few failures	0.1 modules per thousand per year	2
	0.5 modules per thousand per year	3
Moderate: Occasional failures	1 module per thousand per year	4
	2 modules per thousand per year	5
	5 modules per thousand per year	6
High: Repeated failures	10 modules per thousand per year	7
	20 modules per thousand per year	8
Very high: Failure is almost	50 modules per thousand per year	9
	≥ 100 modules per thousand per year	10

Table 2-5Detection ranking table

Ranking	Criteria: Likelihood	Detection
1	Monitoring system itself will detect the failure mode with warning 100%	Almost certain
2	Very high probability (most likely) of detection through visual inspection	Very high
3	50/50 probability (less likely) of detection through visual inspection	High
4	Very high probability (most likely) of detection using conventional handheld tool e.g., IR, Megger	Moderately high
5	50/50 probability (less likely) of detection using conventional handheld tool e.g., IR, Megger	Moderate
6	Very high probability (most likely) of detection using non-conventional handheld tool e.g., diode/line checker	Low
7	50/50 probability (less likely) of detection using non-conventional handheld tool e.g., diode/line checker	Very low
8	Very high probability (most likely) of detection using performance measurement equipment e.g., IV tracer	Extremely low
9	50/50 probability (less likely) of detection using performance measurement equipment e.g., IV tracer	Remote
10	Detection impossible in the field	Absolutely uncertain

Eighteen of 25 safety failures warrant a severity rating of 10, including the following:

- Front or rear glass crack
- Front or rear glass shattered
- Frame grounding severe corrosion
- Frame joint separation
- Frame cracking
- Junction box crack
- Junction box burn
- Junction box loose
- Junction box lid fell off
- Junction box lid crack
- Wires burnt

- Wire bites/marks from animals
- Backsheet peeling
- Backsheet delamination
- Backsheet cracks.or cuts under or between cells

Bypass diodes with open circuit failures are given a severity ranking of 8, as they are not a major safety hazard.

2.3 RPN Software

The ASU-PRL RPN software program requires input from two spreadsheets, or databases, to calculate the power plants' RPN values [5]:

- 1. Degradation rate spreadsheet (file name "IV data"), contains IV performance data (Table 2-6)
- 2. Defects spreadsheet (file name "VI"), contains visual inspection data (Table 2-7)

Once these two spreadsheets are generated by the user, this program then generates RPN plots and several other reliability plots, in about three minutes, based on the input from these two spreadsheets.

Table 2-6

Sample IV data input for the degradation rate spreadsheet (Degradation rate is calculated based on age, nameplate data, and measured data.)

Module	Rated Isc	Rated Voc	Rated Imax	Rated Vmax	Rated FF	Rated Pmax	Measured lsc	Measured Voc	Measured Imax	Measured Vmax	Measured FF	Measured Pmax	Age
C2-S1-T1	3.87	42.10	3.56	33.70	73.63	120.00	3.65	41.26	3.13	33.84	70.30	105.77	17.79
C2-S1-T2	3.87	42.10	3.56	33.70	73.63	120.00	3.87	41.38	3.22	35.28	70.79	113.44	17.79
C2-S1-T3	3.87	42.10	3.56	33.70	73.63	120.00	3.71	41.33	3.31	33.51	72.48	111.04	17.79
C2-S1-T4	3.87	42.10	3.56	33.70	73.63	120.00	3.71	40.54	3.35	32.46	72.30	108.67	17.79
C2-S1-T5	3.87	42.10	3.56	33.70	73.63	120.00	3.70	41.07	3.33	33.31	73.08	111.00	17.79
C2-S1-T6	3.87	42.10	3.56	33.70	73.63	120.00	3.68	41.05	3.31	32.91	72.07	108.89	17.79
C2-S2-T1	3.87	42.10	3.56	33.70	73.63	120.00	3.75	41.05	3.36	33.07	72.12	111.16	17.79

Table 2-7 Sample IV data input for the defects spreadsheet (0=absence of defect; 1=presence of defect)

				Encapsulant	
	Encapsulant	Encapsulant	Encapsulant	delamination near	Encapsulant
	delamination over	delamination under	delamination over	interconnect or	discoloration
Module	the cell	the cell	the junction box	fingers	(yellowing/browning)
C2-S1-T1	1	0	0	1	1
C2-S1-B1	0	0	0	0	1
C2-S1-T2	0	0	0	0	0
C2-S1-B2	0	0	0	0	1
C2-S1-T3	0	0	0	0	1
C2-S1-B3	0	0	0	0	1
C2-S1-T4	0	0	0	0	1
C2-S1-B4	0	0	0	0	1
C2-S1-T5	0	0	0	0	1

In Table 2-7, zeroes indicate no defects or module failures, and ones indicate the presence of one or more defects or failures. This is a partial table, whereas the full spreadsheet includes 86 columns for each of the defect categories.

3 RESULTS

RPN results and degradation rate (R_d) for each of the seven systems evaluated are described in this section. As described in Section 2, modules containing a specific defect with RPN value above 200 are considered risky and may be candidates for warranty replacement. Safety severity levels of 8 or higher, likewise, should be replaced, even if the RPN is lower than 200. Performance measurements were carried out for all modules at all sites to calculate degradation rates based on nameplate rating, field measurement performance data and module age. As described in [11,12], single measurements of degradation based on nameplate rating can introduce significant variation to the Rd results. Determination and requirement of nameplate ratings with tolerance limits have been standardized recently in 2016 and 2017 [13,14], and manufacturer selection of nameplate ratings in the past with undisclosed higher or lower tolerance than measured performance can inflate or deflate degradation rates.

3.1 Site AZ2: RPN and Rd

AZ2 is an 8-year old system with 57 poly-Si modules installed on a rooftop in Arizona with hotdry climatic conditions. All of the modules in this system displayed slight discoloration of the encapsulant and backsheet, and a few modules showed bubbles in the backsheet. With less than 200 RPN for each of the three observed defects, no specific defect is considered to be risky in this relatively new plant (Figure 3-1). The Pmax degradation is primarily attributed to FF and Isc degradations, which in turn are attributed to solder bond degradation and encapsulant discoloration, respectively (Figure 3-2).

Global RPN – AZ2

Figure 3-1 Global RPN for site AZ2 (hot-dry climate)

Figure 3-2

Performance parameter affecting the Pmax degradation rate of defect containing modules for site AZ2 (hot-dry climate)

3.2 Site AZ3: RPN and Rd

AZ3 is a 16-year old system with 168 mono-Si modules installed on a fixed tilt rack at 0° tilt in Arizona with hot-dry climatic conditions. All of the modules in this system displayed discoloration of the encapsulant, and a few modules experienced bypass diode failures. With less than 200 RPN for each of the two observed defects, no specific defect is considered to be risky (Figure 3-3). The Pmax degradation is primarily attributed to FF and Isc degradations which, in turn, are attributed to solder bond degradation and encapsulant discoloration, respectively (Figure 3-4).

Figure 3-3 Global RPN for site AZ3 (hot-dry climate)

Figure 3-4 Parameters affecting the Pmax degradation rate of defect containing modules for site AZ3 (hot-dry climate)

3.3 Site AZ6: RPN and Rd

AZ6 is a 12-year old system with 65 mono-Si modules installed on a one-axis tracker in Arizona with hot-dry climatic conditions. Many modules in this system displayed solder-bond fatigue and discoloration of the encapsulant. Three of the four observed defects showed less than 200 RPN, and thus are not considered high risk (Figure 3-5). Only the solder bond degradation defect with more than 400 RPN is considered to be a risky defect. The Pmax degradation is predominantly attributed to FF and marginally attributed to Isc degradation, which may be caused by solder bond degradation and encapsulant discoloration, respectively (Figure 3-6).

Figure 3-5 Global RPN for Site AZ6 (hot-dry climate)

Performance Parameter

Figure 3-6

Parameters affecting the Pmax degradation rate of defect containing modules for site AZ6 (hot-dry climate)

3.4 Site AZ7: RPN and Rd

AZ7 is a 5-year old system with 84 HIT modules installed on a 10° fixed tilt rooftop rack in Arizona with hot-dry climatic conditions. All the modules in this system displayed discoloration of the encapsulant and many displayed solder-bond fatigue. Five out of six observed defects had an RPN value less than 200 (Figure 3-7). With an RPN exceeding 600, the solder bond degradation is the riskiest defect in this relatively new plant. The Pmax degradation is attributed to FF and Isc degradations caused by solder bond degradation and encapsulant discoloration, respectively (Figure 3-8).

Figure 3-7 Global RPN for Site AZ7 (hot-dry climate)

Figure 3-8 Parameters affectir

Parameters affecting the Pmax degradation rate of defect containing modules for site AZ7 (hot-dry climate)

3.5 Site AZ8: RPN and Rd

AZ8 is a 9.4-year old system with 231 poly-Si modules installed in Arizona with hot-dry climatic conditions. Many of the modules in this system displayed discoloration and delamination of the encapsulant. All five observed defects showed less than 200 RPN, and thus are not considered risky defects (Figure 3-9). The Pmax degradation is attributed to FF and Isc degradations, which are attributed to solder bond degradation and encapsulant discoloration, respectively (Figure 3-10). The negative Voc degradation rates reported here could be attributed to nameplate underrating rating by the manufacturer.

Figure 3-9 Global RPN for Site AZ8 (hot-dry climate)

3.6 Site NY1: RPN and Rd

NY1 is an 18-year old system with 46 poly-Si modules installed on a 41° fixed tilt rooftop rack in New York with cold-dry climatic conditions. All of the modules in this system displayed discoloration of the encapsulant and many displayed bypass diode failures. Seven out of eight observed defects showed less than 200 RPN and are not considered risky defects (Figure 3-11). The open circuit failures of the bypass diodes are the most risky defect with an RPN value exceeding 200. The Pmax degradation is primarily attributed to FF degradation due to solder bond degradation (Figure 3-12).

Figure 3-11 Global RPN for Site NY1 (cold-dry climate)

Figure 3-12 Parameters affecting the Pmax degradation rate for site NY1 (cold-dry climate)

3.7 Site CO2: RPN and Rd

CO2 is a 5-year old system with 24 mono-Si modules installed on a 39° fixed tilt rack in Colorado with temperate climatic conditions. Cell chipping and discoloration of the encapsulant were prominent defects in this relatively new system. Both observed defects showed less than 200 RPN (Figure 3-13). However, the Pmax degradation rate is unacceptably high, exceeding 2.5%/year (Figure 3-14). This Pmax overrating is most likely arising from the overrating of FF, and hence the RPN data presented in Figure 3-15 are not considered reliable.

Figure 3-13 Global RPN for Site CO2 (temperate climate)

Figure 3-14 Parameters affecting the Pmax degradation rate of defect containing modules for site CO2 (temperate climate)

3.8 Annual Degradation Rates of Different Technologies

Performance measurements were carried out for all the statistically selected modules of five different technologies (c-Si, HIT, a-Si, CdTe and CIGS) at all of the twenty-six investigated sites of the project to determine the degradation rates based on the nameplate rating, field measured performance data and age of the modules. Figure 3-15 provides the degradation rates of the five PV cell technologies in Arizona (AZ), Texas (TX), Colorado (CO) and New York (NY). Since the degradation rate calculation depends on the accuracy of the nameplate rating, a few of the calculated degradation rate data presented in this figure may not be reliable and those unreliable data are shown in this figure [15]. It is to be noted that the degradation rate shown in the section may be, in some cases, different from that of the degradation rates presented in the previous RPN sections. This difference is due to the following reason: the degradation rate calculation presented in this section is based on the degradation rates of all the statistically selected modules in the plant whereas the degradation rates presented in the RPN analysis sections are based on the degradation rates of solution rates only.

Comparison of module and string degradation rates of multiple technologies in diverse climates of hot-dry (AZ), cold-dry (NY), hot-humid (TX) and temperate (CO).

4 CONCLUSIONS

The modules evaluated in each plant were selected based on a statistical approach. For the degradation rate determination presented in Section 3.8, all of the statistically selected modules were considered. For the RPN analysis determination presented in Sections 3.1 through 3.7, the degradation rates of only defect-containing modules were considered.

Seven different PV plants spanning three different climatic regions (AZ, NY, CO) and containing crystalline silicon modules aged between 5 and 18 years were subjected to the RPN evaluation. The RPN value for each observed defect was determined based on the severity (degradation rate per year), occurrence (frequency of each observed defect) and detectability. In four of the seven plants (AZ2, AZ3, AZ8, CO2), no defect with RPN exceeding 200 was observed, and thus these plants were determined to be ineligible for defect (material or workmanship) warranty claims. In plants AZ6 and AZ7, the solder bond fatigue defect has an RPN higher than 200, and hence all modules which have solder bond fatigue may be eligible for defect warranty claims. In plant NY1, the bypass diode failure has an RPN higher than 200, and hence all modules may be eligible for defect warranty claims.

In the hot-dry and hot-humid climates, module and string degradation rates (excluding the overrated and underrated modules) were found to be higher than 1%/year, likely due to harsh temperature conditions. Since these degradation rates are greater than the typical performance warranted degradation rate of 1%/year, these modules installed in hot climates are considered not meeting the typical degradation rate warranty requirements and are potentially eligible for warranty replacement. In the cold-dry and temperate climates, module and string degradation rates (excluding the overrated and underrated modules) were less than 1%/year due to relatively milder temperature conditions, and hence they are considered meeting the typical degradation rate warranty requirements.

5 REFERENCES

- J. Kuitche, R. Pan and G. TamizhMani, "Investigation of Dominant failure mode for Fieldaged c-Si PV modules under desert climatic conditions", *IEEE Journal of Photovoltaics*, vol. 4, pages 814–826, 2014.
- S. M. Shrestha, J. K. Mallineni, K. R. Yedidi, B. Knisely, S. Tatapudi, J. Kuitche, and G. TamizhMani, "Determination of dominant failure modes using FMECA on the field deployed c-Si modules under hot-dry desert climate," *IEEE J. Photovoltaics*, vol. 5, pp. 174–182, 2015.
- 3. S. Shrestha, "Determination of Dominant Failure Modes Using Combined Experimental and Statistical Methods and Selection of Best Method to Calculate Degradation Rates," MS Thesis, Arizona State University, 2014.
- 4. V. Rajasekar, "Indoor Soiling Method and Outdoor Statistical Risk Analysis of Photovoltaic Power Plants," MS Thesis, Arizona State University, 2013.
- 5. M. Moorthy, "Automation of Risk Priority Number Calculation of Photovoltaic Modules and Evaluation of Module Level Power Electronics," MS Thesis, Arizona State University, 2014.
- S. Tatapudi, C. Libby, C. Raupp, D. Srinivasan, J. Kuitche, B. Bicer, and G. TamizhMani, "Defect and Safety Inspection of 6 PV Technologies from 56,000 Modules Representing 257,000 Modules in 4 Climatic Regions of the United States," *IEEE Photovoltaics* Specialists Conference, 2016.
- 7. J. Mallineni, B. Knisely, K. Yedidi, S. Tatapudi, J. Kuitche and G. TamizhMani, "Evaluation of 12-Year-Old PV Power Plant in Hot-Dry Desert Climate: Potential Use of Field Failure Metrics for Financial Risk Calculation", *IEEE Photovoltaics Specialists Conference*, 2014.
- 8. G. TamizhMani, "Reliability of PV Modules: Field Testing for Warranty Claims," Global Photovoltaic Conference, Plenary Talk, Gwangju, South Korea, March 16, 2017.
- 9. P. Sundarajan, "Defects and Statistical Degradation Analysis of Photovoltaic Power Plants," MS Thesis, Arizona State University, 2016.
- 10. Copyright Alliance for Sustainable Energy, LLC, contracted management and operator of the National Renewable Energy Laboratory for the U.S. Department of Energy. J. Wohlgemuth and S. Kurtz, Reliability testing beyond qualification as a key component in photovoltaic's progress toward grid parity. IEEE International Reliability Physics Symposium, Monterey, CA, April 2011. Available for free online at <u>https://www.nrel.gov/docs/fy11osti/50599.pdf</u>
- 11. D. Jordan, S. Kurtz, K. VanSant, and J. Newmiller, "Compendium of photovoltaic degradation rates," Prog. Photovolt.: Res. Appl. 2016.
- 12. C. Libby, S. Kurtz, and S. Coley "Field Testing of Flat-Plate and Concentrator Photovoltaic Systems at the Solar Technology Acceleration Center," IEEE Photovoltaic Specialists Conference, 2015.
- 13. UL 4730, Standard for Nameplate, Datasheet, and Sampling Requirements of Photovoltaic Modules, July 2017.

- 14. IEC 61215-1:2016, Terrestrial photovoltaic (PV) modules Design qualification and type approval Part 1: Test requirements, March 2016.
- 15. C. Raupp, C. Libby, S. Tatapudi, D. Srinivasan, J. Kuitche, B. Bicer, G. TamizhMani, "Degradation Rate Evaluation of Multiple PV Technologies from 59,000 Modules Representing 252,000 Modules in Four Climatic Regions of the United States," IEEE Photovoltaic Specialists Conference, June 2016.

A DEFECTS AND FAILURES BY CATEGORY

Table A-1Performance defects/failures by category (61 defects)

Glass	Frame	Junction box	Cell
Front glass lightly soiled	Frame bent	Junction box lib loose	Cell discoloration
Front glass heavily soiled	Frame discoloration	Junction box warped	Cell burn mark
Front glass crazing	Frame adhesive degraded	Junction box weathered	Cell crack
Front glass chipped	Frame adhesive oozed out	Junction box adhesive loose	Cell moisture penetration
Front glass milky	Frame adhesive missing in areas	Junction box adhesive fell off	Cell foreign particle embedded
discoloration		Junction box Junction box	Cell interconnect discoloration
Rear glass crazing		wire attachments loose	Gridline discoloration
Rear glass chipped		Junction box wire attachments fell off Junction box wire attachments arced	Gridline blossoming
			Busbar discoloration
			Busbar corrosion
Edua Osal	En como ula né		Busbar burn marks
Edge Seal	Encapsulant	Backsneet	Busbar misaligned
Edge seal delamination	Encapsulant delamination over the cell	Backsheet wavy	Cell interconnect ribbon
Edge seal moisture	Encapsulant delamination under the cell	Backsheet discoloration	discoloration
	Encapsulant delamination over the junction box	Backsheet bubble	Cell interconnect ribbon
Edge seal discoloration	Encapsulant delamination near interconnect or		corrosion
Edge seal squeezed out/ pinched out	fingers Encapsulant delamination (vellowing/browning)		mark
			Cell interconnect ribbon break
			String interconnect discoloration
			String interconnect corrosion
			String interconnect burn mark
			String interconnect break
			Hotspot less than 20°C
Wires	Thin Film	Bypass Diode	Others
Wires corroded	Thin film module discoloration	Bypass diode short circuit	Module mismatch
	Thin film module delamination-absorber coating		Solder bond fatigue/failure
	Thin film module delamination- AR coating		

Table A-2 Safety defects/failures by category (25 defects)

Glass	Frame	Bypass diode	Junction box
Front glass crack	Frame grounding severe corrosion	Bypass diode open circuit*	Junction box crack
Front glass shattered	Frame grounding minor corrosion*		Junction box burn
Rear glass crack	Frame major corrosion*		Junction box loose
Rear glass shattered	Frame joint separation		Junction box lid fell off
	Frame cracking		Junction box lid crack
Wires	Backsheet	Cell	
Wires insulation cracked	Backsheet peeling	String interconnect arc tracks	
Wires burnt	Backsheet delamination	Hotspot over 20°C*	
Wires animal bites / marks*	Backsheet burn mark		
	Backsheet crack / cut under cell		
	Backsheet crack / cut between cells		

*Not an immediate catastrophic safety failure (the eighteen non-asterisk defects shown in this table are immediate catastrophic safety failures).

Export Control Restrictions

Access to and use of EPRI Intellectual Property is granted with the specific understanding and requirement that responsibility for ensuring full compliance with all applicable U.S. and foreign export laws and regulations is being undertaken by you and your company. This includes an obligation to ensure that any individual receiving access hereunder who is not a U.S. citizen or permanent U.S. resident is permitted access under applicable U.S. and foreign export laws and regulations. In the event you are uncertain whether you or your company may lawfully obtain access to this EPRI Intellectual Property, you acknowledge that it is your obligation to consult with your company's legal counsel to determine whether this access is lawful. Although EPRI may make available on a case-by-case basis an informal assessment of the applicable U.S. export classification for specific EPRI Intellectual Property, you and your company acknowledge that this assessment is solely for informational purposes and not for reliance purposes. You and your company acknowledge that it is still the obligation of you and your company to make your own assessment of the applicable U.S. export classification and ensure compliance accordingly. You and your company understand and acknowledge your obligations to make a prompt report to EPRI and the appropriate authorities regarding any access to or use of EPRI Intellectual Property hereunder that may be in violation of applicable U.S. or foreign export laws or regulations.

The Electric Power Research Institute, Inc. (EPRI, www.epri.com) conducts research and development relating to the generation, delivery and use of electricity for the benefit of the public. An independent, nonprofit organization, EPRI brings together its scientists and engineers as well as experts from academia and industry to help address challenges in electricity, including reliability, efficiency, affordability, health, safety and the environment. EPRI members represent 90% of the electric utility revenue in the United States with international participation in 35 countries. EPRI's principal offices and laboratories are located in Palo Alto, Calif.; Charlotte, N.C.; Knoxville, Tenn.; and Lenox, Mass.

Together...Shaping the Future of Electricity

© 2018 Electric Power Research Institute (EPRI), Inc. All rights reserved. Electric Power Research Institute, EPRI, and TOGETHER...SHAPING THE FUTURE OF ELECTRICITY are registered service marks of the Electric Power Research Institute, Inc.

3002011719