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Introduction
Climate impacts cut across many dimensions, and determining 
a comprehensive relationship between climate change and 
social welfare is challenging for many reasons, including 
complex interactions among physical, natural, and social 
systems and the heterogeneous nature of climate impacts that 
vary across space and time. The economic cost of these impacts 
is estimated using cost-benefit integrated assessment models 
(IAMs) that simulate the ‘causal chain’ from greenhouse gas 
(GHG) emissions to climate damages. Though many recent 
commentaries on the state of climate change economics have 
pointed to the representation of climate impacts in these models 
as an area requiring major improvement (Burke et al., 2016; 
Revesz et al., 2014), there has been no systematic review of the 
literature base. 

This review proceeds in three parts. The first part describes 
existing IAM damage functions, focusing on the three models 
used by the Interagency Working Group (IWG) of the U.S. 
Government to calculate the social cost of carbon (SCC)— 
DICE, PAGE and FUND (hereafter the IWG models). The 
second part summarizes and reviews critiques of these damage 
functions in the literature. The last part considers opportunities 
to improve and update model damage functions, discussing 
substantial advances in both the science and economics of 
climate change impacts as well as the challenges involved in 
incorporating findings into damage functions.

Part One: Existing State of IAM Damage 
Function Calibrations
Aggregate damage functions have long been used in climate-
economic analyses to relate projected temperature change to 
social costs (e.g., Cline, 1992; Nordhaus, 1991, 1992), and 
the IWG damage functions are remarkably similar to the 
earliest efforts. The typical functional form of damages is an 
increasing power function of mean surface temperature change, 
often quadratic (Kopp et al. 2011; Warren 2011). This simple, 
compact (if arbitrary) functional form suited the computational 
constraints of cost-benefit IAMs and the analytical models that 
preceded them (e.g., Nordhaus 1991). Damage functions tend 
to be calibrated to point estimates of damages corresponding 
to a benchmark warming level (e.g., 2 or 3°C), either taking a 

1 Please cite this report as D. Diaz and F. Moore. Valuing Potential Climate Impacts: A Review of Current Limitations and the Research Frontier. EPRI, Palo 
Alto, CA: 2017. Report #3002011885.

Estimating the economic cost of climate impacts is difficult for many reasons related to 
complex interactions and uncertainty in the coupled earth-human system. This review paper 
describes current approaches to valuing climate impacts in integrated assessment models, 
summarizes eleven primary critiques, and identifies the frontier of climate impacts research 
that could serve to advance the state of the art.
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bottom-up, additive sectoral approach as in the RICE model 
(Nordhaus & Boyer, 2000) or a top-down, aggregate form as 
in DICE-2013 (Nordhaus & Sztorc, 2013) based on the Tol 
(2009) meta-analysis. For certain impact categories there exist 
markets that can inform estimates (e.g., agriculture, forestry, 
coastal property and structures), while for intangible impacts 
(e.g., biodiversity, environmental quality, and human health) 
contingent valuation or hedonic methods are used.

There are several broad approaches to estimating climate 
damages. Process model or enumerative approaches simulate 
physical, natural science, and/or engineering processes and 
their response to climate variables. These have the advantage 
of being realistic and interpretable (Tol, 2009), though they 
can be computationally intensive, generally only cover a single 
link of the causal chain, and require scarce empirical evidence 
for parameterization (Fisher-Vanden, Popp, & Wing, 2014). 
Statistical methods use observed weather variations to directly 
estimate economic impacts in a given sector, though there is 
the potential for bias from unobserved factors as well other 
methodological challenges (discussed in more detail in Part 2). 
Nevertheless, there has been a recent surge in these econometric 
studies contributing to the empirical basis for estimates of 
climate change impacts and adaptation (Dell, Jones, & Olken, 
2014; Fisher-Vanden et al., 2014). There is also a small literature 
that applies expert elicitation to gather subjective assessments 
of climate risks and potential damages, particularly for impact 
sectors that lack data. Nordhaus (1994a) surveyed about 20 
experts to estimate the overall economic impacts of 3 and 6°C 
warming, while other expert surveys have focused on assessing 
physical impacts (Bamber & Aspinall, 2013; Kriegler, Hall, 
Held, Dawson, & Schellnhuber, 2009; Morgan & Keith, 1995; 
Vaughan & Spouge, 2002). 

The remainder of this section will focus on the three publicly-
available, highly aggregated, IAMs — DICE, FUND and PAGE 
— used by the US Government Inter-Agency Working Group 
(IWG) to calculate the SCC (IAWG, 2010, 2013). These models 
have long histories and have produced most of the SCC estimates 
in the recent scientific literature (Tol 2009). The three models 
differ substantially in terms of their structure, assumptions, 
and parameterization, as described in Rose, Diaz & Blanford 
(2017). DICE has two quadratic damage functions that are 
driven by global mean temperature and SLR respectively, while 
FUND and PAGE have functions that respond dynamically to 
a broader set of drivers such as population, per capita income, 
and technological change. Here we describe the key features 
of the IWG damage modules, followed by a more detailed 
discussion of two sectors, agriculture and coastal impacts.

DICE
The DICE model was developed in 1992 by William Nordhaus 
(Nordhaus, 1992). DICE is an inter-temporal optimization 
model of economic growth for the world as a single region, 
balancing the cost of mitigation with the damages from climate 
change. The IWG did not run the DICE model in its traditional 
form as an optimization model to compute the SCC, but rather 
as a simulation model driven by the exogenous socioeconomic 
scenarios. 

The latest SCC estimate used the 2010 version of the DICE 
model (re-coded in MATLAB and run in-house by IWG). The 
single region DICE-2010 model is calibrated to the 12-region 
RICE-2010 model in terms of socioeconomic, technology, and 
damage parameters. RICE-2010 consists of aggregate damage 
functions for each region, citing the Tol (2009) meta-analysis 
of IAM estimates and the IPCC (2007) synthesis of the impact 
literature as the calibration source (Nordhaus, 2010). DICE has 
been updated twice since the 2010 version used by the IWG. 
DICE-2013R also cites the Tol (2009) survey as the starting 
point for damage calibration, and retains the adjustment factor 
of 1.25 for omitted or intangible impacts. DICE-2016 uses a 
quadratic damage function calibrated to a meta-analysis by 
Nordhaus and Moffat, and implies slightly lower damages of 
2.1% GDP loss at 3°C warming (Nordhaus, 2017).

DICE-2010 was the first and only vintage of the model 
to explicitly include a module for sea level rise (SLR) that 
computes the physical extent and economic impacts. SLR is 
decomposed into contributions from four major processes: 
thermal expansion, melt from glaciers and small ice caps, 
Greenland Ice Sheet melt, and Antarctic Ice Sheet melt, each 
parameterized in accordance with the IPCC Fourth Assessment 
Report (Nordhaus, 2010). Coastal impacts from SLR are 
removed from the aggregate damage function and reformulated 
as a function of SLR. The remaining of climate damages are 
classified as non-SLR damages.

Due to DICE’s highly aggregate nature, many features are 
accounted for in an implicit manner. For example, the effect of 
adaptation is included implicitly to the extent that the damage 
function is calibrated to estimates that report the residual 
damage after accounting for adaptation. 

FUND
FUND is based on version 3.8 of the FUND model. FUND 
was developed in 1993 by Richard Tol, and since 2006 has been 
co-developed with David Anthoff (Tol 1995). It is the most 
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disaggregated cost-benefit IAM, covering 14 distinct impact 
sectors and 16 regions. FUND considers damages for sea level 
rise, agriculture, forests, heating, cooling, water resources, 
tropical storms, extratropical storms, biodiversity, cardiovascular 
respiratory, vector borne diseases, morbidity, diarrhea, and 
migration, each with a specific damage functional form based 
on or calibrated to a published impact assessment, with regional 
parameters based on spatial patterns of warming, estimated 
impacts, or other regional assumptions and adjustments (Tol 
2002a). FUND projects a positive climate impacts in certain 
sectors (e.g., avoided energy expenditures for space heating, 
increased productivity in agriculture and forestry), implying net 
global benefits up to roughly 2.5°C of warming. 

Many of FUND’s damage functions are formulated with 
‘dynamic vulnerability’, such that exposure or vulnerability 
to climate impacts changes dynamically over time depending 
on socioeconomic metrics like population growth, income 
growth, and technological change. Vulnerability is projected 
to decrease over the long-run in many impact sectors, e.g., 
energy consumption declines with energy efficiency, agriculture 
decreases as a share of overall GDP as economies develop, and 
exposure to vector-borne diseases will decline with improved 
health care. Dynamic vulnerability works in both directions, 
however, and other impact sectors may become more vulnerable 
over time. For example, water resource impacts will be amplified 
with population growth, exposure to heat-related disorders will 
increase with urbanization, and willingness to pay to avoid 
damages to ecosystems and mortality will increase with higher 
per capita incomes. The income elasticities are estimated from 
cross-sectional data or taken from the literature in accordance 
with Tol (2002b). Dynamic vulnerability is distinct from 
the concept of climate adaptation, which is a direct response 
to the expected change in climate. FUND models proactive 
adaptation in the coastal sector, weighing the cost of retreat 
against those of protection in order to avoid incurring the worst 
impacts of SLR in the no adaptation case. FUND does not 
explicitly include possible high-impact, uncertain consequences 
of climate change but extreme outcomes are included via the 
long tails of uncertain parameter distributions.

PAGE
The PAGE model was developed in 1991 by Chris Hope with 
several updates (e.g., Plambeck 1996, Hope 2006) prior to the 
current PAGE09 model used by the IWG for the current SCC 

2 The aggregate impact is allocated such that ‘half of impacts are sea level, one-quarter economic, and one quarter non-economic’ according to a comment in 
the model Excel file. Note that Warren (2006) is a review of four IAMs (DICE, FUND, PAGE, and MERGE), so PAGE is calibrated to the consensus of 
IAM output, not the impacts literature.

estimate (Hope2011a). PAGE specifies four sectors for damages: 
sea level, economic, non-economic and discontinuity. The SLR 
damage function is calibrated to Anthoff et al. (2006) and the 
economic and non-economic damage functions are based on 
Warren (2006), such that all three have an aggregate impact 
before adaptation of just under 2% of GDP for a temperature 
rise of 3°C.2 The discontinuity impacts are calibrated to the 
Nordhaus (1994) expert survey and Ackerman et al. (2009).

The PAGE damage functions for each sector are calibrated for 
the EU and then adjusted for other regions based on a coastline 
length scaling factor and assumptions about adaptive capacity. 
PAGE includes two types of adaptation: ‘plateau’ increases 
the tolerable level of SLR or warming without suffering any 
damages, and ‘impact’ reduces the remaining damage by a fixed 
percentage. The adaptation policy and capacity is prescribed for 
each region at the outset of the PAGE model run and does not 
depend on the severity of climate change.

Agriculture Spotlight  
Of the three models used by the IWG, only FUND has 
a separate damage function for the agricultural sector. 
Agricultural damages in FUND are a linear sum of three 
types of impacts: the level of warming, the CO2 fertilization 
effect, and the rate of warming (Anthoff and Tol 2014b). The 
sum of the three components give the percent of agricultural 
production impacted by climate change, applied to the gross 
agricultural product (assumed to decline over time with 
economic development) to determine overall damages in 
absolute terms.

The effect of level of warming is a quadratic, parameterized 
separately for each of the 16 regions in FUND. These quadratics 
all give positive impacts for moderate warming that become 
negative at higher levels of warming. Calibration is described 
in Tol (2002a) and is based on economic studies from the early 
1990s: Kane (1992), Reilly (Reilly, Hohnmann, and Kane 
1994), Darwin et al. (1995), Fischer et al. (1996) and Tsigas 
et al. (1996). These are all economic studies using computable 
general equilibrium (CGE) or agricultural market models 
combined with GCM projections of climate change and an 
estimate of the yield impacts. The range over which the level 
of warming benefits agriculture ranges from 0.75°C in South 
America to 5.75°C in Canada (Anthoff and Tol 2014b).
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The CO2 fertilization benefit is formulated in FUND as having a 
declining marginal effect using a natural logarithm. The effects 
of CO2 fertilization are calibrated based on average difference 
in damages between studies that did and did not include 
CO2 effects. Benefits estimated from this meta-analysis vary 
between regions. A doubling of atmospheric CO2 concentration 
benefits agriculture by between 16% (Small Island States) and 
2.8% (Canada). 

The effect of adaptation, parameterized in the damage function 
based on the annual rate of climate change, is based on the 
average difference in impacts between studies that did and did 
not include adaptation. Damages from the rate of climate change 
are strictly negative and depend on the rate of temperature 
change in the current time period as well as damages in the 
previous time period. Consistent with the observation that 
there is relatively little known about the rate or effectiveness of 
private adaptation, the parameters in this damage function are 
documented as educated guesses (Anthoff and Tol 2014b).

Coastal Impact Spotlight
The IWG models formulate coastal damage functions in terms 
of the level or rate of sea level rise (SLR), which requires the 
intermediate translation of temperature projections into a 
corresponding SLR pathway. Each of the models projects SLR 
in its own way using a component approach or equilibrium 
function, and notably produce very different SLR projections 
to drive the damage functions, with FUND projecting twice as 
much SLR as PAGE in 2050 and 2100.3 

Coastal impacts from SLR in DICE are removed from the 
classic DICE aggregate damage function, and reformulated as a 
quadratic function of SLR, DSLR=0.00518 SLRt + 0.00306 SLRt

2 
implying coastal damages are 0.8% of GDP at 1m of SLR, 
though there is no documented basis for the point estimates 
used for either the SLR or aggregate non-SLR damage function 
calibration or the rationale for the quadratic form.

Coastal impacts in FUND are computed at the regional level 
using a simple process model of adaptation that trades off 
the cost of retreat against those of protection following the 
adaptation cost/benefit rule derived in Fankhauser (1995) with 
cost functions calibrated to Hoozemans et al. (1993), Bijlsma 
et al. (1995), Leatherman and Nicholls (1995), Nicholls and 
Leatherman (1995), and Brander et al. (2006). Net damages 
after adaptation expenditures can be less than half the projected 
damages without adaptation (Anthoff, Nicholls, and Tol 2010). 

This formulation assumes perfect foresight and efficient 
adaptation to sea level rise, neglecting market and other 
institutional barriers to adaptation, allowing sea wall protection 
to be flexibly built each year.

SLR impacts in PAGE are a power function of the height of 
SLR, DSLR= wSLRt 

p. The uncertain exponent p has a mode of 
0.7, based on the relationship between exposed land, people, and 
GDP versus SLR in Anthoff et al. (2006), which finds impacts 
rise less than linearly with SLR, reflecting the general coastal 
tendency for the density of land and people to decrease with 
elevation. The mode of the uncertain parameter w is calibrated 
to constitute half of the aggregate impact of 3°C reported in 
Warren et al. (2006), which is based on SLR impacts reported 
in Anthoff et al. (2006). Diaz (2014) notes it is difficult to 
reconcile this citation: the PAGE function implies that 0.5 m 
of SLR in 2100 would cause a 1% loss of world GDP (i.e., $2 
trillion), while Anthoff et al. find $10–20 billion in damages for 
0.5 m SLR for the entire 2080 decade ($1–2 billion per year), 
two orders of magnitude smaller than in PAGE. PAGE also 
accounts for exogenous coastal adaptation to avoid damages 
from SLR, with coastal adaptation costs based on Anthoff et 
al. (2006). 

Part Two: Limitations of Current Damage 
Functions
This section describes of published critiques of current damage 
functions, and discusses related issues and implications for 
valuation of climate impacts.

1. Extrapolation to High Temperatures
Several authors point out that economic damages at higher levels 
of warming are largely unknown and that the extrapolation 
of damage functions beyond calibration points is essentially 
arbitrary (e.g., Ackerman, 2010; Dietz & Stern, 2014; 
Weitzman, 2012b). Most of this literature addresses the DICE 
damage function, which is calibrated to damages at 2.5°C of 
warming but then extrapolated to higher temperatures using 
a quadratic functional form. However, the limited calibration 
basis for impacts at higher temperatures is not unique to DICE. 
PAGE is calibrated to damages at 3°C of warming and the 
sector-specific studies underlying FUND damage functions are 
typically for warming of between 1°C and 2.5°C (Tol 2002a).

Several authors reference the study by Sherwood and Huber 
(2010) showing that unabated warming will produce wet-bulb 
temperatures that make large areas uninhabitable as evidence 

3 See Diaz (2014) for details on the SLR projection modules.
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that the quadratic extrapolation in DICE under-estimates 
damages at high temperatures (Fisher & Le, 2014; Revesz et 
al., 2014; Weitzman, 2012a). For example, DICE damages at 
6°C and 12°C are equivalent to a loss of 8% and 26% of GDP 
respectively, yet Sherwood and Huber (2010) find that 12°C 
of warming would render areas occupied by half the human 
population uninhabitable. Other studies point to non-linearities 
or catastrophes at higher temperatures that would increase the 
convexity of the damage-function such as the abandonment of 
low-lying areas and island states due to sea-level rise or the non-
linear response of crop yields to warming (Fisher & Le, 2014; 
Hanemann, 2008). Nevertheless, very few impact analyses have 
been conducted at these higher temperatures.

Weitzman (2012a) considers an alternative damage function that 
matches DICE damages in the calibration region between 0 and 
2.5°C but increases more rapidly with temperature, producing 
damages of 50% for a warming of 6°C and 99% for 12°C. 
He argues that damages at these temperatures are important 
because uncertainty over equilibrium climate sensitivity means 
the distribution over future temperature change is fat-tailed 
and that high-temperature damages will therefore dominate the 
cost-benefit analysis of climate policy (Weitzman, 2009). 

The importance of these high-temperature extrapolations 
is largest when combined with other model structural 
assumptions. Since very high temperatures are not reached 
until the distant future, discounting means the damages 
therefore have little impact a measure like the SCC (Weitzman, 
2012a). Ackerman and Stanton (2012) find the Weitzman 
damage function increases the SCC by approximately a factor 
of 4 when combined with a fixed 3% discount rate. It is also 
important when some damages fall on the growth rate rather 
than output (Dietz & Stern, 2015), or when combined with a 
fat-tailed temperature distribution to calculate expected utility, 
particularly with a very low pure rate of time preference and 
high risk aversion (Weitzman, 2012a).

2. Extrapolation to Other Regions
A further extrapolation critique of damage functions is that the 
underlying literature consists of impacts estimated for a specific 
region, which are then applied to other regions the world 
(Warren et al. 2006; Warren 2011). van den Bergh and Botzen 
(2014) note that regional extrapolation is prevalent because 

damage cost estimates for developing countries are limited by 
data availability and quality, and caution that extrapolation may 
fail to account for their relative vulnerability.4 Modelers often 
apply adjustment factors to extrapolate to developing regions 
(e.g., Nordhaus, 1991; Manne and Richels 1995), though this 
fails to fully account for geophysical and socioeconomic drivers 
of impacts. 

For example, PAGE defines damage functions for the EU 
reference region, which are then adjusted to the other regions 
with linear scale factors ranging from 0.4 to 0.8. Hope (2011a) 
explains the basis for this formulation as the fact that other 
regions are on average less vulnerable than the EU for the same 
sea level and temperature rise because of the long coastline of 
Europe.5 Another example of extrapolation across regions is the 
FUND damage function for cardiovascular and respiratory 
mortality, as described in Anthoff & Tol (2014a): ‘Martens 
(1997) assesses the increase in mortality for 17 countries. Tol 
(2002a) extrapolates these findings to all other countries’ based 
on a linear function of extreme temperature.

3. Coverage of Impact Categories
The fact that damage functions have incomplete coverage of 
known impact sectors is widely acknowledged (IAWG, 2010; 
Marten et al., 2013; Neumann & Strzepek, 2014; Revesz et 
al., 2014; Tol, 2002, 2005, 2009; Warren, 2011; Watkiss & 
Downing, 2008; Watkiss, 2011). Some authors argue that for 
this reason SCC estimates should be viewed as a lower bound 
(Howard 2014; van den Bergh and Botzen 2014), however this 
claim must be considered alongside other known issues with 
SCC estimation that may cause different biases (e.g., Rose et 
al. 2017).

Of the IWG models, FUND has the most comprehensive and 
explicit bottom-up coverage, including climate impacts in 14 
sectors: sea level rise, agriculture, forests, heating, cooling, water 
resources, tropical storms, extratropical storms, biodiversity, 
cardiovascular respiratory, vector borne diseases, morbidity, 
diarrhea, migration. Tol (2002a) notes that “the list of omitted 
impacts is long. It includes amenity, recreation, tourism, 
extreme weather, fisheries, construction, transport, energy 
supply, morbidity, and so on. The reason for omitting is that no 
comprehensive, quantified impact studies have been reported.”

4 A distinct concept, regional equity weighting, is discussed later.
5 Diaz (2014) notes that this approach appears inconsistent with the fact that PAGE damage functions are calibrated to global studies of climate impacts, not 

European studies; it is also unclear why the same coastlength scaling factor applies to economic, non-economic, and discontinuity impacts, as well as the 
cost of adaptation in all four sectors.
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DICE accounts for common impact sectors indirectly through 
its RICE calibration; Nordhaus (2014) states further: “current 
studies generally omit several important factors (biodiversity, 
ocean acidification, and political reactions), extreme events 
(sea-level rise, changes in ocean circulation, and accelerated 
climate change), impacts that are inherently difficult to 
model (catastrophic events and very long-term warming), and 
uncertainty (of virtually all components from economic growth 
to damages).” An adjustment factor of 1.25 is applied to account 
for such omitted or intangible impacts. Finally, two of PAGE’s 
four damage categories (economic and non-economic impacts) 
use a top-down aggregate function without specifying what is 
covered or omitted, though the underlying basis for calibration 
(i.e., Warren et al., 2006) includes both FUND and RICE 
damage estimates.

Impacts are typically omitted from IAM damage estimates 
because they are difficult to quantify and therefore lack the 
requisite underlying IAV and economics literature. Howard 
(2014) provides a detailed compilation of omitted damage 
categories that includes damages from acidification and warming 
in oceans, wildfire, large-scale migration, energy supply, labor 
and capital productivity, and geopolitical instability. Tol (2009) 
identifies saltwater intrusion to freshwater resources and tropical 
storm intensification as well. Neumann and Strzepek (2014) 
identify less-studied market sectors such as manufacturing, 
mining, tourism, recreation, finance, and insurance, and also 
note that many indirect or second-order effects (e.g., malnutrition 
or business interruptions) have yet to be accounted for, even 
in the sectors that have a deeper research base. Sussman et al. 
(2014) emphasize poor coverage of intangible impacts, such as 
the loss of cultural heritage, historical monuments, charismatic 
species, and disruptions to ways of life, which are thought to 
be socially compelling but are challenging and controversial 
to quantify. Neumann and Strzepek (2014) identify omitted 
sectors that could potentially be included once the literature 
basis is more developed, noting that infrastructure, ecosystems, 
crime, labor, and factor productivity have a few impact estimates 
but may be incompletely addressed (e.g., ecosystems are largely a 
sample of convenience) or depend on a single thread of evidence 
(e.g., crime) or both (e.g., infrastructure).

Watkiss and Downing (2008) and Tol (2009) note that not all 
omitted impacts will be negative. Warmer temperatures in the 
Arctic and the corresponding loss of sea ice may afford new 
shipping routes and other commerce or resource opportunities. 

Additionally, certain negative effects of cold weather, such as 
winter storms and traffic disruptions, may be avoided at low 
levels of climate change, although these may be balanced out 
by increased occurrence of heat-related issues. Tourism is also 
expected to have heterogeneous effects, as tourist revenue 
is redistributed based on climatic shifts. van den Bergh and 
Botzen (2014) suggest that negative effects of climate change are 
thought to dominate omitted or unquantified positive effects, 
though this question illustrates large remaining research gaps in 
impact valuation.

4. Treatment of Inter-Sectoral and Inter-Regional 
Interactions 

Many researchers note that the IWG models fail to represent 
potentially important inter-sectoral and inter-regional interaction 
effects in their damage modules (Kopp and Mignone 2012; 
Marten et al. 2013; Warren 2011; IAWG 2010; Howard 2014; 
Hitz and Smith 2004). Almost all damages in the three IWG 
model are additive in both regions and sectors, meaning there is 
no explicit mechanism for interactions of climate change impacts 
between sectors or regions. The exception is inter-regional 
migration in FUND that is driven by land inundation from sea 
level rise, with costs based on per capita income (Anthoff and Tol 
2014b). Furthermore, the underlying impacts literature basis for 
bottom-up damage estimates consists mostly of isolated studies 
of a given sector and/or region, so inter-sectoral and inter-regional 
interaction effects are also implicitly unaccounted for (Weyant 
2014; Warren 2011; Howard 2014; Huber et al. 2014). To the 
extent that such interactions could either exacerbate or alleviate 
the damage to society, the common practice of summing across 
sectors and regions will produce incomplete SCC estimates.6

Water in particular has been recognized for having critical inter-
sectoral interactions (e.g., see Field et al. (2014) for discussion of 
the well-documented water-energy-land-agriculture nexus) that 
have not yet been fully captured in damage studies (Bell et al. 
2014; Warren 2011). Water resources could affect other sectoral 
damage analyses through a variety of mechanisms: water 
availability constrains irrigated agriculture and is integral to 
electricity supply, affecting hydropower resources and cooling of 
thermal units, and conversely the water system requires energy 
to pump irrigation groundwater (Neumann and Strzepek 2014). 
Weyant (2014) points out that finer scales of resolution (e.g., 
watershed or agro-ecological zone) are needed to capture these 
complex interactions to address questions about the magnitude 
and direction of economic impacts. 

6 Another limitation of summing bottom-up damage estimates is the fact that impact studies produce estimates that are not comparable due to input 
assumptions that have not been standardized.
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Warren (2011) describes the potential for climate change 
impacts in one region to affect another, through mechanisms 
which are both direct (e.g., inter-regional migration in response 
to desertification, drought, and flooding) and indirect (e.g., 
higher global food prices from declining agricultural yields 
in a given region). Tol (2009) notes that most impact studies 
estimate economic losses from direct costs, ignoring general or 
partial equilibrium effects. Exceptions include CGE modeling 
analyses, which can account for important indirect effects from 
changes in relative prices as well as inter-regional trade (see, e.g., 
Darwin and Tol (2001) for agriculture and Bosello et al. (2007) 
for sea level rise).

Related to the issue of inter-sectoral/regional interaction effects 
as well as omitted impact categories more broadly is the fact 
that climate impacts are often studied with a narrow scope of 
analysis, often focusing on the direct effects of climate change 
on economic assets or production. Oppenheimer (2013) 
emphasizes the importance of including human responses to 
climate change in assessing its net impacts, offering the examples 
of migration, globalization, biofuel production, and changing 
social vulnerability as influential factors. Calvin et al. (2013) 
note that the three-way interaction among impacts, adaptation, 
and mitigation is rarely accounted for in IAMs. Finally, many 
researchers point out the extreme case of interacting elements: a 
cascade scenario where impacts of one type trigger a response of 
another, and this continues to propagate across regions and sectors 
leading to a far-amplified impact (Huber et al. 2014; The World 
Bank 2012). Sussman et al. (2014) warn that interdependencies 
between climatic, ecological, and human systems may lead to 
such cascading effects.

5. Representation of Adaptation and Technological 
Change

Representation of adaptation in all three models is highly 
aggregated and abstract. There are, however, important 
differences the role adaptation plays in determining damages 
in each of the models. DICE has no explicit representation 
of adaptation. Instead, the effect of adaptation is implicitly 
included to the extent that the aggregate damage function is 
calibrated to studies that report damages net of adaptation.7  

FUND includes adaptation as part of the damage functions 
rather than a policy variable, but explicitly represents adaptation 
costs in the agriculture and coastal sectors (Anthoff and Tol 
2014b). In addition, FUND damage functions have a unique 
feature termed ‘dynamic vulnerability’, which captures the fact 
that vulnerability or exposure to climate impacts will change 
dynamically over time depending on socioeconomic metrics 
like population growth, income growth, and technological 
change (Tol 2002b). Although this effect mediates the adverse 
impacts of changing temperatures in some sectors like health 
and agriculture, dynamic vulnerability is distinct from the 
concept of climate adaptation, which is a direct response or 
investment to reduce climate change impacts. 

PAGE includes two types of adaptation, which are classified 
as plateau and impact (Hope, 2011a). The plateau adaptation 
increases the adapted tolerable level (e.g., amount of SLR 
or warming) that a region can tolerate without suffering any 
damages. The impact adaptation reduces the remaining impact 
beyond the plateau level by a fixed percentage up to a maximum 
threshold over the plateau beyond which impacts cannot be 
reduced for a given region. Net damages are given as the sum of 
the residual damages plus the cost of adaptation.8

Several authors warn that the IAM damage functions that 
implicitly include private adaptation (for example DICE and some 
FUND sectors) assume a smooth, instantaneous transition to 
equilibrium in a new climate state and therefore ignore transition 
costs that may be substantial (Farmer et al., 2015; Tol, 2009). 
Firms have to identify a climate signal amidst natural weather 
variability which may cause costly delays in adaptation (Kelly, 
Kolstad, and Mitchell 2005; Schneider, Easterling, and Mearns 
2000). Other barriers or market failures may limit the rate of 
adaptation. Empirical quantification of the rate of adaptation 
and associated adjustment costs is extremely limited, though 
Hornbeck (2012) finds agricultural adjustment to productivity 
shocks from the US Dust Bowl took decades. Neumann and 
Strzepek (2014) point out that the large current ‘adaptation deficit’ 
calls into question the potential for cost-effective adaptation in 
the future, noting that assumptions about adaptation learning 
capacity and pace may be unrealistic. In general, understanding 
of both the rate and effectiveness of future private adaptation is 
extremely limited. Both empirical and process-based modeling 
work is beginning to address this (see Part 2).

7 The argument for this approach is that since much of adaptation is a private good undertaken at the local level, adaptation will not necessarily require policy 
intervention but will instead largely be supplied in the private market.

8 Diaz (2014) notes several shortcomings of this formulation of adaptation: 1) The prescribed adaptation policy is set exogenously at the outset of the PAGE 
model run and does not depend on the severity of climate change. 2) There is an implicit assumption that the cost of undertaking adaptation plus the 
residual damage is less than the unadapted damage to society, which may not necessarily be the case. 3) Adaptation expenditures could be suboptimal.
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A small group of studies has undertaken to modify existing 
IAMs to explicitly represent adaptation as a public decision 
variable by incorporating adaptation as a policy variable 
into DICE (de Bruin, Dellink, & Tol, 2009; Felgenhauer & 
Webster, 2013), RICE (de Bruin, Dellink, & Agrawala, 2009) 
and WITCH (Bosello, Carraro, & De Cian, 2010). In doing so, 
the authors parameterize adaptation cost functions or residual 
damage functions using information from the impacts literature. 
Consistent with the observation above that understanding of 
private adaptation is limited, several authors note the lack of 
data on the aggregated costs and benefits of adaptation actions 
required to calibrate these models.

While IAMs commonly represent technological change with 
respect to mitigation efforts, it is much less typical in damage 
modules (IAWG 2010). One common approach to representing 
technological change is through ‘learning-by-doing’, the process 
by which accumulated experience brings about incremental 
improvements to production methods, allowing firms to 
lower costs (Arrow 1962). This relationship can be compactly 
represented in a learning curve equation (Nemet 2006). Another 
approach uses a heuristic to account for the energy-saving 
bias of technical change. The autonomous energy efficiency 
improvement (AEEI) parameter describes how energy intensity, 
energy use per unit output across the economy, decreases over 
time in an autonomous way, regardless of energy prices.

FUND uses the AEEI parameter to account for technological 
change in energy demand, which affects both the cooling 
demand and heating demand impact sectors. FUND uses 
exogenous projections for AEEI at the regional level (Anthoff 
and Tol 2014a). The global average value is about 1% per year 
in 1990, converging to 0.2% in 2200. Tol (Tol, 1997) notes that 
the AEEI parameter, in conjunction with a separate parameter 
for carbon intensity, is roughly calibrated to match the AEEI 
implied by the EMF14 standardized scenario.

PAGE includes technological change in adaptation costs in a 
similar manner. Adaptive costs are specified as a percentage 
of GDP per unit of adaptation bought and benefit from 
autonomous technical change, such that the costs come down 
over time (Hope, 2011a).

6. Out of Date Science
Rose et al. (2017) highlight the fact that the models draw either 
directly or indirectly on older climate impacts literature, much 
dating back to the 1990s. Thus, these damage estimates fail to 
reflect the more recent scholarship from the impacts, adaptation, 

and vulnerability (IAV) community. Because many underlying 
impact studies are dated and because model documentation of 
the empirical basis for damage functions is sometimes missing, 
understanding exactly how damage functions were derived is 
often difficult. 

In some cases, there is a circular basis for damage functions 
being calibrated to IPCC or related summary studies based 
on IAM results (Pindyck 2013). Rose et al. (2017) traces the 
underlying studies and independence of different models, noting 
that damages in both PAGE09 and DICE2010 are calibrated to 
meta-analyses that include outputs from other IAMs, Warren 
(2006) and Tol (2009) respectively. These interlinkages suggest 
that the damage estimates produced by these three models 
are not independent, which has implications for the IWG 
experimental design, as it therefore may not be appropriate to 
average their results with equal weights. Questions of how to 
aggregate models that are not fully independent into an ensemble 
average have been explored within the climate science literature 
because similar questions arise with General Circulation 
Models (GCMs), many of which share common lineages and 
parameterizations (Tebaldi and Knutti 2007). Although not 
fully resolved in the literature, several papers provide guidance 
on diagnosing and accounting for non-independence in multi-
model ensembles (IPCC 2010; Knutti et al. 2010; Bishop and 
Abramowitz 2013).

7. Representation of Uncertainty  
Damage functions have been widely criticized for failing to 
account for uncertainty in a number of domains (Watkiss 
2011; Kopp et al. 2012; M L Weitzman 2009; Howard 2014). 
Uncertainty can be characterized as parametric (epistemic), 
due to imperfect knowledge, or stochastic (aleatory), due to 
natural variability and inherent randomness (Kann and Weyant 
2000). Here we will describe the representation of parametric 
uncertainty and stochastic variability and extreme events, while 
uncertain climate thresholds will be discussed the next section.

Parametric Uncertainty
IAMs typically deal with parametric uncertainty using 
sensitivity, scenario, or probabilistic propagation techniques 
like Monte Carlo simulation (e.g., Nordhaus 2014, Hope 2011, 
Anthoff and Tol 2013), yet these return a collection of possible 
outcomes, each corresponding to different conditions, without 
identifying a single result that accounts for risk, in contrast to 
stochastic optimization (Kann and Weyant, 2000). 
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The IWG experimental design accounts for parametric 
uncertainty in three areas (socioeconomics, climate sensitivity, 
and the discount rate) with inputs standardized across all models. 
While DICE considers no additional parametric uncertainty, 
FUND and PAGE explicitly capture broader parametric 
uncertainty because the models are run in their native probabilistic 
mode (IAWG 2013). FUND and PAGE specify independent 
probability density functions for nearly 500 and 35 uncertainty 
parameters, respectively, in their damage modules, representing 
uncertainty around the rate of SLR as a function of temperature 
or the exponent on the damage function (Anthoff & Tol, 2014a; 
Hope, 2011a). FUND mostly uses distributions which have tails 
(e.g., normal, lognormal) as opposed to the truncated triangular 
distributions in PAGE, though the specific uncertain parameters 
and specifications are not readily comparable due to model 
structure (Rose, Diaz, and Blanford 2017). These distribution 
choices imply different degrees of understanding about the 
uncertain parameters, though their basis is not well-documented 
or justified by the modelers.

Stochastic Variability and Extreme Events 
Neumann and Strzepek (2014) note that impact studies 
typically assess gradual, mean changes in temperature and 
precipitation rather than fully capturing the effects of climate 
extremes or variability (e.g., storm surge extremes and wildfire 
events). For example, agricultural impacts will be driven by 
conditions of shorter duration related to temperature (degree 
days over some biophysical limit, heat wave) or precipitation 
(damage from intense rain, drought) not simply the annual 
mean temperature change. The importance of accounting for 
impacts due to shifts in the frequency of extreme events or 
increased climate variability, not just slow incremental trends in 
the mean of a climate variable has long been recognized (Smith 
and Tirpak 1989).

Because IAM damage functions are typically formulated in 
terms of global or regional mean temperature, none of the IWG 
models explicitly account for this type of stochastic variability 
in climate outcomes. The effect of stochastic variability and 
extreme events could be included implicitly if for example the 
underlying studies used for calibration capture this variability, 
though this is generally not the case for the IWG models. For 
example, the coastal impact studies underlying the SLR damage 
functions are based on assessments of impacts due to changes in 
global mean sea level alone, without accounting for the additive 
element of variability in sea level and consequent flood risk. More 

recent coastal damage assessments do account for these extreme 
surge events (Hinkel et al. 2014; Diaz 2016), though Diaz notes 
a priority for future work is to address nonstationarity in the 
distribution of such extremes, e.g., incorporating projections by 
Grinsted et al. (2013) and Buchanan et al. (2015).

8. Formulation of System Dynamics and 
Thresholds

Many researchers point out that the IWG damage functions 
fail to capture the risk of uncertain climate system dynamics 
in an explicit or credible manner (Deschenes, 2014; Hitz & 
Smith, 2004; Howard, 2014; IAWG, 2010; Li, Mullan, & 
Helgeson, 2014; Revesz et al., 2014; Sussman et al., 2014; 
Warren et al., 2006). Various terms are used to describe these 
non-marginal system dynamics, including nonlinearities, 
discontinuities, tipping points, tipping elements, thresholds, 
regime shifts, surprises, and catastrophic events, and this 
muddled terminology complicates discussions of already-
complex concepts. Kopp et al. (2016) review the inconsistent 
language around ‘tipping points’ and ‘tipping elements’, and 
discuss the temporal dimension (e.g., abrupt or not, lag between 
commitment and realization), potential characteristics (e.g., 
hysteresis, irreversibility), and magnitude of economic shock for 
such events.

Known physical system thresholds include ocean thermohaline 
circulation disruption, methane release from the oceans or 
permafrost, disintegration of the polar ice sheets, albedo 
changes (with positive feedback), and forest die-back (Alley 
2003; Lenton et al. 2008; National Research Council 2013). 
These events are non-marginal in that gradual changes in 
the physical climate may drive other systems over a threshold 
into a new equilibrium state and have the potential for one 
or more concerning characteristics that include being abrupt, 
irreversible, or exhibiting hysteresis (Sussman, Weaver, and 
Grambsch 2014). The existence of these threats is supported by 
the geologic record (Alley 2003), but the governing dynamics 
and thresholds are still not fully understood or quantified due 
to insufficient data and process models limitations. Kriegler et 
al. (2009) conduct an imprecise probability assessments for five 
tipping elements using expert elicitation. While the triggering 
variable, probability distribution, and consequence of such 
threshold responses have not yet been credibly incorporated 
into IAMs for reasons discussed in Diaz and Keller (2016), they 
are thought to drive up the SCC (Howard 2014; van den Bergh 
and Botzen 2014).
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PAGE explicitly models a type of ‘discontinuity’ impact that 
covers a number of potential large-scale climate thresholds, 
which are never satisfactorily defined, as noted in Diaz (2014): 
Hope (2011a) only cites the Greenland ice sheet disintegration 
while Hope (2011b) also includes monsoon disruption and 
thermohaline circulation. van den Bergh and Botzen (2014) 
similarly comment that PAGE catastrophic outcomes reflect 
subjective judgements and abstract scenarios rather than well-
characterized climate catastrophes. The discontinuity impact is 
modeled as the expected value of an uncertain event, multiplying 
the probability (which increases linearly with temperature above 
a threshold of 3°C) by the consequence (mode of 15% GDP loss). 

Neither DICE nor FUND attempts to directly include a climate 
threshold within the damage module, although DICE’s SLR 
module decomposes the SLR projection into components and 
the Antarctic Ice Sheet is assumed to have an initial discharge 
threshold at 3°C, with a rate that increases linearly with 
temperature until a maximum rate of 2.5mm/yr is reached at 
6 °C (Nordhaus, 2010). To the extent that climate threshold 
events are conflated with catastrophic damages, these are 
somewhat accounted for in the IAMs, though Kopp et al. (2016) 
notes a lack of clarity about what constitutes a catastrophe and 
recommends the term climate-economic shock instead. The 
bottom-up basis for the DICE aggregate damage function 
includes the certainty equivalent damage from a catastrophic 
impact, formulated such that the likelihood is 1.2% at 2.5°C 
and 6.8% at 6 °C and the consequence is a loss of GDP between 
22 and 44% (varies by region). These catastrophe assumptions 
are based on Nordhaus’s own ‘pessimistic’ interpretation of 
the Nordhaus (1994) expert elicitation of the overall economic 
impacts of 6°C warming, (i.e., a doubled likelihood of survey 
results to reflect heightened climate concerns).

FUND does not explicitly include high-impact, uncertain 
consequences of climate change but accounts for the possibility 
of extreme outcomes via the long tails of uncertain parameter 
distributions. However, it is worth noting that these are abstract 
outcomes rather than explicitly modeled feedbacks and system 
dynamics.

At a more fundamental level, IAM damage functions are 
implicitly assumed to have symmetric system dynamics in that 
the function behaves the same for increasing temperature as it 
does for decreasing temperature. Although the coupled earth 
and human system is complex to fully understand and model, 
species extinction and ice sheet loss are known cases of hysteresis 
or irreversibilities that cannot be ‘undone’ as temperatures are 
stabilized and then reduced from a peak level.

Several studies have integrated uncertain climate thresholds 
into IAMs with global stochastic optimization, beginning with 
Keller et al. (2004) and including more recent work that uses 
endogenous hazard rates linking the probability of climate 
catastrophes to warming (Lemoine and Traeger 2014; Cai et al. 
2015; Shayegh and Thomas 2014; Diaz and Keller 2016). Diaz 
(2015) and Kopp et al. (2016) note that moving beyond an abstract 
or stylized representation of hazard towards one that accounts 
for each known threat with distinct characteristics will improve 
the credibility of this approach. Cai Lenton & Lontzek (2016) 
improve upon these studies in many dimensions, using Kriegler 
et al.’s (2009) expert elicitation to calibrate likelihoods and the 
causal interactions between them, account for transition times 
and carbon cycle effects (e.g., ice sheet collapse could release 
coastal permafrost), and adjust social planner’s preferences 
regarding risk aversion and intergenerational equity) and find 
that the SCC increases substantially. These particular modeling 
studies use stochastic and dynamic programming to solve for 
optimal emissions pathways and so are not directly applicable 
to the IWG effort, although elements of the threshold design 
could be implemented in a simulation approach (Diaz 2015). 

Heal and Millner (2014) warn that IAMs are not designed to 
treat Knightian Uncertainty (Knight 1921), which differentiates 
‘uncertainty’ (unknown probabilities) from ‘risk’ (known 
probabilities), limiting the usefulness of damage functions and 
SCC estimates. Many authors point out that there are likely 
many climate impacts that fall into this category of ‘black swans’ 
or ‘unknown unknowns’ (e.g., Weitzman 2009). Furthermore, 
a number of conceptual challenges confront estimation of 
catastrophic risks, including time consistent preferences, risk 
aversion, and social versus private discounting. 

9. Damages to Output Rather than Growth Rate
Damage functions in all three models are formulated such 
that losses fall out the level of output, reducing production in 
the year that damages occur but with no persistent impacts in 
subsequent years. Recent literature has explored this structural 
assumption, introducing a number of alternative damage 
pathways that instead affect the growth rate of output, therefore 
causing persistent effects. 

In the IWG implementation, the underlying factors driving 
growth in consumption are specified exogenously and are not 
directly affected by temperature. Specifically, both population 
and per-capita income are specified exogenously in FUND, 
GDP growth is given exogenously in PAGE, and growth in 
labor and total factor productivity (TFP) are given exogenously 
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in DICE (Anthoff & Tol, 2014; Hope, 2006; Nordhaus & 
Sztorc, 2013). In the standard intertemporal optimization 
version of DICE, capital is determined endogenously based on 
the optimal savings rate so damages to output do lead to an 
indirect reduction in capital formation, but the IWG simulation 
mode did not include this endogenous feedback.

The assumption that economic growth will continue largely 
unaffected by climate change has been criticized in a number 
of recent publications (Pindyck, 2013; Revesz et al., 2014; 
Stern, 2013). The question is important because impacts to 
the growth rate have the potential to greatly increase climate 
damages compared to a world in which climate change only 
affects output. Damages to the growth rate have a permanent 
effect of the size of the economy whereas damages to output are 
transitory. This means that, if the climate permanently changes, 
impacts to the growth rate accumulate over time so that even 
small growth-rate effects will eventually dominate impacts to 
output (Dell, Jones, and Olken 2012).

Moyer et al. (2014) and Dietz and Stern (2015) both demonstrate 
the sensitivity of DICE output to assumptions about whether 
climate damages affect growth rates. Moyer et al. (2014) look 
at the SCC under BAU emissions when damages are allowed 
to affect TFP and show large sensitivity. This is driven both by 
higher damages but also by a lower discount rate if the standard 
DICE discount rate based on the Ramsey formula is used 
(r=ρ+ηg). Because damages to TFP slow or reverse economic 
growth, discount rates are smaller or even negative. If instead 
the IWG fixed discount rate approach is used, effects on the 
SCC are smaller, though still large (increase by up to a factor 
of 10). Dietz and Stern (Simon Dietz and Stern 2015) allow 
temperature to affect either TFP or the capital stock and solve 
for the optimal temperature trajectory, which increases the SCC 
by a factor of 2-3. Both papers present modified versions of the 
Romer growth model in which temperatures affect growth by 
affecting the productivity of the R&D sector and therefore 
the growth in TFP (Dietz & Stern, 2015; Moyer et al., 2014), 
the depreciation rate of capital (Dietz & Stern, 2015), and the 
‘knowledge-spillovers’ that connect investment in capital to 
TFP growth (Dietz & Stern, 2015). Both papers conclude that 
impacts of climate change on economic growth have major 
implications for the SCC and the optimal mitigation pathway 
in DICE.

Rather than quantify impacts from the bottom-up on a sector-
by-sector basis, an alternative approach is to look at temperature 
impacts on GDP as a whole. Although this misses important 
non-market impacts such as health or ecosystem services, it 

should capture all climate change impacts on market sectors 
without the need for individual sector-by-sector analysis. 
However, even more than with sectoral empirical results, the 
mechanisms through which these impacts arise are black-boxed. 
In addition, GDP is a measure of economic activity so the 
connection between changes in GDP and changes in welfare, 
even welfare derived from market goods, is unclear. Although 
much of this literature has appeared only very recently, there are 
some important emerging findings. 

Firstly, this literature has found that the economy as a whole 
tends to be sensitive to temperature fluctuations, particularly 
in poorer countries, with the effect only partially explained by 
the agricultural sector (Heal & Park, 2013). Hsiang (2010) finds 
large effects of hot temperature shocks on economic output in 
Central America and the Caribbean for all economic sectors 
except mining and utilities. Jones and Olken (2010) find that hot 
temperature shocks negatively affect the growth in exports from 
poor countries in both agricultural and manufacturing sectors. 
Deryugina and Hsiang (2014) find substantial effects of hot 
days on annual income in the United States, including non-farm 
income. The mechanism driving temperature impacts in sectors 
not typically considered sensitive to temperature is unclear but 
may include effects on labor productivity or labor supply. 

A second major question addressed in this literature is whether 
temperature shocks permanently affect the economy by 
affecting growth rates, which could have large implications for 
the SCC. Dell, Jones and Olken (2012), Lemoine and Kapnick 
(2016), and Burke, Hsiang and Miguel (2015) all examine 
the reduced-form relationship between temperature shocks 
and economic growth. In general these studies find evidence 
that temperatures negatively affect growth in poor countries, 
though they differ in some important respects. Both Dell, 
Jones and Olken (2012) and Lemoine and Kapnick (2016) find 
strong interactions between temperature impacts and per-capita 
income, suggesting impacts are driven by poor economies being 
more sensitive to temperature fluctuations. Burke, Hsiang and 
Miguel (M. Burke, Hsiang, and Miguel 2015) instead show 
evidence for a quadratic relationship between temperature and 
growth-rates, arguing that large impacts in poor countries arise 
because they are hotter than rich countries, not because they 
are poorer. The studies also differ in the extent to which they 
can confidently distinguish temporary effects of temperature 
on output from permanent impacts to the growth-rate. Dell, 
Jones and Olken (2012) use a distributed lag model to argue 
that warming impacts in poor countries affect the growth-
rate. However, the same lag models in Burke, Hsiang and 

102122630



Valuing Potential Climate Impacts: A Review of    12 November 2017
Current Limitations and the Research Frontier 

Miguel (2015) have large confidence intervals that overlap 
zero, meaning the proportion of temperature impacts falling 
on growth-rates as opposed to output is unclear. Lemoine and 
Kapnick (2016) instead use long-differences estimation to argue 
that temperature changes have persistent effects on growth-
rates over decadal timescales. While suggestive, there are still 
large uncertainties regarding whether growth-rate impacts 
exist, whether their magnitude depends on temperature or per-
capita income, and what mechanisms are driving these effects.9

Two papers have incorporated the some of the new empirical 
literature into DICE-2013R in order to examine the implications 
for optimal climate policy and the SCC. Moore and Diaz (2015) 
create a two-region version of DICE in which temperature 
affects growth rates by affecting either TFP or the depreciation 
rate of capital, calibrating the damage functions to reproduce 
Dell, Jones and Olken (2012). Even with optimistic adaptation 
assumptions, they find the SCC along the optimal emissions 
pathway to be six times higher than using the standard DICE 
damage function. In supplementary analysis Lemoine and 
Kapnick (2016) incorporate their long-differences estimate of 
growth-rate impacts into DICE, finding they do not tend to 
increase the SCC relative to the standard damage function, 
and in some cases decreases it significantly. In both papers, the 
question of how temperature impacts change with per-capita 
income as poor regions develop is a critical one and something 
still unresolved in the literature.

10. Assumption of Perfect Substitutability of 
Environ-mental Services  

All three IAMs assume that temperature damages only affect 
utility through their effect on consumption of goods. Both 
Weitzman (2009) and Sterner and Persson (2008) point 
out that this implies the types of damages caused by climate 
change can be substituted on a one-for-one basis with increased 
consumption. This may be appropriate if the primary impact 
of climate change is on consumption of material goods, but 
is inappropriate if damages fall on goods that are imperfectly 
substitutable with higher consumption such as biodiversity 
or health. This perfect substitutability, combined with 
exogenously specified growth, almost ensures that absolute 
welfare will increase over time, despite climate change damages. 
If instead material goods are imperfectly substitutable with the 

environmental services affected by climate change, the relative 
price of impacted sectors will rise with climate change, causing 
larger impacts than under perfect substitutability.

Sterner and Persson (2008) investigate the importance of this 
effect by altering the DICE utility function to include the effects 
of non-market damages that are only imperfectly substitutable 
with market goods using a CES utility function. They find 
that if climate damages are imperfectly substitutable with 
consumption of material goods, then the optimal emissions 
pathway in DICE is similar to that implied by the very low pure 
rate of time preference used in the Stern Review (Stern, 2006; 
Sterner & Persson, 2008). Results are sensitive to parameters 
that may be difficult to estimate, however, such as the degree 
of substitutability between material goods and environmental 
services, and the fraction of utility today derived from 
environmental services. The authors also point out that though 
there may be a range of substitutability between environmental 
and material goods, calculations will be dominated by goods 
with lowest substitutability as these will have the largest relative 
price increase and come to dominate welfare calculations.

Weitzman (2009) points out that the question of how substitutable 
material goods are with climate damages is empirically difficult 
to determine but has a very large impact on IAM results, 
particularly when combined with high temperatures (resulting 
from fat-tailed probability distributions) and low discount rates 
(resulting from uncertainty in the discount rate). In a later 
paper (Weitzman, 2012b) he shows how both the multiplicative 
damages currently used in IAMs, the CES damages used by 
Sterner and Persson (Sterner and Persson 2008), and a utility 
function in which temperature enters additively are members of 
a general class that can be derived from two axioms: constant 
relative risk aversion and an analogous constant temperature risk 
aversion. Giving a numerical example, he shows that choosing an 
additive utility function rather than the standard multiplicative 
function increases willingness to pay (WTP) to avoid climate 
change by a factor of seven, even when damages are calibrated 
to give the same number for a warming of 2°. He argues the 
strong dependence of IAM results on obscure details of how 
temperature enters the utility function that are impossible 
to determine empirically is an example of deep structural 
uncertainty that requires caution in interpreting the SCC values.

9 In addition to evidence for temperature shocks on economic growth, Hsiang and Jina (2014) use a distributed lag model to show cyclone strikes negatively 
affect economic growth, not just output. Even accounting for the fact that climate change will decrease cyclone risk in some areas, these growth impacts 
imply very large negative impacts of climate change.
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This issue is identified by the IWG as a reason why the 
current functional form of damages in the IWG IAMs may be 
inadequate for accurately representing climate change damages 
(IAWG 2010).

11. Utility Function and Handling of Risk 
Aversion

In the IWG report, models were run to produce monetary 
damages with and without an additional pulse of CO2 that 
were then discounted to give the SCC (IAWG 2010; IAWG 
2013). This process is consistent with the standard versions 
of FUND and PAGE which report damages simply in dollar 
values, leaving aggregation of damages in individual regions to 
a global value and the conversion to utility to the user.10 The 
standard version of DICE however includes a constant elasticity 
of substitution (CES) utility function with the elasticity of 
marginal utility of consumption (η) set to 1.45, which was not 
used in the IWG process (Nordhaus & Sztorc, 2013). Much 
of the literature regarding risk-aversion in IAMs concerns this 
utility function and therefore is less relevant to the IWG process 
which simply uses monetary damages, implicitly using a linear 
utility function with no risk aversion.

The simple utility function in DICE combined with a single 
representative agent means that the same η parameter represents 
preferences over consumption at different time periods, risk 
aversion, and preferences over income inequality within a 
given time period. Weitzman (2012a) points out that in the 
standard DICE model, higher risk aversion tends to lower the 
SCC because it increases the discount rate. If instead damages 
are based on an expected utility calculation over a fat-tailed 
probability distribution of future temperatures, then higher 
risk aversion substantially increases the SCC. Anthoff, Tol 
and Yohe (2009) and Newbold and Daigneault (2009) find a 
similar sensitivity to the risk aversion parameter when climate 
damages are uncertain in sensitivity analyses using FUND and 
a modified version of the DICE model respectively.

Recent papers have begun incorporating findings from the 
asset-pricing literature that show large differences between time 
and risk preferences by incorporating Epstein-Zin preferences 
into IAMs. In addition to changing preferences, these papers 
also allow for the explicit representation of uncertainty in 
DICE, either over the climate sensitivity (Ackerman and 
Stanton 2012), damage function (Crost and Traeger 2011; 

Daniel, Litterman, and Wagner 2015), or future growth rates 
(Jensen and Traeger 2014). Because Epstein-Zin utility adds 
significant computational complexity, this work typically 
relies on simplified models derived from DICE. Preference 
parameters derived from asset price returns typically indicate 
much higher risk aversion (9.5-10) than would be indicated in 
the standard DICE CES utility function (1.45), and therefore 
these papers find that disentangling time and risk preferences 
tends to increase the SCC substantially.

Because the η parameter also captures preferences over 
intra-temporal inequality, it arises in questions of how to 
aggregate climate damages occurring to people at different 
income levels. Several authors have pointed out that using a 
declining marginal value of consumption for the purposes 
of time discounting but not in evaluating the importance of 
damages to different populations is inconsistent and could 
disguise important distributional impacts (Sterner and Persson 
2008; Farmer et al. 2015). Since climate damages tend to fall 
disproportionately on poorer regions, weighting monetary 
damages by their importance for utility will tend to increase 
estimates of global damages, a practice sometimes referred to 
as ‘equity weighting’. Lemoine and Kapnick (2016) aggregate 
up heterogeneous country-level impacts into global damage 
functions using different η values and show large differences 
over a range of plausible values. For regional models, the 
within-region distribution of climate impacts, as well as the 
between-region distribution is important for an inequality-
averse decision-maker as shown in Anthoff, Hepburn and Tol 
(2009) for FUND and Dennig et al. (2015) for RICE.

Part Three: Frontier of Climate Impacts 
Research and Considerations for Damage 
Functions

Existing Global Aggregate Damage Functions 
A number of existing IAMs include global aggregate damage 
modules that could be considered as candidates for inclusion in 
the IAWG framework. Here we review four alternative damage 
formulations – WITCH, MERGE, ENVISAGE, and CRED

WITCH
The WITCH (World Induced Technical Change Hybrid) 
IAM, originally presented in Bosetti et al. (2006), represents 
climate damages with 12 region-specific damage functions. 

10 An exception is that parts of damages in the coastal sector in FUND use a discount rate derived from the Ramsey rule that implies logarithmic utility (i.e. 
η=1) (Anthoff and Tol 2014b).
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This module was recently updated with new damage functions 
and climate adaptation cost curves as described in Emmerling 
et al. (2016) and  Bosello and De Cian (2014). The updated 
damage module implements a bottom-up approach including 6 
impact categories for regional impacts at the calibration point 
of 2.5°C (Emmerling et al. 2016):

• Market impacts – 1) sea-level, 2) agriculture, and 3) energy 
demand, based on impacts studies conducted as part of 
the EU FP7 ClimateCost project (see Bosello et al. 2012). 
The ClimateCost project applied a recursive-dynamic 
computable general equilibrium (CGE) model to estimate 
the macro-economic effects of 1.92°C warming on the three 
impacts sectors, individually and jointly, quantified in terms 
of % change in GDP. Bosello and De Cian (2014) note that 
the CGE framework means the market impacts for these 
sectors are net of autonomous adaptation. Furthermore, 
they report that the estimates are extrapolated to higher 
“temperature increases using sector specific assumptions 
and reasonable judgments based on available knowledge. 
For the rise in sea levels and agriculture we use a power 
relationship (Nordhaus and Boyer, 2000) [exponents of 1.5 
and 2, respectively]. Energy impacts have been extended 
using a linear trend.”

•	 Non-market impacts – 4) ecosystem impacts, using 
updated calculations of the WTP following the approach 
used in the MERGE model (Manne et al. 2005).

•	 Non-market impacts – 5) health impacts and 6) catastrophic 
damages from Nordhaus and Boyer (2000) as documented 
in Nordhaus (2007).

Another key feature of the impact module is that the damage 
functions are separated into a positive component for beneficial 
impacts, and a negative component for damages, such that the 
latter can be offset by adaptation. Bosello and De Cian (2014) 
describes the nested representation of proactive (stock) and 
reactive (flow) adaptation for several impact sectors, as well as 
specific and generic adaptive capacity to determine regional 
adaptation. This adaptation activity shifts the damage function 
downward, however the endogenous nature is not readily 
compatible with the IWG experimental design of exogenous 
pathways. However, optimal results from WITCH could be used 
to parameterize an aggregate damage function net of adaptation.

MERGE
An early version of the MERGE IAM included a representation 
of climate damages that is described in Manne et al (1995) 
and Manne & Richels (2004), though over the last decade 
MERGE has only been applied in cost-effectiveness mode 
(without invoking the damage module) and the formulation is 
acknowledged to be out of date. Nevertheless, MERGE is cited 
as the basis for other damage functional forms (e.g., the WTP 
approach in WITCH).

MERGE differentiates between market and non-market 
damages, and each affects welfare through different channels. 
Market damages reduce consumption, while nonmarket 
damages directly affect the utility function (without lowering 
GDP or consumption). Market damages are assumed to be a 
linear function of global mean temperature change, calibrated 
to estimates of regional GDP loss at 2°C in Mendelsohn et al 
(2000). One clear defect is the choice of a linear functional form, 
as the underlying study is formulated with quadratic response 
functions. Because several regions show benefits at 2°C (before 
reaching an optimal warming and leading to damages at higher 
temperatures on a quadratic), the linear form implies that the 
benefits continue to grow with warming.

Non-market impacts are strictly negative (and are generally 
larger in magnitude than market damages) are conceptualized in 
terms of the willingness to pay to avoid impacts associated with 
temperature rise. The willingness to pay is expressed as a fraction 
of consumption that rises with per capita income and is quadratic 
in temperature. This function is calibrated so that a country with 
per capita income of $50,000 (and up) would be willing to forgo 
4% of it consumption to avoid the impacts associated with a 2°C 
increase in global average surface temperature relative to pre-
industrial. While extremely simple, and not capable of reflecting 
discontinuous or irreversible damages associated with the 
possibility abrupt change, this formulation nonetheless provides 
an intuitive depiction (uncertainty in scale notwithstanding) of 
the consequences of rising temperatures. 

ENVISAGE 
Several public comments to OMB suggested applying the 
World Bank’s Environmental Impact and Sustainability Applied 
General Equilibrium (ENVISAGE) model to estimate the SCC 

11 van der Mensbrugghe (2010) notes that “ENVISAGE is intended to be flexible in terms of its dimensions. The core database—that includes energy volumes 
and CO2 emissions—is the GTAP database, currently version 7.1 with a 2004 base year. The latter divides the world into 112 countries and regions, 
of which 95 are countries and the other region-based aggregations. The database divides global production into 57 sectors—with extensive details for 
agriculture and food and energy (coal mining, crude oil production, natural gas production, refined oil, electricity, and distributed natural gas). Annex 8 
provides more detail. Due to numerical and algorithmic constraints, a typical model is limited to some 20-30 sectors and 20-30 regions.” 
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(IAWG 2015). The model, documented in van der Mensbrugghe 
(2010), is a recursive dynamic CGE model with multiple 
regions and sectors.11 The impact module in ENVISAGE is 
structured such that impact sectors are differentiated as sources 
or destinations that interact within a given region, with 7 
sources (SLR, agricultural productivity, water availability, labor 
productivity, tourism, human health, and energy demand) and 7 
destinations (labor productivity/stock, capital productivity/stock, 
land productivity/stock , multi-factor productivity, household 
consumption of energy, household consumption of market 
services, and income from abroad).12 Roson and Sartori (2015) 
note that this approach to impact pathways allows distinguishing 
the various mechanisms through which climate can affect the 
economy. However, while ENVISAGE’s CGE formulation 
accounts for general equilibrium effects such as those from 
relative prices across regions, it lacks explicit inter-sectoral 
and inter-regional interaction for climate impact estimation. 
Roson and van der Mensbrugghe (2012) note that the initial 
ENVISAGE damage functions are mostly linear functions of 
mean global temperature change with the exception of quadratic 
damages for agriculture.

Underlying the damage module in ENVISAGE is detailed 
analysis by Roson and Sartori (2010; 2015) applied to the 
GTAP database framework. They initially estimated the effect 
of 3°C warming on GDP for the 140 countries and regions in 
the GTAP9 dataset for each climate impact sectors. The more 
recent GTAP analysis evaluated a wider temperature range 
(1-5°C) and found that most impacts were non-linear. These 
results were then used to estimate damage functions that relate 
changes in average temperature to changes in model parameters 
in the destination categories (e.g., labor, capital, land, and 
multi-factor productivity or stocks, household consumption of 
energy and market services, and income from abroad).

CRED
The Climate and Regional Economics of Development (CRED) 
model represents damages using an aggregate damage function 
that is defined at the global level but regionally-adjusted based 
on vulnerability index (Ackerman, Stanton, and Bueno 2012). 
Ackerman, Stanton, & Bueno (2013) assumes an aggregate 
quadratic damage function that is calibrated to a global GDP 
loss of 0.6% at 1°C. The authors justify this calibration point, 
which they note is “roughly double the DICE value”, based on 
the results of potential climate damages in the United States 
in Ackerman et al. (2008). Global damages are then scaled 

to regions using a vulnerability index based on the fraction 
of GDP in the climate-sensitive industries of agriculture and 
tourism, share of population exposed to SLR, and freshwater 
resources per person, and is assumed to be constant over time 
(Ackerman, Stanton, and Bueno 2012).

Earlier publications including the CREDv1.3 documentation 
(Ackerman, Stanton, and Bueno 2012) offer multiple damage 
functions that combine the classic DICE quadratic form with 
higher powers on the temperature variable following Weitzman 
(2012a), discussed below, as well as more pessimistic 2C 
calibration point based on Hanemann (M. Hanemann 2008), 
which is roughly 2.5 times steeper than Nordhaus.

Weitzman proposes an alternative global aggregate damage 
function that could be substituted into an IAM damage module 
or applied in an IWG setting to estimate the SCC. Observing 
that the DICE function is unrealistically optimistic for high 
amounts of warming, and noting that all damage functions 
are “made up”, he proposes a reactive damage function that 
adds a 6th order damage term that satisfies two conjectured 
impact outcomes: a 50% consumption loss at 6°C and a 99% 
consumption loss at 12°C:

High-Resolution IAMs with Climate Impacts
In contrast to the economic damage functions described above, 
there are a number of high-resolution IAMs that account for 
climate impacts through biogeophysical processes. These 
models feature a higher degree of process detail and often finer 
spatial or temporal scales and can be used to investigate the 
implications of different climate scenarios on the coupled Earth-
human system in terms of resources or other physical measures 
(as opposed to consumption or welfare). While these models 
could be used to estimate or inform climate impact response 
functions, they cannot be used directly to estimate the SCC.

The Global Change Assessment Model (GCAM) at PNNL 
links economic, energy, land-use, water, and climate systems 
with high resolution (e.g., 32 energy economy regions, 283 
land regions, 233 water basins). Researchers using GCAM 
have conducted and published assessments of climate impact 
in several key sectors, including agriculture (Calvin et al. 2013; 
Kyle et al. 2014; Nelson et al. 2014), energy demand (Zhou et 
al. 2014; Zhou, Eom, and Clarke 2013), and water resources 

12 2012a. 
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(Mohamad I Hejazi et al. 2015; M. I. Hejazi et al. 2014). 
Documentation and code are available at wiki.umd.edu/gcam.

The Integrated Global Systems Model (IGSM) at MIT (Reilly 
et al. 2012) uses a multi-model approach to first estimate the 
physical and biological impacts of climate change and then 
incorporate those effects into the MIT EPPA CGE model 
(Paltsev et al. 2005) to determine the economic consequences 
in a general equilibrium setting (e.g., equivalent variation). 
Damages are implemented at the country or region level via 
the Social Accounting Matrix (SAM). IGSM has been used 
to investigate agriculture-land-water-economy interactions 
and air pollution health effects, among others. Resources and 
documentation are available at http://globalchange.mit.edu/
research/IGSM.

Other well-established models in this category include the 
Integrated Model to Assess the Global Environment (IMAGE) 
at PBL Netherlands Environmental Assessment Agency, 
the Model for Energy Supply Strategy Alternatives and their 
General Environmental Impact (MESSAGE) at IIASA, and 
the Regionalized Model of Investments and Technological 
Development (REMIND) at PIK, among others.

Multi-Sector, Bottom-Up Collaborations
There are a host of ongoing research collaborations evaluating 
climate impacts from a multi-sector, bottom-up perspective. 
These efforts have been intentionally structured with an inter-
disciplinary team, bringing physical scientists together with 
economists to design more credible and complete modeling 
frameworks and to improve understanding, communication, 
and technical implementation. Moreover, many of these 
projects feature standardized input assumptions and scenarios, 
often based on the representative concentration pathways 
(RCPs; Moss et al., 2010) and shared socio-economic pathways 
(SSPs; Van Vuuren et al., 2012). Previous synthesis efforts (e.g., 
IPCC-style catalog of sectoral impacts) introduced inconsistent 
assumptions and caveats that meant the summation of impact 
estimates was less informative (e.g., “apples and oranges”). The 
deliberate shift toward harmonization makes individual sector 
estimates more comparable and better suited for aggregating 
results across sectors, notwithstanding challenges raised earlier. 
While these initiatives advance the frontier of climate impact 
estimation, currently none of these projects offer alternative 
damage functions for immediate use in the IWG-style IAMs. 
Furthermore, while CIRA, PESETA, and Roson & Sartori 

(2015) report monetized damages, many of the others quantify 
downstream impacts in various non-monetary units such 
as percent changes to productivity or crop yields, number of 
people affected, or coastal area. Table 1 gives  several examples 
of current efforts.13

Process-Based Damage Estimates

Agriculture Example
The Agricultural Model Intercomparison Project (AgMIP) 
has produced global gridded changes in crop yields under 
different warming scenarios from 7 process-based crop models 
(Rosenzweig et al. 2014). The economic implications of these 
yield changes has also been examined using 9 partial- or 
general-equilibrium economic models (Nelson et al. 2014). 
Though Nelson et al. (2014) do not report welfare changes, 
these results should be conducive for the calibration of new 
damage functions in the agricultural sector.

Individual studies on yield changes with warming were collated 
and analyzed as part of a meta-analysis for the IPCC based on 
both process-based and statistical studies (Porter et al. 2014; 
Challinor et al. 2014). The database gives multi-region, multi-
crop yield responses to changing temperature, rainfall and CO2 
concentrations. Moore et al. (2016) re-analyzed data within this 
database to produce global temperature response functions for 
four major crops and use these as inputs to the Global Trade 
Analysis Project (GTAP) CGE model to produce new damage 
functions for the agricultural sector.

Coastal Example
The first social vulnerability assessment of SLR quantified the 
land, population, income, and capital in the continental US 
that would be exposed for two static SLR cases, 4.6 m and 7.6 
m, without assuming any coastal adaptation (Schneider and 
Chen, 1980). Work done by the US EPA in 1989 introduced 
adaptation measures through a fixed-rule (e.g., protect all 
coastal zones above a threshold population density) to estimate 
the total costs of protection, retreat, and inundation (Yohe 
1989), and a similar global assessment estimated a cost of $488 
billion to protect the world’s developed coastlines against 1 m 
of SLR in 2100 (Dronkers et al., 1990). 

Yohe (2002) accounted for societal risk attitudes by linking 
protection standards to income levels; this has been applied to 
estimate population exposure by Nicholls (2004) and protection 
costs by Hinkel et al 2014).

13 It is worth noting that these current projects have antecedents including multi-sector assessments by Smith and Tirpek (1989) and Mendelsohn and 
Neumann (2004). 
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Project and Lead 
Institution Summary and Study Features Coverage References

American Climate 
Prospectus 
(Risky Business)

ACP presents comprehensive empirical 
estimates of key economic risks from 
climate change in the US. Standardized 
climate scenarios (RCP 2.6, 4.5, 
8.5) using statistically downscaled, 
probabilistic physical climate projections. 
Impact estimates based on meta-analysis 
of econometric research, complemented 
by detailed sectoral models.

Regions: US coverage

Sectors: Agriculture, labor 
productivity, human health, 
crime and conflict, energy, 
coastal

Houser, Hsiang, Kopp,  
& Larsen, 2015  
www.climateprospectus.org

AVOID2 

UK government

AVOID2 compares impacts of 2 °C 
compared to a BAU scenario through 
2100 using an indicator approach.

Global coverage with 
multiple regions 

Sectors: 12 indicators 
related to water resources, 
flooding, crop productivity, 
and energy demand

http://www.avoid.uk.net/

BRACE 
Benefits of Reduced 
Anthropogenic 
Climate changE

National Center 
for Atmospheric 
Research (NCAR)

Evaluates climate impacts in physical 
and societal measures for two 
standardized climate scenarios (RCP 
8.5 and 4.5) and two socioeconomic 
scenarios (SSP 3 and 5)

Regions: Global coverage, 
regions vary 

Sectors: Heat Extremes 
& Health, Agriculture 
and Land Use, Tropical 
Cyclones, Sea Level Rise, 
Drought and Conflict

Special issue in Climatic 
Change, O’Neill et al., 2017 
https://chsp.ucar.edu/brace

CIRA 
Climate Change 
Impacts and Risks 
Analysis 

U.S. EPA

CIRA evaluates impacts in multiple 
sectors using standardized climate 
projections with harmonized assumptions 
to facilitate comparing impacts across 
sectors and regions and assessing the 
regional benefits of large-scale mitigation 
efforts. Reference and mitigation 
scenarios developed by the IGSM-
CAM model. No explicit interaction 
across sectors. Explicit adaptation in 
coastal, ag, energy sectors. Phase 2 of 
project is currently underway and linked 
to National Climate Analysis (NCA) 
process.

Regions: US coverage, 
regions vary by sector

Sectors: 6 broad impact 
sectors based on 20+ 
detailed impact models 
Health, Infrastructure, 
Electricity, Water Resources, 
Agriculture and Forestry, 
Ecosystems 

Special issues in Climatic 
Change: Martinich et al. 
2015 

Marten et al., 2013  
www2.epa.gov/cira

ClimateCost 
European 
Commission

ClimateCost quantifies impacts and 
adaptation in physical terms and some 
economic costs, using consistent climate 
and socio-economic scenarios. Accounts 
for general equilibrium effects though 
not for interaction across regions and 
sectors. Results implemented in WITCH 
model.

Regions: primarily EU with 
China and India

Sectors: coasts, health, 
ecosystems, energy, water 
and infrastructure

Bosello et al., 2012

Climate Impact Lab The Climate Impact Lab extends the 
approach taken by the ACP described 
above. Seeks to develop plausibly 
causal estimates of relationship between 
measures of climate and human welfare 
in multiple sectors, ultimately producing 
empirical damage functions.

Regions: Global coverage, 
regions vary 

Sectors: Agriculture, 
crime and conflict, labor 
productivity, human health, 
migration, coastal, energy

www.impactlab.org

Table 1 – Selection of Multi-Sector Impacts Modeling Collaborations
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Fankhauser (1995) and Yohe et al (1995) formulated cost-
benefit models to determine the economically optimal level of 
protection based on the relative cost of protection and retreat, 
building off earlier work by van Danzig (1956). Fankhauser 
derived a reduced-form equation to approximate the optimal 
fraction of protection for a given coastline based on the present 
value cost ratio of protection to inundation. (Fankhauser's 
reduced-form cost-benefit rule has been formalized in the 
FUND model, which has been used for numerous analyses of the 
economic impacts of SLR, e.g., Darwin and Tol, 2001; Nicholls 
et al, 2008; Tol, 2007; Anthoff et al, 2010.) One limitation of 
such cost-benefit rules is that by simplifying the optimal result 
to a closed-form equation it cannot interact dynamically with 

Project and Lead 
Institution Summary and Study Features Coverage References

ENVISAGE CGE 
analysis Roson and 
Sartori

Roson and Sartori estimate effect of 
1-5°C warming on GDP for the 140 
countries and regions in the GTAP9 
dataset. Accounts for general equilibrium 
effects though not for interaction across 
regions and sectors. Implemented in 
ENVISAGE model

Regions: Global coverage, 
regional aggregation is 
flexible 

Sectors: labor, capital, 
land, and multi-factor 
productivity or stocks, 
household consumption of 
energy and market services, 
and income from abroad

Roson and Sartori, 2010; 
2015

ISI-MIP Inter-Sectoral 
Impact Model 
Intercomparison 
Project 

Potsdam Institute 
for Climate Impact 
Research (PIK)

ISI-MIP harmonizes independent models 
of different sectors and scales with 
standardized bias-corrected climate 
input data. No dynamic links between 
models or explicit interaction across 
sectors. Explicit adaptation in coastal, 
agriculture, energy sectors. Builds upon 
existing sectoral model intercomparison 
efforts (e.g., AgMIP, WaterMIP)

Global coverage, regions 
vary by sector 

Sectors: 7 broad impact 
sectors based on a variety 
of detailed impact models 
Water, Agriculture, Biomes, 
Infrastructure, Health/
Malaria, Fishery, Permafrost

Huber et al., 2014; 
Warszawski et al., 2014 
www.pik-potsdam.de/
research/climate-impacts-and-
vulnerabilities/ research/rd2-
cross-cutting-activities/isi-mip

PESETA Projection of 
Economic impacts 
of climate change 
in Sectors of the 
European Union 
based on bottom-up 
Analysis 

European 
Commission

PESETA integrates multiple impact sectors 
in a single, internally-consistent economic 
modelling framework for Europe. The 
latest results assess physical impacts in 
the 2080s in terms of agriculture yield 
change, number of people affected by 
sea level rise and river flooding, impacts 
to tourism, and changes in hot and cold-
related mortality. Standardized climate 
model scenarios for 2.5°C, 3.9°C, 
4.1°C, and 5.4°C.

Regions: Europe 

Sectors: agriculture, energy, 
river floods, forest fires, 
transport infrastructure, 
coastal areas, tourism, 
human health, habitat 
suitability

Phase 2 Ciscar et al., 2014 
Phase 1  Ciscar et al., 2009 
http://peseta.jrc.ec. europa.
eu/

Program on IAM 
Development, 
Diagnostics and 
Inter-comparisons 
(PIAMDDI)

While not a coordinated multi-sector 
assessment, this research collaboration 
focuses on advancing impact 
assessments and methodologies  
(e.g., downscaling, uncertainty analysis, 
etc.) in specific sectors, including 
agriculture, water resources, energy,  
and sea level rise among others.

Various http://piamddi.stanford.edu/

changing climate impacts, and the approximation is often 
further exacerbated by the low spatial resolution and limited 
temporal structure common to many global and regional 
analyses.

Progress in the geophysical dimension was afforded by the 
Dynamic Interactive Vulnerability Assessment (DIVA), a 
geospatial analysis tool that partitions world's coastlines into 
12,148 distinct segments, combining global scope with high 
spatial resolution (Vafeidis et al, 2008). (Prior to DIVA, the 
original global coastal dataset was the Global Vulnerability 
Analysis (GVA), consisting of 192 coastal segments 
(Hoozemans et al, 1993). Despite this pioneering effort, 

Table 1 – Selection of Multi-Sector Impacts Modeling Collaborations (continued)
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whole economy without identifying the specific mechanisms by 
which these impacts occur. In contrast to process-based models 
which model known mechanisms of action between climate 
and economic variables, claims for causality in empirical studies 
rest on plausibly exogenous variation in climate variables. Most 
recent empirical work therefore uses panel data and fixed-effects 
to control for all time-invariant unobservable characteristics 
of different places, thereby reducing problems of omitted-
variable bias and improving confidence that the variation used 
to identify climate change impacts is exogenous and that the 
relationship identified is causal (Dell, Jones, and Olken 2014). 

While the findings of this literature are generally relevant to 
damage functions, there has as yet been few direct linkages 
between empirical findings and IAM damage functions. 
This section briefly reviews specific sectors where substantial 
empirical advances have been made, then progress on top-down 
damage estimates based on income or GDP, and then discusses 
general issues around incorporating these findings into IAM 
damage functions. In addition, two useful multi-sectoral 
reviews of findings from recent empirical studies using panel 
data are Dell, Jones and Olken (2014) and Carleton and Hsiang 
(2016).

Sector-Specific Empirical Literature

Agriculture

A large fraction of the empirical literature is focused on 
agriculture. While earlier work used cross-sectional regressions 
to examine the impacts of climate variables on either agricultural 
land-values or profits (Mendelsohn, Nordhaus, & Shaw, 1994; 
Schlenker, Hanemann, & Fischer, 2005), more recent studies 
often look at impacts on crop yields using panel data and fixed-
effects. Studies tend to be concentrated in a few geographic 
regions and a few crops, with a notable focus on US maize yields 
(Burke & Emerick, 2016; Butler & Huybers, 2012; Deschênes 
& Greenstone, 2007; Lobell et al., 2014; Schlenker & Roberts, 
2009). There are however a growing number of studies looking 
at other regions and crops including rice in India and Indonesia 
(Welch et al. 2010; Levine and Yang 2006), wheat in the United 
States (Tack, Barkley, and Nalley 2015), and maize and other 
important crops in sub-Saharan Africa (Lobell, Banziger, 
Magorokosho, & Vivek, 2011; Schlenker & Lobell, 2010). A 
few studies examine multiple crops at a global scale (Lobell 
& Field, 2007; Lobell, Schlenker, & Costa-Roberts, 2011), 
and some examine other economic variables such as profits 
(Guiteras 2009; Deschênes and Greenstone 2007), agricultural 
wages (Jayachandran 2006) or incomes (Yang and Choi 2007).

country-level resolution is not sufficient to inform adaptation 
decisions that are inherently local. Advances in computing 
technology and remote sensing have enabled more detailed and 
accurate coastal datasets.) Several regional and global studies 
that account for additional damage factors related to vertical 
land movement, storm surge flooding, and wetlands have been 
published with DIVA (see Hinkel et al, 2012, 2013, 2014). A 
recent DIVA assessment of fixed-rule adaptation under a range 
of socioeconomic scenarios, digital elevation models, and SLR 
projections estimated annual costs in 2100 of $12-71 billion 
for coastal protection with $11-95 billion in flood damages 
(Hinkel et al, 2014).

Sugiyama et al (2008) apply DIVA's increased spatial resolution 
to reprise Fankhauser's reduced-form approach. Their analytical 
model of optimal coastal adaptation adds capital stock, adjusts 
vertical population distribution, and uses nonlinear SLR 
scenarios. This reduced-form cost-benefit rule is then applied 
at the spatial resolution of DIVA's coastal segments, though the 
study omits local SLR and flood damage and does not produce 
global cost estimates. Diaz (2016) presents the Coastal Impact 
and Adaptation Model (CIAM), an optimization model that 
evaluates several adaptation options at the local (DIVA segment) 
level based on their socioeconomic characteristics and the 
potential impacts of relative SLR and uncertain sea level extremes. 
Following a least-cost adaptation strategy, global net present costs 
through 2100 can be reduced by a factor of seven to less than $1.7 
trillion. The model results are also parameterized and compactly 
represented in a set of adaptation and damage functions.

A final dimension in the coastal impact literature is the 
distinction between direct cost estimates and welfare effects. 
Early studies by Darwin and Tol (2001) and Deke et al (2001) 
used computable general equilibrium (CGE) models in order 
to estimate the economy-wide effects of coastal impacts and 
adaptation. Bosello et al (2007) confirms the importance of 
CGE approach and finds that direct costs may underestimate 
the actual welfare loss to society. It is also worth noting that the 
coastal impact literature often omits damages due to erosion, 
saltwater intrusion, ocean acidification, coastal tourism 
and recreation, and international migration, in addition to 
interactions with other impact sectors. 

Empirical Literature
There has been a resurgence of interest in the empirical estimation 
of climate change impacts over the last 10 years. Much of this 
work uses reduced-form methods – identifying the impacts 
of temperature or rainfall variation on specific sectors or the 
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In general findings from this literature show highly non-linear 
effects of temperature on crop yields, with large negative 
impacts at higher temperatures. Most of the literature uses 
either growing degree days or a quadratic in growing-season 
temperature to capture this non-linearity. Some studies also 
use more specific climate variables such as minimum and 
maximum temperatures (Welch et al. 2010) or vapor pressure 
deficit (VPD) (Lobell et al., 2014). 

Energy Demand
Empirical estimates of climate change impacts on energy demand 
are reviewed in Auffhammer and Mansur (Auffhammer and 
Mansur 2014). Studies have a heavy geographic emphasis on 
the United States and western Europe and on the residential as 
opposed to the commercial or industrial sectors. The authors 
distinguish between impacts on the intensive margin (short-run 
changes in energy use conditional on existing investments) and 
the extensive margin (long-term changes driven by changing 
investment decisions such as installing air conditioning). On 
the intensive margin response functions show an asymmetric 
inverse-U shape with warming causing small declines in energy 
demand at lower temperatures and large increases at higher 
temperatures. Work on the extensive margin has focused 
largely on air conditioner adoption and has found climate 
variables including cooling degree days, relative humidity and 
wind speed to be determinants of air conditioner penetration 
(Biddle 2008). Studies in developing countries have shown air 
conditioner penetration to be highly sensitive to income (Davis 
and Gertler 2015).

Morbidity and Mortality
Climate change will alter exposure to both hot and cold extremes. 
In general, studies find increases in mortality from hot extremes 
to be larger than decreases in mortality from cold extremes, 
particularly when combined with high humidity (Deschênes and 
Greenstone 2011; Barreca 2012a; Curriero et al. 2002), though 
there is some evidence of “harvesting”, meaning heat extremes 
change the timing but do not increase the total number of deaths 
over a period of weeks to months (Deschenes and Moretti 2009; 
Braga, Zanobetti, and Schwartz 2001; Hajat et al. 2005). There is 
evidence that people will be able to adapt to climate change as the 
marginal impact of hot temperatures tends to be smaller in places 
that are already hot and have high air conditioning penetration 
(Barreca et al. 2013; Braga, Zanobetti, and Schwartz 2001). 
Some papers have also found high temperatures affect fetuses in-
utero, with possibly long-lasting impacts on future productivity 
(Deschênes, Greenstone, and Guryan 2009; Fishman, Russ, 

and Carrillo 2015). Climate change will also affect health and 
mortality through changes in the ranges of disease vectors and 
through altered nutrition by impacts on agricultural productivity. 
There has been relatively less work on these pathways, though 
there is evidence that they are important in developing countries 
(Burgess et al. 2011; Kudamatsu, Persson, and Strömberg 2012; 
Maccini and Yang 2009).

Labor Supply and Productivity
A number of studies, both experimental and in field settings, 
has found that task performance declines at higher temperatures 
(Heal & Park, 2013; Seppanen, Fisk, & Lei, 2006). Graff Zivin, 
Hsiang and Neidell (2015) find short-run temperature shocks 
affect cognitive performance on math tests, but no evidence 
for long-run effects. Graff Zivin and Neidell (2014) also find 
that labor supply in sectors highly exposed to weather decreases 
at hotter temperatures within the United States. In a global 
analysis, Heal and Park (2013) find productivity impacts of 
hot temperatures to be mediated by the penetration of air-
conditioning.

Conflict, Crime and Migration
Hsiang, Burke and Miguel (2013) perform a meta-analysis of 
10 studies examining the relationship between temperature and 
inter-group conflict and 8 studies relating temperature to inter-
personal violence and find a statistically-significant relationship 
in both cases. A number of studies also examine the relationship 
between rainfall anomalies (both floods and droughts) and civil 
conflict and find a connection, though the conclusions are not 
unambiguous (Dell, Jones, and Olken 2014). Several studies 
have found evidence for weather-induced migration, mostly 
related to negative impacts on agricultural production from both 
temperature and rainfall shocks (Mueller, Gray, and Kosec 2014; 
Feng, Oppenheimer, and Schlenker 2012; Hornbeck 2012).

Top-Down Empirical Literature
Rather than quantify impacts from the bottom-up on a sector-
by-sector basis, an alternative approach is to look at temperature 
impacts on GDP as a whole. Although this misses important 
non-market impacts such as health or ecosystem services, it 
should capture all climate change impacts on market sectors 
without the need for individual sector-by-sector analysis. 
However, even more than with sectoral empirical results, the 
mechanisms through which these impacts arise are black-boxed. 
In addition, GDP is a measure of economic activity so the 
connection between changes in GDP and changes in welfare, 
even welfare derived from market goods, is unclear. Although 
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much of this literature has appeared only very recently, there are 
some important emerging findings. 

Firstly, this literature has found that the economy as a whole 
tends to be sensitive to temperature fluctuations, particularly 
in poorer countries, with the effect only partially explained by 
the agricultural sector (Heal & Park, 2013). Hsiang (2010) finds 
large effects of hot temperature shocks on economic output in 
Central America and the Caribbean for all economic sectors 
except mining and utilities. Jones and Olken (2010) find that hot 
temperature shocks negatively affect the growth in exports from 
poor countries in both agricultural and manufacturing sectors. 
Deryugina and Hsiang (2014) find substantial effects of hot 
days on annual income in the United States, including non-farm 
income. The mechanism driving temperature impacts in sectors 
not typically considered sensitive to temperature is unclear but 
may include effects on labor productivity or labor supply. 

A second major question addressed in this literature is whether 
temperature shocks permanently affect the economy by 
affecting growth rates, which could have large implications 
for the SCC. Dell, Jones and Olken (2012), Lemoine and 
Kapnick (2016), and Burke, Hsiang and Miguel (2015) all 
examine the reduced-form relationship between temperature 
shocks and economic growth. In general these studies find 
evidence that temperatures negatively affect growth in poor 
countries, though they differ in some important respects. 
Both Dell, Jones and Olken (2012) and Lemoine and Kapnick 
(2016) find strong interactions between temperature impacts 
and per-capita income, suggesting impacts are driven by poor 
economies being more sensitive to temperature fluctuations. 
Burke, Hsiang and Miguel (2015) instead show evidence for a 
quadratic relationship between temperature and growth-rates, 
arguing that large impacts in poor countries arise because they 
are hotter than rich countries, not because they are poorer. The 
studies also differ in the extent to which they can confidently 
distinguish temporary effects of temperature on output from 
permanent impacts to the growth-rate. Dell, Jones and Olken 
(2012) use a distributed lag model to argue that warming 
impacts in poor countries affect the growth-rate. However, the 
same lag models in Burke, Hsiang and Miguel (2015) have large 
confidence intervals that overlap zero, meaning the proportion 
of temperature impacts falling on growth-rates as opposed to 
output is unclear. Lemoine and Kapnick (2016) instead use 
long-differences estimation to argue that temperature changes 

have persistent effects on growth-rates over decadal timescales. 
While suggestive, there are still large uncertainties regarding 
whether growth-rate impacts exist, whether their magnitude 
depends on temperature or per-capita income, and what 
mechanisms are driving these effects.14

Two papers have incorporated the some of the new empirical 
literature into DICE-2013R in order to examine the implications 
for optimal climate policy and the SCC. Moore and Diaz (2015) 
create a two-region version of DICE in which temperature 
affects growth rates by affecting either TFP or the depreciation 
rate of capital, calibrating the damage functions to reproduce 
Dell, Jones and Olken (2012). Even with optimistic adaptation 
assumptions, they find the SCC along the optimal emissions 
pathway to be six times higher than using the standard DICE 
damage function. In supplementary analysis Lemoine and 
Kapnick (2016) incorporate their long-differences estimate of 
growth-rate impacts into DICE, finding they do not tend to 
increase the SCC relative to the standard damage function, 
and in some cases decreases it significantly. In both papers, the 
question of how temperature impacts change with per-capita 
income as poor regions develop is a critical one and something 
still unresolved in the literature.

Incorporation of Reduced-Form Empirical Results 
into IAM Damage Functions 
Although the literature cited above is relevant to the calculation 
of climate change costs, very few results in empirical papers have 
been incorporated into IAMs. Here we review four main issues 
that arise in translating empirical results to damage functions.

Adaptation
The new empirical literature on climate change impacts uses 
fixed-effects to remove time-constant variation and therefore 
improve confidence that estimated effects are causal and not 
caused by spurious relationships driven by variables omitted 
from the regression. However, fixed-effects also mean that the 
variation used to estimate the regression comes from short-term, 
unexpected fluctuations in weather. If there are actions people 
can take in response to long-term changes in climate that are 
not available in response to short-term, unanticipated weather 
fluctuations then the panel estimator will not necessarily 
give the long-run equilibrium impacts of a change in climate 
(Schlenker, 2010). 

14 In addition to evidence for temperature shocks on economic growth, Hsiang and Jina (2014) use a distributed lag model to show cyclone strikes negatively 
affect economic growth, not just output. Even accounting for the fact that climate change will decrease cyclone risk in some areas, these growth impacts 
imply very large negative impacts of climate change.
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Even the theoretical question of whether damage functions 
should include or exclude adaptation is not fully resolved. Some 
authors have argued that since climate change is a gradual process 
adaptation will occur rapidly relative to the rate of climate change 
and that the relevant damage function is therefore one that 
includes the net benefits of long-run adaptations (Mendelsohn, 
Nordhaus, and Shaw 1994). Others have argued that learning 
and transition costs mean that adaptation will be slow and that 
estimates of climate change damages should therefore include 
adjustment costs that will be partly determined by the short-
run response given by panel estimators (Quiggin and Horowitz 
1999). There is little empirical work on the rate of adaptation, 
though some evidence from US agriculture suggests it could be 
slow and adjustment costs correspondingly substantial (Kelly, 
Kolstad, and Mitchell 2005; Hornbeck 2012).

Two approaches have been suggested that combine the benefits 
of fixed-effects specifications with long-run climate variation 
that will capture more adaptation than standard panel 
estimators. Long-differences estimation uses idiosyncratic 
variation in decadal climate trends across space to estimate the 
medium-run impacts of climate change (Burke & Emerick, 
2016; Dell et al., 2012). Another approach is to allow the 
marginal effects of warming to vary with temperature. This 
can be done either explicitly by estimating separate marginal 
effects for each location and then modeling these coefficients as 
a function of climate (Butler and Huybers 2012b; Auffhammer 
and Aroonruengsawat 2012; Hsiang and Narita 2012) or 
implicitly by estimating a non-linear panel model (for example 
Burke et al., 2015).15 Under certain assumptions, including that 
adaptation technologies are continuous, these marginal effects 
can be integrated out to give the long-run impacts of warming 
including the net benefits of adaptation (Wolfram Schlenker, 
Roberts, and Lobell 2013; Hsiang 2016). 

Relationship of Climate Variables to Global 
Temperature
Damages in FUND, PAGE and DICE depend on global 
average temperature change but this is not typically used as 
an explanatory variable in the empirical literature. Instead, the 
papers discussed above are based on local temperature, often use 
non-linear transformations of temperature, and sometimes use 
other climate variables such as relative humidity, solar radiation 
or rainfall. While not theoretically complex, in some cases 

the work necessary to translate these variables into functions 
of global average temperature change is substantial, requiring 
use of observational climate datasets and climate model output. 
The different steps involved for different functional forms and 
independent variables are summarized in Table 2, organized 
from least to most complex.

Step 1 is relatively straightforward and is in fact already 
implemented in FUND, which includes a linear pattern-scaling 
from global to regional warming used in the agriculture and 
health damage functions (Anthoff and Tol 2014b). Steps 2–4 
however can rapidly become time-consuming and complex. 
Steps 3–4 require knowledge of climate model output, possibly 
including bias correction methods, that may be unfamiliar to 
most economists (Leard and Roth 2015). More complex climate 
modules within the IAMs that output regional temperatures 
or other climate variables would reduce the need for these 
translation steps.

Extrapolation and Generalization
Relying on empirical results to estimate climate damages requires 
extrapolating in a number of dimensions. Firstly, calculating a 
global SCC requires damage functions that have global coverage 
whereas empirical studies are often limited to specific regions 
or countries. Panel models rely on intertemporal variation for 
identification and therefore can only be reliably estimated using 
data collected in a comparable manner over a relatively long 
period. This is part of the reason why the geographic focus of 
most of the papers described above is the United States and 
western Europe. However, IAM damage functions are based on 
global impacts, which requires either new studies (where data is 
available) or geographic extrapolation of existing results, which 
may add significantly to the uncertainty in damage estimates.

Secondly, creating damage functions based on empirical results 
may require extrapolating beyond the range of temperature 
observed historically. Local warming expected over the 
21st century will push many locations beyond the bounds 
of historical weather variability, in some cases (particularly 
in the tropics) within just a few decades (Mora et al. 2013; 
Diffenbaugh and Scherer 2011; Hawkins and Sutton 2012). 
Since several empirical papers have documented thresholds for 
impacts (Deryugina & Hsiang, 2014; Schlenker & Roberts, 
2009), smoothly extrapolating a response function to higher 

15 A model that is non-linear in temperature allows the marginal effects of warming to vary smoothly with temperature. Since most observations of hot 
temperatures come from locations that are already hot, the marginal effect of hot temperatures in a panel setting will be estimated mostly from locations 
that should be adapted to those temperatures. 

102122630



Valuing Potential Climate Impacts: A Review of    23 November 2017
Current Limitations and the Research Frontier 

temperatures may be unwarranted. Moreover, critiques of 
existing damage functions have emphasized the lack of an 
empirical basis for impacts at high levels of warming (6°C and 
above) and, under certain specifications, the sensitivity of the 
SCC to these numbers. Empirical results based on historical 
weather variation will not necessarily be able to constrain 
impacts at these very high temperatures.

Finally, some types of climate impacts are simply not well-suited 
to empirical estimation because they represent a completely new 
state of the world without good historical analogies. Examples 
include the effects of CO2 fertilization (which are typically 
omitted from empirical estimates of climate change impacts 
on agriculture), long-term sea-level rise, or ocean acidification. 
Quantifying these impacts will require other forms of data such 
as experimental studies or process-based modeling.

Welfare Metrics
IAM damage functions parameterize the change in economic 
welfare with global temperature, but not all empirical studies 
examine variables that are immediately interpretable as 
changes in welfare. GDP is often used informally as a proxy for 

welfare, but the connection between GDP and social welfare 
is complex. As noted above, GDP measures economic activity 
and is only an imperfect measure of welfare derived from 
market goods. Top-down studies that instead look at income 
(Deryugina and Hsiang 2014) or consumption may come 
closer to approximating climate change impacts on welfare. 
In addition, GDP does not capture welfare derived from non-
market goods such as health or ecosystem services. Depending 
on substitutability assumptions, these non-market sectors may 
be critical determinants of the SCC. 

Sectors differ widely in the ease with which empirical findings 
can be converted into welfare changes. Health impacts can be 
monetized simply (though sometimes controversially) using 
the value of a statistical life. In other cases, such as agricultural 
or labor productivity, warming everywhere simultaneously 
may result in substantial price changes, in which case general 
equilibrium models are required to determine welfare impacts. 
For heavily traded commodities such as food, the terms-of-trade 
effects of price changes may be an important (or even a dominant) 
component of regional welfare change (Moore et al. 2016). For 
some empirical results such as conflict, crime, or migration, 
quantifying welfare changes may be extremely difficult.

Functional Form and 
Explanatory Variable Notes Translation Steps

Example Empirical 
Paper

Linear function of average 
local temperature 

Temperature change over land 
and at higher latitudes is typically 
higher than global average 
temperature change. 

Pattern-scaling between local and 
global temperature change 

Dell, Jones and Olken 
(2012)

Non-linear function of 
average local temperature

The definition of baseline 
temperature may differ depending 
on the dependent variable. For 
example, many agricultural papers 
use crop-specific growing-season 
temperatures, in which case this 
step also requires knowing planting 
and harvest dates and growing 
areas.

Use climate model output to find 
local change in daily temperature 
distributions as a function of 
global warming. Or parameterize 
change in historic daily temperature 
distribution as a function of average 
warming.

Burke, Hsiang and 
Miguel (2015)

Function of degree 
days or days binned by 
temperature

Only a subset of climate models 
and observational datasets report 
daily temperature data.

Use climate model output to find 
local change in daily temperature 
distributions as a function of 
global warming. Or parameterize 
change in historic daily temperature 
distribution as a function of average 
warming.

Schlenker and Roberts 
(2009)

Functions of climate 
variables other than 
temperature

This parameterization may differ 
substantially between climate 
models, meaning multiple models 
would be required to ensure robust 
results.

Use climate model output to 
parameterize relationship between 
local changes in other climate 
variables and global average 
temperature. 

Barreca (2012b)

Table 2 – Considerations for incorporating impact study results into global damage functions
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