
2018 TECHNICAL REPORT

Electric Power Research Institute IEEE 2030.5 Client
User’s Manual

0

0

EPRI Project Manager
A. Rengit

ELECTRIC POWER RESEARCH INSTITUTE
3420 Hillview Avenue, Palo Alto, California 94304-1338 ▪ PO Box 10412, Palo Alto, California 94303-0813 ▪ USA

800.313.3774 ▪ 650.855.2121 ▪ askepri@epri.com ▪ www.epri.com

Electric Power Research Institute
IEEE 2030.5 Client User’s Manual

3002014087

Final Report, July 2018

0

DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES
THIS DOCUMENT WAS PREPARED BY THE ORGANIZATION(S) NAMED BELOW AS AN
ACCOUNT OF WORK SPONSORED OR COSPONSORED BY THE ELECTRIC POWER RESEARCH
INSTITUTE, INC. (EPRI). NEITHER EPRI, ANY MEMBER OF EPRI, ANY COSPONSOR, THE
ORGANIZATION(S) BELOW, NOR ANY PERSON ACTING ON BEHALF OF ANY OF THEM:

(A) MAKES ANY WARRANTY OR REPRESENTATION WHATSOEVER, EXPRESS OR IMPLIED, (I)
WITH RESPECT TO THE USE OF ANY INFORMATION, APPARATUS, METHOD, PROCESS, OR
SIMILAR ITEM DISCLOSED IN THIS DOCUMENT, INCLUDING MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE, OR (II) THAT SUCH USE DOES NOT INFRINGE ON OR
INTERFERE WITH PRIVATELY OWNED RIGHTS, INCLUDING ANY PARTY'S INTELLECTUAL
PROPERTY, OR (III) THAT THIS DOCUMENT IS SUITABLE TO ANY PARTICULAR USER'S
CIRCUMSTANCE; OR

(B) ASSUMES RESPONSIBILITY FOR ANY DAMAGES OR OTHER LIABILITY WHATSOEVER
(INCLUDING ANY CONSEQUENTIAL DAMAGES, EVEN IF EPRI OR ANY EPRI REPRESENTATIVE
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES) RESULTING FROM YOUR
SELECTION OR USE OF THIS DOCUMENT OR ANY INFORMATION, APPARATUS, METHOD,
PROCESS, OR SIMILAR ITEM DISCLOSED IN THIS DOCUMENT.

REFERENCE HEREIN TO ANY SPECIFIC COMMERCIAL PRODUCT, PROCESS, OR SERVICE BY
ITS TRADE NAME, TRADEMARK, MANUFACTURER, OR OTHERWISE, DOES NOT NECESSARILY
CONSTITUTE OR IMPLY ITS ENDORSEMENT, RECOMMENDATION, OR FAVORING BY EPRI.

THE FOLLOWING ORGANIZATIONS, UNDER CONTRACT TO EPRI, PREPARED THIS REPORT:

THE ELECTRIC POWER RESEARCH INSTITUTE

AUTOMATION RESEARCH GROUP

CALIFORNIA ENERGY COMMISSION LEGAL NOTICE
THIS REPORT WAS PREPARED AS A RESULT OF WORK SPONSORED BY THE CALIFORNIA
ENERGY COMMISSION (COMMISSION). IT DOES NOT NECESSARILY REPRESENT THE VIEWS
OF THE COMMISSION, ITS EMPLOYEES, OR THE STATE OF CALIFORNIA. THE COMMISSION,
THE STATE OF CALIFORNIA, ITS EMPLOYEES, CONTRACTORS, AND SUBCONTRACTORS
MAKE NO WARRANTY, EXPRESS OR IMPLIED, AND ASSUME NO LEGAL LIABILITY FOR THE
INFORMATION IN THIS REPORT; NOR DOES ANY PARTY REPRESENT THAT THE USE OF THIS
INFORMATION WILL NOT INFRINGE UPON PRIVATELY OWNED RIGHTS. THIS REPORT HAS
NOT BEEN APPROVED OR DISAPPROVED BY THE COMMISSION, NOR HAS THE COMMISSION
PASSED UPON THE ACCURACY OR ADEQUACY OF THE INFORMATION IN THIS REPORT.

NOTE
For further information about EPRI, call the EPRI Customer Assistance Center at 800.313.3774 or
e-mail askepri@epri.com.

Electric Power Research Institute, EPRI, and TOGETHER…SHAPING THE FUTURE OF ELECTRICITY
are registered service marks of the Electric Power Research Institute, Inc.

Copyright © 2018 Electric Power Research Institute, Inc. All rights reserved.

0

This publication is a corporate document that should be cited in the literature in the following
manner:

Electric Power Research Institute IEEE 2030.5 Client User’s Manual. EPRI, Palo Alto, CA:
2018. 3002014087.

iii

ACKNOWLEDGMENTS

The following organizations prepared this report:

The Electric Power Research Institute (EPRI)

Principal Investigators
A. Renjit
S. Jasti

Automation Research Group (ARG)
3401 Gray’s Ferry Ave
B197, Ste305
Philadelphia, PA 19146

Principal Investigator
M. Slicker

This report describes research sponsored by the California Energy Commission under
Subcontract CEC 15-044.

0

0

v

ABSTRACT

The goal of this effort is to create an Open Source framework that can be readily deployed by
aggregators, DER vendors, EMS vendors, etc. Availability of open source code ensures uniform
implementation and reduces internal development costs of integrating with utility renewable
dispatch IT infrastructure. Considering the use of the Client on constrained devices, this
framework was developed to be lightweight, portable, and fast (based on state machines and
asynchronous events).

Keywords
IEEE 2030.5
Distributed energy resource (DER)
Energy Management Systems (EMS)
Aggregators
Distributed energy resource management systems (DERMS)

0

0

vii

CONTENTS

ABSTRACT ... V

1 CONTEXT AND PURPOSE OF THIS DOCUMENT ..1-1

Background ...1-1

Purpose ...1-1

Intended Audience ..1-2

2 DESCRIPTION OF THE IEEE 2030.5 SOFTWARE CLIENT ..2-1

Product Perspective ..2-1

Product Features ...2-2

Operating Environment ..2-3

Porting ..2-3

Design and Implementation Constraints ..2-4

Language..2-4

Platform and Dependencies ..2-4

XML and EXI schema based parsing ..2-4

Event Driven ...2-4

Transport Layer Security (TLS) ...2-5

3 BUILDING THE CLIENT ...3-1

4 RUNNING THE CLIENT ...4-1

Usage ..4-1

Subtye DNS-SD Queries ...4-1

URI Retrieval ...4-3

5 CLIENT API ..5-1

6 QUALITYLOGIC TESTING ...6-1

Test Scope ..6-1

0

viii

7 EXAMPLE TEST CASE ..7-1

Description ..7-1

Server Setup ...7-1

Sequence of Steps ..7-2

8 DEVELOPMENT TIPS ..8-1

Writing a 2030.5 DER Client Application..8-1

DER Client Model ..8-1

DER Client Reference Implementation (`der_client.c`) ...8-3

DER Client Examples ..8-4

Resource Retrieval Example ...8-6

Conclusion ..8-9

9 SUPPORT FOR THE DIFFERENT CIPHER SUITES ...9-1

0

ix

LIST OF FIGURES

Figure 2-1 Schematic representing direct DER and aggregator mediated
communications ...2-2

0

0

xi

LIST OF TABLES

Table 4-1 List of commands for the client_test application ...4-4
Table 6-1 Tests performed by Qualitylogic ...6-1
Table 6-2 Protocol Implementation Conformance Statement (PICS) ..6-2

0

0

1-1

1
CONTEXT AND PURPOSE OF THIS DOCUMENT

Background
Achieving California’s renewable energy goals by IEEE 2030.5 will require significant upgrades
to the distribution infrastructure. The existing distribution grid is not equipped to fully realize the
benefits of distributed generation and the increased penetration of Distributed Energy Resources
(DER). This will require DER to have smart inverter functionalities. To tackle this issue, the
California Public Utilities Commission (CPUC) revised the electric tariff Rule 21 by approving
seven autonomous functionalities for DER. The commission has also identified the IEEE 2030.5
standard as the default protocol for utilities to communicate with DER.

At the same time, the IEEE is revising the IEEE 1547 to address the needs of high-penetration
DER integration. This revision identifies a range of functional requirements and requires open
communication protocols with IEEE 2030.5 as one listed option.

Although IEEE 2030.5 is a comprehensive and secure protocol for DER communication, it is a
challenge for manufacturers to implement the standard in their devices. Moreover, with the large
number of DER vendors and the complexity of the protocol, it is very difficult to maintain
interoperability between the devices.

EPRI has conducted a project to address this need by providing an Open Source implementation
of the protocol stack that could be readily deployed in DER devices and DER aggregators. One
of the tasks in this project is to develop a User Manual to guide software developers implement
this IEEE 2030.5 client software on their DER and DER aggregation platform.

Purpose
Like most communication protocols used in the area of Distributed Generation, IEEE 2030.5
uses a Client/Server architecture. The Server is the head-end system, installed in a utility or
aggregator, exposes services that downstream Clients interact with. The Client, typically but not
always installed in a device near a DER, interacts with both DER system components and IEEE
2030.5 Servers.

A major goal of this effort is to create an Open Source framework that can be readily deployed
by aggregators, DER vendors, EMS vendors, etc. Availability of open source code ensures
uniform implementation and reduces internal development costs of integrating with utility
renewable dispatch IT infrastructure. Considering the use of the Client on constrained devices,
this framework must be lightweight, portable, and fast (based on state machines and
asynchronous events).

0

Context and Purpose of this Document

1-2

The scope of this document is to provide a detailed developers manual for the IEEE 2030.5
Client. A high-level summary of the information included in this document,

• Operating environment, including OS version

• Programming environment

• Build/compile instructions

• Design and implementation constraints

• Assumptions and dependencies

• An API document listing the functions (similar to a programmer’s guide)

• Loading the operating system, drivers, and other dependent libraries/applications

• Description of the source code files

• Procedure to upload/download application software

• Provisioning instructions

Intended Audience
The intended audience includes communication device manufacturers, aggregators, EMS
vendors and DER vendors interested in developing an IEEE 2030.5 interface to their devices.

0

2-1

2
DESCRIPTION OF THE IEEE 2030.5 SOFTWARE
CLIENT

Product Perspective
The California Common Smart Inverter Profile (CSIP) document, developed by Investor Owned
Utilities in support of the CA Rule 21 tariff, identifies three different configurations of
communications between the Utility and DER, known collectively as “DER Entities”:

1. Individual DER: In this configuration, individual DER exchange data with the Utility,
typically in response to contractual arrangements where the Utility directly manages the DER
functional capabilities.

2. Facility DER EMS (FDEMS): In this configuration, the Utility data exchanges with DER
are mediated by a Facility DER Energy Management System (FDEMS). Solar plants, wind
plants, microgrids, campuses, and commercial systems are likely to have relatively capable
FDEMS that may aggregate data for the Utility and may allocate Utility functional requests
to their various DER within the facility. Smaller commercial and residential FDEMS may
just act as direct proxies for their DER.

3. Aggregator: In this configuration, the Utility interacts with an Aggregator. The Aggregator,
in turn, interacts with individual DER. Typically, Aggregators lease or sell DER systems to
end users and/or agree contractually to manage these DER systems. Aggregators collect DER
data to be provided to the Utility, and also pass through the Utility functional requests to
aggregated DER.

These different configurations are shown in Figure 2-1.The data exchange interactions between
the Utility and the individual DER and the FDEMS are identical, since the Utility has access to
only a single energy connection point in both the cases. Though multiple DER could be
connected behind the meter through the FDEMS, only the aggregate capabilities of the facility
are reflected to the Utility.

Data exchange interactions between the Utility and the Aggregator may involve hundreds or
thousands of DER located throughout the Utility’s grid. As specified in the CSIP document, the
Utility is expected to assign an Aggregator’s DER system to Server groups that are defined by
the location of a DER on the Utility’s distribution grid (e.g. substation, feeder, feeder segment),
and provide these group assignments to the Aggregator. The Utility will expect all interactions
with the Aggregator to reflect these groups. Therefore, the Utility requires visibility into the
capabilities of DER in each group. The Utility will send dispatches (not real-time) signals to
these groups of DER, and the Aggregator will “disaggregate” for each group and allocate the
Utility’s dispatches to the individual DER in its portfolio.

Therefore, special handling of DER in an Aggregator’s portfolio is necessary to ensure proper
partitioning of the Aggregator and Utility efforts.

0

Description of the IEEE 2030.5 Software Client

2-2

As a result, two different types of Client systems are defined:

1. DER Client
2. Aggregator DER Client

Figure 2-1
Schematic representing direct DER and aggregator mediated communications

Product Features
The IEEE 2030.5 Client is an open sourced framework that could be readily deployed by
aggregators, DER vendors, EMS vendors, etc. It is designed to communicate with IEEE 2030.5
compliant servers with the necessary DER resources. The EPRI 2030.5 Client is a C library and
application framework for creating IEEE 2030.5 compliant applications. The framework is
lightweight, portable, and fast (based on state machines and asynchronous events).

• Portable networking layer (UDP, TCP, IPv6/IPv4)

• Support for the Linux platform

• TLS 1.2 currently supported through the OpenSSL library

• DNS-SD client for IEEE 2030.5 service discovery

• HTTP 1.1 client/server

• XML/EXI schema based parser/serializer

• IEEE 2030.5 client API

• IEEE 2030.5 client examples (DER function set)

• Small modular source code

0

Description of the IEEE 2030.5 Software Client

2-3

Operating Environment
Linux. The client can be ported to other operating environments like Windows, Mac OS X, etc.
Please follow below guidelines to port the client to different operating systems.

Porting
The only system supported at the time of release is Linux, however the Linux port can be used as
a guide for porting to other systems. The implementation of the Linux platform layer can be
found in the directory `linux`.

Using the Linux port as a guide, some tasks that need to be completed are:

• Define the Address type and related operations (bsd.c)

• Define the TcpPort type and related operations (linux/tcp.c)

• Define the UdpPort type and related operations (linux/udp.c)

• Define the Timer type and related operations (linux/timer.c)

• Define platform dependent file operations (linux/file.c)

• Define `set_timezone` to for correct localtime (linux/time.c)

• Define `event_poll` in terms of event model described above (linux/event.c)

• Define functions to query the network interfaces (linux/interface.c)

• Define `platform_init` to initialize the plaform layer (linux/platform.c)

• Define any supporting functions and data structures as needed

For the Linux port, it was useful to define a PollEvent type as a base type for TcpPort, UdpPort,
and Timer. The PollEvent includes a link so the events can be placed in a queue and also
includes storage for the event code, file descriptor, and other common attributes.

The Linux port includes a queue because of the way events are reported by `epoll`. In edge
triggered mode an event that indicates that a TCP socket has data is only reported once by
`epoll`. The application is then expected to read all the data from the socket before `epoll` will
return a new event. In such cases where the application does not read all the data, these objects
are placed in queue by `event_poll` so that a new `TCP_PORT` event is returned by `event_poll`
even though no new events may be returned by `epoll`.

Because of the peculiarities of systems interfaces the techniques used for the Linux port may or
may not apply in porting to other systems. For example, in Windows the IOCP (IO Completion
Port) event model means that events are reported by the OS only when operations complete such
as reading data from a TCP socket. To implement the platform layer (and event model) means
that operations such as reading must be buffered by performing the operation before the data is
actually requested by the application.

0

Description of the IEEE 2030.5 Software Client

2-4

Design and Implementation Constraints

Language
The language of choice for this project is C due to its universality. Many popular operating
systems are C based and C is widely used for systems programming especially embedded
systems. The choice of C enables the possibility of developing applications on a variety of
devices from conventional desktop PCs to constrained embedded devices, and currently popular
mobile platforms.

Platform and Dependencies
The target platform is Linux. Besides the C standard library, the only other dependency is
OpenSSL. To build the framework and run applications the following are required:

• Compiler (GCC) version 4.6 or greater

• OpenSSL version 1.1.0 or greater

• GNU Bash or compatible shell

• Linux 2.6 or greater

XML and EXI schema based parsing
The application payload in IEEE 2030.5 messages are XML documents encoded in either in
XML or EXI formats with the form of these documents being described by an XML schema.
Because the payload data is described by a schema, the parsing and validation of data can be
automated. The approach taken by this framework is to generate a C data type for each type
described by the schema and also a table that describes the attributes and elements for each
possible document. This table can be used with a generic parser that can parse any schema
defined XML document, the result of parsing is an object in system memory with a native C
type. Parsing in this way means that the values contained in the attributes and elements of XML
documents can be used directly in C expressions and can be passed to and returned from C
functions.

Event Driven
The Client framework is event driven by design. This means the Client applications are only
responding to events such as network events, timer events, etc. If there are no events the
application remains idle in a wait state giving control back to the operating system until the next
event occurs. The framework makes extensive use of state machines and non-blocking IO
operations so that the Client can pause and resume anywhere in the context of establishing
connections, negotiating TLS sessions, and parsing incoming data. This design allows the
application to be responsive as well as minimize the resources used.

On the Linux platform the framework shall use the epoll interface which provides the least
latency in receiving events on system defined file descriptors. Other systems have similar event-
based polling mechanism such as IO Completion Ports on the Windows platform. The event
based framework should be portable to other systems that are not currently supported.

0

Description of the IEEE 2030.5 Software Client

2-5

Transport Layer Security (TLS)
IEEE 2030.5 requires the use of TLS for secure communication using the
TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 cipher suite. Of the existing TLS libraries,
OpenSSL was identified as a C based library supporting the required cipher suite with license
terms that are compatible with the goals of this project, providing an open source Client that can
be used for any purpose. OpenSSL is a mature library with numerous additions to address the
security of the implementation, it is also widely used in major open source projects providing
additional confidence for its use.

The Client shall use OpenSSL to provide secure communication with an IEEE 2030.5 Server.
The choice of OpenSSL however, should not limit the use of other libraries that provide the same
functionality. WolfSSL is another library that can be used by the framework however, its use
here is outside the scope of this project.

0

0

3-1

3
BUILDING THE CLIENT

Source code for EPRI IEEE 2030.5 Client can be downloaded from the EPRI’s GitLab
repository. All the dependencies mentioned in Chapter 2 has to be installed before building the
client. Please click on the below link to download the source code.

https://github.com/epri-dev/IEEE-2030.5-Client/releases/tag/v0.2.11

To build the framework library and applications run:

 ./build.sh

By default, the build script uses the compiler `x86_64-linux-gnu-gcc`. To change the compiler,
edit the variable `linux_host` in `build.sh`, this variable describes the system target. If you are
unsure of the target, run:

 gcc -v|&grep -e Target

You can also change the prefix used to search for the C target libraries, by default it is `/usr`, this
prefix concatenated the gcc sysroot (the value produced by `gcc -sysroot`)

With no arguments given `build.sh` will build the library and applications using `-Os` (optimized
for size), however debug builds and cross compiled are also possible. Running `build.sh` with
the `debug` option will pass the argument `-g` to gcc:

 ./build.sh debug

To build cross compiled applications edit the variables `linux_cross_host` and
`linux_cross_prefix` appropriately and run:

 ./build.sh cross

0

https://github.com/epri-dev/IEEE-2030.5-Client/releases/tag/v0.2.11

0

4-1

4
RUNNING THE CLIENT

client_test application has been developed to demonstrate usage of the EPRI 2030.5 Client API.
The source code for client_test can be accessed through the below link.

https://github.com/epri-dev/IEEE-2030.5-Client/releases/tag/v0.2.11

Usage
The client_test application is a command line tool with the following arguments.

client_test interface [device_cert ca_certs..] <subtype[:1][/path] | URI> [commands]

• The interface argument is the the name of the network interface, running
the client_test application with no arguments will list the available network interfaces.

• The device_cert argument names the device certificate file. If the certificate ends
in .x509 then the client_test application looks for the corresponding private key in similarly
named file with the .pem extension. If certificate end in .pem, then both the certificate and
private key are loaded from the same file.

• The ca_certs argument is a list of CA certificates or certificate directories to be loaded. If a
directory is specified, then all the certificates within the directory are loaded. If no
certificates or directories then the certificates from ./certs in the local directory are loaded.

• The <subtype[:1][/path] | URI> argument delimits the list of certificates and specifies either
to perform xmDNS service discovery, or to retrieve the document at the specified URI.

Subtye DNS-SD Queries
The subtype can be one of:

• bill - to discover Billing servers

• dr - to discover Demand Response / Load Control servers

• derp - to discover Distributed Energy Resources servers

• file - to discover File Download servers

• msg - to discover Messaging servers

• ppy - to discover Prepayment servers

• rsps - to discover Response servers

• tp - to discover Pricing servers

• tm - to discover Time servers

0

https://github.com/epri-dev/IEEE-2030.5-Client/releases/tag/v0.2.11

Running the Client

4-2

• upt - to discover Metering servers

• edev - to discover End Device servers

• mup - to discover Meter Mirroring servers

• sdev - to discover Self Device servers

• smartenergy - to discover IEEE 2030.5 servers of any type

• When the number 1 is affixed to the subtype, the client_test sets the QU bit to 1 in the service
discovery request indicating that a unicast response is desired. Since the subtype argument
can delimit the list of certificates it follows that there cannot be a certificate or certificate
directory with the same name as the subtype argument. After the service discovery is
performed the client_test application will retrieve the associated resource for the subtype
query or the DeviceCapability resource for a general query. Optionally a path can be
specified on the command line. When specified, the client will retrieve the resource
identified by the path from the server location returned by the DNS-SD response.

• Below is the screen capture of sample client_test application usage with subtype without
specifying an URI

0

Running the Client

4-3

URI Retrieval
If a subtype is not specified in the list of arguments, the client application attempts to parse a
URI. The first argument that matches an absolute form URI will attempt to retrieve the URI. The
URI scheme specified determines the type of connection used to retrieve the resource,
either http for an unencrypted connection or https for a secure TLS connection. If no port is
specified, the default ports for HTTP and HTTPS are used, 80 and 443 respectively.

• Below is the screen capture of sample client_test application usage with an URI

• Commands: The last set of arguments are a list of commands to be interpreted. These can be
any of the following:

0

Running the Client

4-4

Table 4-1
List of commands for the client_test application

Command Description
sfdi SFDI Used for device registration by providing SFDI value.
register Register the client EndDevice with the server.

primary Determine the FunctionSetAssignments with the highest priority according to the
list ordering and retrieve only the DERProgramList associated with that FSA.

all Perform the same functions as primary, except all DERPrograms and the
associated DERCurveLists and DERControlLists are retrieved.

time Perform the time test.

self Get the SelfDevice and poll the server LogEventList if present.
metering Perform the mirrored metering test.

meter Perform the inverter meter reading test.

alarm Perform the alarms test.
device
directory

Load the device certificates from the directory and perform the DER Identification
Test

poll interval Set the poll rate for active events in seconds, the default is 300 seconds or 5
minutes.

load sfdi
directory

Load the device settings located in directory for the EndDevice with
the sfdi specified.

• Below is the screen capture of a sample client_test application with poll as the command

0

5-1

5
CLIENT API

The client API documentation explains the different modules in the source code and supported
data structures. Please click on the below link to download the API.documentation.zip file and
open index.html page from the html folder.

https://github.com/epri-dev/IEEE-2030.5-Client/releases/tag/v0.2.11

0

https://github.com/epri-dev/IEEE-2030.5-Client/releases/tag/v0.2.11

0

6-1

6
QUALITYLOGIC TESTING

EPRI recognized QualityLogic as an independent test tool and service vendor offering IEEE
2030.5, CSIP and SunSpec CA Rule 21/CSIP Test Procedures expertise. QualityLogic was
contracted by EPRI as part of the CEC funded Certified Open-Source Software to Support the
Interconnection Compliance of Distributed Energy Resources project. In partnership with
SunSpec and other members of this CEC funded project, QualityLogic helped develop the
SunSpec CA Rule 21/CSIP Test Procedures document and performed certification testing using
the QualityLogic IEEE 2030.5 Test Harness. All of the relevant tests applicable or that could be
conducted at test date for the EPRI IEEE 2030.5 DER Open Source Client Version 1.0 were
completed.

EPRI provided QualityLogic with full source code to the EPRI IEEE 2030.5 DER Open Source
Client Version 1.0 along with documentation which explained the EPRI client’s architecture,
API and features. This source code was built on an Ubuntu Linux v14.04 desktop system using
the bundled gcc compiler v4.8.4 and openSSL v1.1.0g library. Furthermore, during development
of this EPRI client, EPRI and QualityLogic also performed engineering verification tests using
the QualityLogic IEEE 2030.5 Ad Hoc Tester V3.1, which emulated the behavior of a CA Rule
21/CSIP DER Head End system. By doing so, the EPRI client implementation improved its
2030.5 conformance and reduced risks during the actual certification testing phase.

Test Scope
The following tests were performed based on EPRI’s Protocol Implementation Conformance
Statement.

Table 6-1
Tests performed by Qualitylogic

SunSpec Tests Description Mandatory EPRI

COMM Communication Fundamentals M Yes

CORE Core Function Set M Yes*

BASIC Basic DER Functions M Yes

UTIL Utility Server Aggregator Model N/A N/A

AGG Aggregator Operation M Yes*

ERR Error Handling M Yes*

MAINT Maintenance of Model M Yes*

*EPRI IEEE 2030.5 DER Open Source Client does not support subscription feature yet. Therefore, the tests were
executed using polling method instead of subscription and all the tests that require subscription were not included in
the certification tests.

0

QualityLogic Testing

6-2

Table 6-2
Protocol Implementation Conformance Statement (PICS)

2030.5 Features Description Mandatory EPRI

BASE (DCAP) Device Capability M Yes

DER Distributed Energy
Function set M Yes

DNS Discovery M Yes

BASE (EDEV) EndDevice M Yes

EVENT Event Rules M Yes

BASE (FSA) Function Set
Assignments M Yes

GEN General Networking M Yes

LOG Log Event function set M Yes

METER Metering function set M Yes

MUP Metering Mirror
function set M Yes

RAND Randomization M Yes

BASE (Response) Response M Yes

SEC Security M Yes

BASE (Subscription) Subscription M No

TIME Time function set M Yes

0

7-1

7
EXAMPLE TEST CASE

Description
client_test application has been used for this demonstration. client_test application is a command
line tool with the following arguments.

 client_test interface [device_cert ca_certs..] <subtype[:1][/path] | URI> [commands]

The interface argument is the name of the network interface. The device_cert argument names
the device certificate file. The ca_certs argument is a list of CA certificates or certificate
directories to be loaded. The <subtype[:1][/path] | URI> argument delimits the list of
certificates and specifies either to perform xmDNS service discovery, or to retrieve the document
at the specified URI. For more information, please refer Chapter 4.

The sample test case demonstrates a minimal client program that will register with a server,
receive and respond to events. The event (2 DERP, 2 DDERC, 2 non-overlapping similar
DERControls) program executes 2 similar non overlapping DER events with a
DefaultDERControl from 2 DERPrograms. The 2 DERPrograms have different primacy, so the
Client must use the DefaultDERC from the program with the lower primacy value (higher
priority).

Server Setup
QualityLogic IEEE 2030.5 Server has been used for this demonstration.

• Created an EndDeviceList with one EndDevice instance having SFDI value same as the
client so that this EndDevice represents the Client.

• Constructed a FunctionSetAssignmentsList resource for the Client EndDevice with two
FunctionSetAssignments(fsax0 & fsax001). Created 2 DERPrograms derpx0(Lowest
Priority, Highest Primacy value) & derpx1(Highest Priority, Lowest Primacy value).
Assigned these DERPrograms to functionSetAssignments(derpx0 to fsax0 and derpx1 to
fsax001).

• Created a DefaultDERControl dercx0 with operating mode as opModFixedPF for the
DERProgram derpx0.

• Created a DERControl dercx001 with operating mode as opModFixedPF with a Start time of
30 seconds from now and with a duration of 30 seconds for the DERProgram derpx0.

• Created a DefaultDERControl dercx002 with operating mode as opModFixedPF for the
DERProgram derpx1.

• Created a DERControl dercx003 with operating mode as opModFixedPF with a start time of
90 seconds from now and with a duration of 30 seconds for the DERProgram derpx1.

0

Example Test Case

7-2

End Device Function Set

Assignments
DERPrograms DERControls Default DERControls

edevx0 fsax0 derpx0 dercx001 dercx0

fsax001 derpx1 dercx003 dercx002

Sequence of Steps
The purpose of this test case is to demonstrate that the client can schedule events based on the
schedule and primacy values setup in the Server. Furthermore, the client’s capability to POST
responses to the server for the events that are received, started, superseded or canceled with the
response codes as per the IEEE 2030.5 specifications is also verified.

0

Example Test Case

7-3

Step 1: Client GETs the DERProgram, derpx0 and DERProgram derpx1 from
DERProgramList. Client executes DefaultDERControl dercx002 because it has a higher priority
(lower primacy value) than the DefaultDERControl dercx0 and no DERControl is active. Client
then schedules the DERControls, dercx001 and dercx003.

Client GETs the created DERControl dercx001, schedules it and POSTs response with status 1
(Event Received) to the Server.

0

Example Test Case

7-4

Client GETs the created DERControl dercx003, schedules it and POSTs response with status 1
(Event Received) to the Server.

Step 2: Client then executes the DERControl dercx001 at the correct start time (t=30s) for the
correct duration of 30s. It then POSTs response to the server with status 2 (Event Started) at the
DERControl, dercx001 Start time.

0

Example Test Case

7-5

Step 3: POSTs response to the server with status 3 (Event Completed) once the event duration
has elapsed.

After the completion of the event, the client reverts back to the DefaultDERControl, dercx002

0

Example Test Case

7-6

Step 4: Client then executes the DERControl dercx002 at the correct start time (t=90s) for the
correct duration of 30s. It then POSTs response to the server with status 2 (Event Started) at the
DERControl, dercx002 Start time.

0

Example Test Case

7-7

Step 5: POSTs response to the server with status 3 (Event Completed) once the event duration
has elapsed.

After the completion of the event, the client reverts back to the DefaultDERControl, dercx002
because it has a higher priority than the DefaultDERControl dercx0.

0

0

8-1

8
DEVELOPMENT TIPS

Writing a 2030.5 DER Client Application
A 2030.5 DER client application can manage a single inverter or a group of inverters in the case
of aggregator, both types of clients are supported by the EPRI 2030.5 library.

DER Client Model
In writing a DER client it's helpful to understand the overall process of the client's interaction
with a 2030.5 server, even though many of these steps are done on behalf of the application by
the client library. This process can be broken down into a series of sub-tasks:

1. Using service discovery (DNS-SD to discover a 2030.5 server or using an already known
address and port number.

While DNS service discovery (DNS-SD) is possible over the internet, using a known IP address
and port number is expected to be a more common method of configuration in connection to
utilities over the internet.

2. Connecting to the server using TCP/TLS.

In order to be authenticated by a server the client needs to provide a certificate chain linking to a
known CA (Certificate Authority), some servers may also accept self-signed certificates.
Certificate exchange between the client and server also establishes the parameters for secure
communication via the TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 cipher suite.

3. Retrieval of the DeviceCapability and EndDeviceList resources.

The DeviceCapability provides an index to the function sets available on a server. For DER
servers this index should include a link to an EndDeviceList resource. The server can populate
the EndDeviceList based upon an out-of-band registration process, some servers may also
support in-band registration where the client can POST new EndDevice instances to a server.

4. Validating EndDevice registration, POSTing an EndDevice instance if necessary

According to the 2030.5 standard the registration procedure is completed by the client retrieving
its own EndDevice instance and verifying that the Registration resource linked from the
EndDevice contains a matching PIN number. In some cases, the client may be registered with a
server but the server's EndDeviceList does contain the corresponding EndDevice instance. In
such cases the client is required to POST its EndDevice instance to the server.

0

Development Tips

8-2

5. Performing retrieval of subordinate resources

Information on 2030.5 servers is represented as a set of linked resources with the
DeviceCapability being the root resource, in the general case the resources together with the
links may form a directed acyclic graph (DAG). Resource retrieval generally begins with the root
resource (DeviceCapability) and proceeds to the subordinate or linked resources using the HTTP
GET method to perform the retrieval. If service discovery is used, then client can also begin with
the root resource for a particular function set (the "path" variable contained in a DNS-SD
response).

Clients may not require every resource provided by a 2030.5 server. Every resource that is
requested takes bandwidth, storage, time, and energy from the client's host system. The EPRI
client library therefore defines a retrieval module that allow the client to customize the retrieval
process. For each resource the client can determine exactly what subordinate resources are
requested.

6. Assigning a completion routine

Retrieval is an asynchronous process which may involve many exchanges with a server
(request/response pairs). One feature of the retrieval module is to track the dependencies between
resources and the retrieval status of individual resources and their subordinates. When a resource
and all of its subordinates have been completely retrieved, the retrieval module can optionally
call a completion routine.

Completion routines can be assigned to any resource and can be used for any purpose. One use
of the completion routine is to signal that retrieval for an EndDevice and its subordinate
resources to complete and therefore that it can perform local event scheduling.

7. Local event scheduling

According to the Common Smart Inverter Profile (CSIP) inverters can belong to one or more
groups. CSIP defines groups according to a 7-layer topological model, with each layer or group
defining a set of DER Programs and DER Controls (events). In addition to having a set of
controls, each DER Program has a primacy, and may have a default control that is applied when
there are no active controls. The primacy of a DER program determines the priority of events
when there are overlapping DER controls.

For each inverter, given the group assignments, the set of DER Programs and DER Controls of
the client must create a local event schedule taking into account that there may be overlapping
events, and that these instances are resolved by the associated primacy of the event along with
the general rules involving events (IEEE 2030.5, section 12.1.3). If the server indicates that the
client must respond to events, then the client must also send response messages to indicate that
for example the event was received, started, completed, etc.

The function of local scheduling is to create a timed sequence of events that can be interpreted
locally and also to generate event responses sent to the server at the appropriate times, taking
into account event randomization (if any). The EPRI client scheduler takes the information
described above and generates a sequence of EVENT_START, and EVENT_END event pairs to
indicate that a DER Control has become active and then inactive. An event becomes active at the
beginning of the effective start period for that event, an event can become inactive due to local

0

Development Tips

8-3

scheduling (superseded by an overlapping event), the event being canceled, or the effective time
period for an event expiring.

8. Interpreting events

When a DER Control becomes active the client can then decide how to respond to the event.
Applying a DER Control can mean sending a series of MODBUS commands to an inverter. The
client may also decide to opt-out of an event and if so must send an appropriate response
message to the server.

9. Model maintenance

Over time the server may change group assignments, add or remove DER Programs, cancel
events or replace an event with a superseding event. In order for the local event scheduling to be
synchronized with a server, the client needs to periodically poll (retrieve) the resources involved
in scheduling. 2030.5 provides another mechanism called subscription/notification whereby the
server connects to the client in order to push updates, this mechanism is not yet supported by the
EPRI client.

The EPRI client library can seamlessly handle to changes to the model, including resource and
event removal, event cancellation, superseding events, adding or removing DER programs and
changing the associated primacy of events. All that needs to be done on behalf of the application
is to setup an appropriate polling rate for resources, and selecting which resources to poll. The
polling rate can be based upon the pollRate element present in some resources or some other
suitable interval. The application can also request updates in a custom way if a fixed polling
interval is not appropriate.

When an update is requested either by polling or manually updating the request will temporarily
invalidate the completion property of the resource and all the resources that depend upon the
resource. When the completion property is reestablished (by successful retrieval) the retrieval
module will again send signal completion for those resources with an associated completion
routine.

This point should be kept in mind if scheduling or some other operation is performed as a result
of completion. A strategy must devise to either group together updates (to control completion
signaling) or to perform scheduling or other operations on a separate interval so that they don't
depend on such signaling. Technically scheduling only needs to performed when there is an
update to the model, so it makes sense to link scheduling to the completion property.

DER Client Reference Implementation (`der_client.c`)
The EPRI 2030.5 client library provides a reference implementation for DER client applications
(der_client.c) that:

• Assembles the required client library modules

• Provides an event polling function der_poll that handles events such as schedule updates,
and resource polling updates.

• Provides functions for displaying the contents of events and the event schedules on
stdout.

0

Development Tips

8-4

der_client.c can be used as is or modified to suit the needs of an application.

Included with der_client.c is the module der.c that provides:

• A DerDevice structure that stores information associated with a DER EndDevice instance.

• A hash table container for DerDevices that uses the EndDevice SFDI as a retrieval key

• A function scheduler_der that creates a local event schedule for an EndDevice based
upon the group assignments for that EndDevice.

DER Client Examples
Two example applications are included with EPRI client library, csip_test.c and
client_test.c. Both applications use der_client.c as a basis, the EPRI DER client
reference implementation. Of the two, client_test.c is far more complete in terms of
demonstrating the EPRI client library API, it is also more complex due to its usage as a tool for
demonstrating compliance with the SunSpec test procedure. The command line arguments of
client_test.c provide a way to test different configurations and demonstrate various test
procedures that are useful for certification purposes, but might not be needed for a typical DER
applications.

The application csip_test.c provides a better starting point for a DER client applications
because, with the exception of registration, it performs minimally all the functions described in
the DER Client Model section. The function `main` shows the basic structure for a client
application:

 int main (int argc, char **argv) {
 void *any; int index; Service *s;
 // platform initialization
 platform_init ();
 // process command line arguments
 if (argc < 2) {
 print_interfaces (0); exit (0);
 }
 if ((index = interface_index (argv[1])) < 0) {
 printf ("interface %s not found\n", argv[1]); exit (0);
 }
 // load certificates and initialize client
 client_init (argv[1], "pti_dev.x509"); der_init ();
 load_cert_dir ("certs");
 // perform service discovery
 discover_device ();
 while (1) {
 // process events
 switch (der_poll (&any, -1)) {
 case SERVICE_FOUND: s = any;
 print_service (s); get_dcap (s, 1); break;
 case TCP_PORT:

0

Development Tips

8-5

 if (conn_session (any))
 process_http (any, csip_dep); break;
 case DEVICE_SCHEDULE:
 print_event_schedule (any); break;
 case EVENT_START:
 print_event_start (any); break;
 case EVENT_END:
 print_event_end (any); break;
 }
 }
 }

The main function can be abbreviated as:

 int main (int argc, char **argv) {
 // declare local variables ...
 // platform initialization
 platform_init ();
 // process command line arguments
 ...
 // load certificates and initialize client
 ...
 // perform service discovery
 discover_device ();
 while (1) {
 // process events
 ...
 }
 }

The steps of the application can be described as follows:

1. Platform initialization must occur first since other features of the client library may depend
on platform initialization, this is accomplished by the call to platform_init.

2. The client can then process any command line arguments, for csip_test the only
argument is name of the network interface. If none is provided the application will print a list
of interfaces.

3. If the network device is valid then load the device certificate, the CA certificates, and
initialize the client library. These certificates will be used when the client attempts a secure
connection to a server.

4. Call discover_device to perform DNS service discovery (DNS-SD), this will send a
MDNS packet on the local network with a subtype query to discover a server that contains an
EndDevice instance with an SFDI that matches with the client's SFDI (computed from the
device certificate). Since only servers that contain such an instance will respond so that the

0

Development Tips

8-6

registration step is omitted. A real-world application will want to retrieve the EndDevice
instance along with the Registration resource to verify the PIN for the device. Other subtype
queries are possible (see the function se_discover (se_discover.c)), alternatively
the application may want to connect directly to a server with a known address/port number.

5. Process events. Events may include services being discovered (SERVICE_FOUND),
receiving data from a TCP connection (TCP_PORT), DER Controls becoming active and
inactive (EVENT_START, EVENT_END), also application defined events (timers
expiring, ect).

Resource Retrieval Example
Besides providing a model for structuring client applications, csip_test.c also shows how
the retrieval process can be customized. In the event processing of TCP_PORT data, the client
performs:

 if (conn_session (any))
 process_http (any, csip_dep); break;

conn_session will return True (non-zero) when a TCP/TLS session has been established. For
a TLS session multiple calls may require as several messages are exchanged as part the TLS
handshake.

If the session has been established, the application calls process_http to handle responses
from a 2030.5 server. The function process_http takes as arguments an SeConnection
(provided by the TCP_PORT event) and also a dependency function which is called on every
successfully retrieved resource. csip_test.c defines the dependency function as follows:

 void csip_dep (Stub *r) {
 switch (resource_type (r)) {
 case SE_Time: set_time (resource_data (r)); break;
 case SE_DERProgram: der_program (r); break;
 case SE_DeviceCapability: dcap (r); break;
 case SE_EndDevice: edev (r); break;
 case SE_FunctionSetAssignments: fsa (r);
 }
 }

csip_dep takes a pointer to a Stub (the local representation of a resource) and calls an
appropriate function based on type of resource. When type is SE_DeviceCapability,
csip_dep calls the function dcap:

 void dcap (Stub *r) {
 SE_DeviceCapability_t *dcap = resource_data (r);
 if (!se_exists (dcap, EndDeviceListLink)) return;

0

Development Tips

8-7

 get_root (r->conn, dcap, Time);
 get_list_root (r->conn, dcap, EndDeviceList);
 get_list_root (r->conn, dcap, MirrorUsagePointList);
 }

The dcap function demonstrates several key features of the EPRI library:

• SE_DeviceCapability_t is a C struct type that contains all the possible elements of
the DeviceCapability document as defined by 2030.5 XML schema. XML/EXI
documents are automatically parsed and converted into their C object form by the function
se_recieve called by.

• resource_data is a macro to access the C object representation of a resource with the
corresponding type (in this case SE_DeviceCapability_t).

• se_exists is a macro to determine the presence of optional elements within an
object/document. se_exists works by checking the presence of flag bits within the C
object (see se_types.h for a listing of possible flags for each document type).

• The line if (!se_exists (dcap, EndDeviceListLink)) return; says that if the
DeviceCapability resource does not contain an EndDeviceListLink element then
return (no further processing).

• get_root (r->conn, dcap, Time); will perform a GET request for the Time subordinate
resource if the TimeLink exists. get_root is actually a macro that calls get_resource the
primary retrieval function. Besides performing the GET request, get_resource will also create
a placeholder (a Stub object) for when resource is successfully retrieved.

• The line get_list_root (r->conn, dcap, EndDeviceList); will perform a GET
request for the EndDeviceList subordinate resource if the EndDeviceListLink
element exists. List resources require a different macro, because the ListLink elements
contain the all attribute indicating the number of items contained in the list. The
get_list_root macro also produces a call to get_resource with different
arguments from get_root.

The dcap function performs retrieval but does create any dependencies between the
DeviceCapability resource and its subordinates, in this example there is no need to signal
completion for the DeviceCapability resource. Other functions in csip_test.c do
create dependencies such as the der_program function:

 void der_program (Stub *d) {
 SE_DERProgram_t *dp = resource_data (d);
 get_dep (d, dp, DefaultDERControl);
 get_list_dep (d, dp, DERControlList);
 get_list_dep (d, dp, DERCurveList);
 }

0

Development Tips

8-8

The der_program function retrieves the DefaultDERControl, DERControlList, and
DERCurveList resources if the DERProgram contains links to those resources by calling
get_dep and get_list_dep. The macros get_dep and get_list_dep also create
dependencies between the Stub representing the DERProgram and the newly created Stubs
representing the subordinate resources.

The function edev gives an example of assigning a completion routine and setting up a polling
interval for the FunctionSetAssignmentsList subordinate resource:

 void edev (Stub *d) { Stub *r;
 SE_EndDevice_t *edev = resource_data (d);
 d->completion = schedule_der;
 get_list_dep (d, edev, DERList);
 if (r = get_list_dep (d, edev,
FunctionSetAssignmentsList)) {
 r->poll_rate = 10; poll_resource (r);
 }
 }

In this case the completion routine is schedule_der which has same signature as the
completion field of the Stub type:

 typedef struct _Stub {
 ...
 void (*completion) (struct _Stub *);
 ...
 } Stub;

 void schedule_der (Stub *edev);

The following lines perform retrieval for the FunctionSetAssignmentsList subordinate
resource and the set up polling for the resource:

 if (r = get_list_dep (d, edev,
FunctionSetAssignmentsList)) {
 r->poll_rate = 10; poll_resource (r);
 }

The polling rate is set to 10 seconds, the function poll_resource creates a timer based event
to signal to the client to poll the resource after the poll interval has expired.

0

Development Tips

8-9

Conclusion
csip_test.c and client_test.c provide two example client applications that show how
to implement a DER client according to the model presented here. While only the
csip_test.c example was covered in detail here, the client_test.c application can
provide a useful reference to performing other functions required of a DER client such a
Metering, updating the DER status, and posting alarm messages.

0

0

9-1

9
SUPPORT FOR THE DIFFERENT CIPHER SUITES

The 2030.5 protocol requires the cipher suite TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8
for secure communication between client and server, however accounting for clients and servers
that may not yet support elliptic curve cryptography, the 2030.5 protocol gives provisions for
optionally supporting RSA-based cipher suites where the client and exchange RSA certificates
outside of the manufacturing PKI.

By default, the EPRI library supports only TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8,
however the library used for TLS (OpenSSL) supports RSA based cipher suites as well. To
configure OpenSSL to support other cipher suites, the EPRI client library needs to be modified:

1. Edit file openssl.c

Change the constant `CIPHER_LIST` to include other OpenSSL supported cipher suites. By
default, `CIPHER_LIST` is defined as:

 #define CIPHER_LIST "ECDHE-ECDSA-AES128-CCM8"

You can add other cipher suites by including them in `CIPHER_LIST` separated by commas and
ordered according to preference. For a complete listing of cipher suites supported by OpenSSL,
run the command:

 openssl ciphers

This command will list the cipher suites according to their OpenSSL name.

2. Run `build.sh` to recompile

When you recompile, the cipher list will be updated and passed to OpenSSL when the
application is run.

0

0

0

Electric Power Research Institute
3420 Hillview Avenue, Palo Alto, California 94304-1338 • PO Box 10412, Palo Alto, California 94303-0813 USA

800.313.3774 • 650.855.2121 • askepri@epri.com • www.epri.com

The Electric Power Research Institute, Inc. (EPRI, www.epri.com)

conducts research and development relating to the generation, delivery

and use of electricity for the benefit of the public. An independent,

nonprofit organization, EPRI brings together its scientists and engineers

as well as experts from academia and industry to help address

challenges in electricity, including reliability, efficiency, affordability,

health, safety and the environment. EPRI members represent 90% of the

electric utility revenue in the United States with international participation

in 35 countries. EPRI’s principal offices and laboratories are located in

Palo Alto, Calif.; Charlotte, N.C.; Knoxville, Tenn.; and Lenox, Mass.

Together...Shaping the Future of Electricity

© 2018 Electric Power Research Institute (EPRI), Inc. All rights reserved. Electric Power
Research Institute, EPRI, and TOGETHER...SHAPING THE FUTURE OF ELECTRICITY are
registered service marks of the Electric Power Research Institute, Inc.

Program:

Information and Communication Technology

3002014087

0

	1 Context and Purpose of this Document
	Background
	Purpose
	Intended Audience

	2 Description of the IEEE 2030.5 Software Client
	Product Perspective
	Product Features
	Operating Environment
	Porting

	Design and Implementation Constraints
	Language
	Platform and Dependencies
	XML and EXI schema based parsing
	Event Driven
	Transport Layer Security (TLS)

	3 Building the Client
	4 Running the Client
	Usage
	Subtye DNS-SD Queries
	URI Retrieval

	5 Client API
	6 QualityLogic Testing
	Test Scope

	7 Example Test Case
	Description
	Server Setup
	Sequence of Steps

	8 Development Tips
	Writing a 2030.5 DER Client Application
	DER Client Model
	DER Client Reference Implementation (6T`6T8Tder_client.c6T8T`6T)
	DER Client Examples
	Resource Retrieval Example
	Conclusion

	9 Support for the Different Cipher Suites

