

Program on Technology Innovation: Common
Information Model (CIM)-Based Power System Model

Transport 2019 Update

3002016043

0

0

EPRI Project Manager

D. Lowe

ELECTRIC POWER RESEARCH INSTITUTE
3420 Hillview Avenue, Palo Alto, California 94304-1338 PO Box 10412, Palo Alto, California 94303-0813 USA

800.313.3774 650.855.2121 askepri@epri.com www.epri.com

Program on Technology Innovation: Common
Information Model (CIM)-Based Power System Model

Transport 2019 Update

3002016043
Technical Update, December 2019

0

DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES
THIS DOCUMENT WAS PREPARED BY THE ORGANIZATION(S) NAMED BELOW AS AN ACCOUNT OF
WORK SPONSORED OR COSPONSORED BY THE ELECTRIC POWER RESEARCH INSTITUTE, INC. (EPRI).
NEITHER EPRI, ANY MEMBER OF EPRI, ANY COSPONSOR, THE ORGANIZATION(S) BELOW, NOR ANY
PERSON ACTING ON BEHALF OF ANY OF THEM:

(A) MAKES ANY WARRANTY OR REPRESENTATION WHATSOEVER, EXPRESS OR IMPLIED, (I) WITH
RESPECT TO THE USE OF ANY INFORMATION, APPARATUS, METHOD, PROCESS, OR SIMILAR ITEM
DISCLOSED IN THIS DOCUMENT, INCLUDING MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE, OR (II) THAT SUCH USE DOES NOT INFRINGE ON OR INTERFERE WITH PRIVATELY OWNED
RIGHTS, INCLUDING ANY PARTY'S INTELLECTUAL PROPERTY, OR (III) THAT THIS DOCUMENT IS
SUITABLE TO ANY PARTICULAR USER'S CIRCUMSTANCE; OR

(B) ASSUMES RESPONSIBILITY FOR ANY DAMAGES OR OTHER LIABILITY WHATSOEVER (INCLUDING
ANY CONSEQUENTIAL DAMAGES, EVEN IF EPRI OR ANY EPRI REPRESENTATIVE HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES) RESULTING FROM YOUR SELECTION OR USE OF THIS
DOCUMENT OR ANY INFORMATION, APPARATUS, METHOD, PROCESS, OR SIMILAR ITEM DISCLOSED IN
THIS DOCUMENT.

REFERENCE HEREIN TO ANY SPECIFIC COMMERCIAL PRODUCT, PROCESS, OR SERVICE BY ITS TRADE
NAME, TRADEMARK, MANUFACTURER, OR OTHERWISE, DOES NOT NECESSARILY CONSTITUTE OR
IMPLY ITS ENDORSEMENT, RECOMMENDATION, OR FAVORING BY EPRI.

THE ELECTRIC POWER RESEARCH INSTITUTE (EPRI) PREPARED THIS REPORT.

This is an EPRI Technical Update report. A Technical Update report is intended as an informal report of
continuing research, a meeting, or a topical study. It is not a final EPRI technical report.

NOTE
For further information about EPRI, call the EPRI Customer Assistance Center at 800.313.3774 or
e-mail askepri@epri.com.

Electric Power Research Institute, EPRI, and TOGETHER…SHAPING THE FUTURE OF ELECTRICITY
are registered service marks of the Electric Power Research Institute, Inc.

Copyright © 2019 Electric Power Research Institute, Inc. All rights reserved.

0

This publication is a corporate document that should be cited in the literature in the following
manner:

Program on Technology Innovation: Common Information Model (CIM)-Based Power System
Model Transport 2019 Update. Palo Alto, CA: 2019. 3002016043.

iii

ACKNOWLEDGMENTS
The Electric Power Research Institute (EPRI) prepared this report.

Principal Investigators
S. Crimmins
G. Gray
D. Lowe

This report describes research sponsored by EPRI.

0

0

v

ABSTRACT
The standard network model is expressed using Resource Description Framework (RDF), a
verbose, machine-readable Extensible Markup Language (XML) file that typically contains an
enormous amount of data. This report addresses the transport of utility network models over File
Transfer Protocol (FTP). The primary focus was reducing the size of the data file while still
adhering to the IEC 61968-100, Application integration at electric utilities - System interfaces
for distribution management - Part 100: Implementation profiles standard.

It is not unusual to have network models that are several gigabytes in size, which is a key reason
FTP remains the chosen model of transport. However, for automated exchange of data between
systems and companies, FTP lacks automation features as well as security and is therefore not an
acceptable transport type.

To address this massive file size constraint while adhering to the Common Information Model
(CIM) standard, EPRI explored compressing the data and then changing it to a format that can be
transported via Simple Object Access Protocol (SOAP) messaging as a binary data type. EPRI
also examined different RDF libraries across multiple programming languages to see how the
network model changes could be communicated through even smaller file exchanges.

The IEC 61968-100:2013 standard allows for a compressed data type to be sent, permitting
binary data to be transferred via SOAP messaging to its intended recipient. As the second edition
of the IEC 61968-100 standard nears completion, guidance on its changes regarding sending
compressed data are also provided.

Keywords
Network model
Simple Object Access Protocol (SOAP)
Power systems model transport
Common Information Model (CIM)
REST
Resource Description Framework (RDF)

0

0

 EXECUTIVE SUMMARY

vii

Deliverable Number: 3002016043
Product Type: Technical Update

Product Title: Program on Technology Innovation: Common Information Model (CIM)-
Based Power System Model Transport 2019 Update

PRIMARY AUDIENCE: Systems Integrators, enterprise architects, solution architects
SECONDARY AUDIENCE: System operators, microgrid operators

KEY RESEARCH QUESTION

What mechanisms are required to transfer Common Information Model (CIM)-based power system models—
normally expressed as Resource Description Framework (RDF) files—via standard web service exchanges
based on the IEC 61968-100:2013 standard, which defines exchanges based on eXtensible Schema
Definition (XSD) or Java Message Service (JMS) exchanges?

RESEARCH OVERVIEW

This research explores the various methods of sending network models over transport other than File Transfer
Protocol (FTP). The primary focus of this report is on using Simple Object Access Protocol (SOAP) messaging
as the transport mechanism for large RDF XML files. Some of the research involved investigating ways to
compress data before transfer. In the process of determining how best to transport network models, research
was also conducted on proper styling for the Web Services Description Language (WSDL) used to define a
web service in order to ensure interoperability. Systems integrators could use this research to design their
own systems in order to allow network model data to be sent as a SOAP message over Hypertext Transfer
Protocol (HTTP).

KEY FINDINGS
• The IEC 61968-100:2013 Application integration at electric utilities - System interfaces for distribution

management - Part 100: Implementation profiles standard currently allows for binary data to be sent
in a SOAP message, providing a simple way to transport the RDF data as a smaller file.

• Even though IEC 61968-100:2013 provides sample code for compressing and Base64 encoding a file,
alternative code was needed to address deprecated libraries.

• Multiple open-source resources are available for building a SOAP web service.
• Compressing and Base64 encoding the network model can lead to significantly decreased file sizes,

often less than 5% of the original size. This size can be reduced further by only sending changes made
to the network model.

• It is possible to define a web service using a WSDL that can be built in popular development
frameworks such as .NET and Java. This web service can be interoperable between implementations
in either technology.

• Although SOAP is language agnostic, it was significantly easier to build a web service client in Java
compared to C# because most online resources focus on Java web services.

• Although the CIM does not provide guidance on representational state transfer (REST), a REST client
can be used to send a CIM-compliant SOAP message.

0

 EXECUTIVE SUMMARY

Together...Shaping the Future of Electricity®

Electric Power Research Institute
3420 Hillview Avenue, Palo Alto, California 94304-1338 • PO Box 10412, Palo Alto, California 94303-0813 USA

800.313.3774 • 650.855.2121 • askepri@epri.com • www.epri.com
© 2019 Electric Power Research Institute (EPRI), Inc. All rights reserved. Electric Power Research Institute, EPRI, and

TOGETHER...SHAPING THE FUTURE OF ELECTRICITY are registered service marks of the Electric Power Research Institute, Inc.

WHY THIS MATTERS

Although standard CIM-based power system models have been defined and exchanged at the independent
system operator (ISO)/transmission system operator (TSO) level, and the CIM is mature, the data models
themselves are exchanged using a wide variety of mechanisms. Using a standard for data exchange such as
IEC 61968-100:2013 simplifies understanding, lowers risk of data integration being executed incorrectly,
increases system reliability, and benefits ratepayers by lowering operations and maintenance costs
associated with such data integration efforts.

HOW TO APPLY RESULTS

To replicate results of this research, individuals should have a fundamental knowledge of XMLs, WSDLs,
XSDs, and, at a bare minimum, Java or C#. While most of the work for this project was performed on a
Windows 10 system, Mac or Linux systems could work just as well if preferred by the user. Some direction is
provided in this technical document for how to use integrated development environments (IDEs) such as
NetBeans or Visual Studio to reproduce results.

LEARNING AND ENGAGEMENT OPPORTUNITIES
• The implementations provided are examples of services compliant with the IEC 61968-100:2013

standard.
• Following the directions and enclosed code will aid in production of an interoperable service that can

send a large network model file.

EPRI CONTACTS: Sean Crimmins, Principal Technical Leader, scrimmins@epri.com
 Daniel Lowe, Engineer/Scientist I, dlowe@epri.com

PROGRAM: P161E Enterprise Architecture and Integration

0

ix

ABBREVIATIONS
The following terms and their corresponding abbreviations appear in this document:

API Application Programming Interface
CIM Common Information Model
ESB Enterprise Service Bus
FTP File Transfer Protocol
GUI Graphical User Interface
IDE Integrated Development Environment
IoT Internet of Things
JMS Java Messaging Service
JSON Javascript Object Notation
mRID CIM master resource identifier
MTOM Message Transmission Optimization Mechanism
RDF Resource Description Framework
REST REpresentational State Transfer
SOAP Simple Object Access Protocol
UUID Universal Unique Identifier
W3C World-Wide Web Consortium
WAR Web Application Resource / Web Application Archive
WCF Windows Communication Foundation
WSDL Web Services Definition Language
XML eXtensible Markup Language
XMPP Extensible Messaging and Presence Protocol
XSD XML Schema

0

0

xi

CONTENTS
ABSTRACT .. V
EXECUTIVE SUMMARY .. VII
ABBREVIATIONS ... IX
1 INTRODUCTION .. 1-1

Background .. 1-1
The Need for Smaller Files .. 1-1
Compressing RDF Files ... 1-2

2 OVERVIEW OF IEC 61968-100:2013 .. 2-1
SOAP ... 2-1
Web Service ... 2-1

Nouns and Verbs in the 61968 Standard ... 2-1
Message Header Structure .. 2-2
Message Payload Structure ... 2-3

3 BUILDING THE SOAP WEB SERVICE ... 3-1
WSDL Creation .. 3-1
XSD Creation ... 3-5
Web Service Creation .. 3-8

Building a SOAP Web Service in NetBeans using JAX-WS .. 3-8
Spring-Maven with Hibernate ... 3-8
Hosting the Web Service .. 3-9
Creating a Windows Client ... 3-9
Creating a RESTful Client for a SOAP Service .. 3-10

4 NEXT STEPS .. 4-1

A PAYLOAD COMPRESSION EXAMPLE .. A-1

B 61968-100 2ND EDITION ... B-1

C RDF ... C-1
DotNetRDF (C#) .. C-1
Rdflib ... C-2
Jena .. C-3

Union ... C-3

D REFERENCES .. D-1

0

0

xiii

LIST OF FIGURES
Figure 2-1 Example SOAP response when querying a network model 2-4
Figure 3-1 Adding a service reference to a .NET project ... 3-10
Figure 3-2 Providing the WSDL address to create a web service client 3-10
Figure B-1 CompressedPayloadType of the 61968-100 2nd Edition (Replaces

<Compressed>) .. B-1
Figure C-1 Two separate RDF models that share identical nodes ... C-4
Figure C-2 Merging the two models from Figure B-1 into one model C-4

0

0

xv

LIST OF TABLES
Table 2-1 List of verbs in the IEC 61968-100:2013 standard .. 2-2

0

0

1-1

1
INTRODUCTION
Research documented in this report is the second iteration of a multi-year cross-cutting
Technology Innovation project that investigates methods for automatically exchanging power
system models between resource constrained systems. The primary focus of the first phase was
using SOAP (Simple Object Access Protocol) messaging as the transport mechanism for large
RDF XML (Resource Description Framework [RDF] in eXtensible Markup Language [XML])
files. The second phase of research focuses on REST (Representation State Transfer), an updated
IEC 61968-100 standard, and sending smaller pieces of the network model using various
programming libraries for obtaining the differences between two RDF models. Part of that
research involved investigating ways to compress the data before sending it.

Research was also conducted on the proper styling for the WSDLs that define a web service to
ensure interoperability. Systems integrators could use this research to design their own systems
to allow for network model data to be sent as a SOAP message over HTTP (Hyper Text
Transport Protocol).

Subsequent iterations of the project will include open-sourcing code for a tool that demonstrates
how these network models could be transported over HTTP.

Background
Although standard Common Information Model (CIM)-based power system models have been
defined and exchanged at the independent system operator (ISO)/ transmission system operator
(TSO) level, and the CIM is mature, the models themselves are exchanged using a wide variety
of mechanisms. EPRI therefore investigated the use of a standard for data exchange, the IEC
61968-100, to streamline and simplify data exchange and data integration efforts.

Using the Common Information Model (CIM) as a mechanism to update power system models is
a robust and well-developed practice, for example, the Europe Network of Transmission System
Operators for Electricity (ENTSO-E) requires its members to use the CIM for sending their
power system model updates. CIM could also be used by a distribution management system
(DMS) when informing microgrid of day-ahead system configurations based on the central
control’s broader grid visibility. This can be done through a distributed energy resource
management system (DERMS), allowing local control to be better prepared.

The Need for Smaller Files
The IEC 61968-13 and IEC 61970-501 standards (distribution systems and energy management
systems (EMS) respectively) both define the Resource Description Framework (RDF) data
model in eXtensible Markup Language (XML) data format (collectively RDF XML) as the data
exchange format for network models. This text-based data exchange format provides
interoperability between disparate computer systems and is flexible enough to support new
entities, attributes, and relationship types without changes to the file definition. However, it is
also very verbose, even when compared to other text-based data formats.

0

1-2

Network model files can be many hundreds of megabytes (MB) or even gigabytes (GB) in size.
As a result, network models are typically exchanged via File Transfer Protocol (FTP) between
file servers. For automated exchange of data between systems and companies, FTP lacks
automation features as well as security, so it is not an acceptable transport.

Compressing RDF Files
The primary challenge is to exchange a model in RDF that’s 100 MB in size or greater. This
would be far too large to exchange over a typical Enterprise Service Bus (ESB). For example,
Microsoft Azure service bus defines a maximum message size of one MB [1] while IBM
WebSphere Application Server Service Integration has a maximum message size of 40 MB.
Most messaging systems land somewhere between these two extremes.

One advantage of RDF, as a verbose text-based format, is that it can be compressed significantly
using standard zip functions such as gzip (Gnu Zip). A typical RDF file can be compressed to 1-
2% of its original size. The drawback of zipping a file is that it becomes binary data, which is not
interoperable between different hardware architectures. To fix that problem, the binary zip file
needs to be base64 encoded, turning the data into an XML datatype but increasing its size by
around 50%, still much smaller than the original raw text file. The challenge then becomes the
exchange of a self-contained base64 encoded zipped file with enough additional information so
that the receiver can correctly process the contents.

The Message Transmission Optimization Mechanism (MTOM) provides a method for
transmitting binary data (after base64 encoding) that is interoperable between different
programming languages and hardware architectures. MTOM allows a binary data set to be
encapsulated in an XML data type, so that common XML tools can be used to send and receive
the data, but then transports it as a binary attachment that is about one-third smaller than
equivalent base64binary data type.

The “Diff” Approach
Another approach to creating a more HTTP-friendly message is sending smaller “diff” files.
These types of files use the same RDF format but can indicate whether a data item is an addition
or a deletion, therefore showing the changes that have been made to the network model instead
of sending the entire model each time a change has been made. Appendix C provides an example
of how this could be accomplished using three different RDF libraries. Directions assume that
the draft 2nd edition of the 61968-100 standard (See Appendix B) is in use.

0

2-1

2
OVERVIEW OF IEC 61968-100:2013
IEC 61968-100 defines how generic messages may be exchanged between cooperating systems
to facilitate exchange of application-specific data. Although 61968-100 touches on many areas
such as Java Messaging Service (JMS) messages or the use of Enterprise Service Bus (ESB)
technologies, the primary focus on this report is the 61968-100 standard for Simple Object
Access Protocol (SOAP) web services.

SOAP
SOAP is a standard that defines the formatting of XML messages for exchange of information,
leading to messages that are platform and language independent. In other words, a web service
can be written in Java, while a client can be written in Ruby, C#, Java, or other languages.
SOAP’s primary transports include HTTP, HTTPS (Hyper Text Transport Protocol Secure), and
JMS. Two common versions of SOAP are used in 2019: SOAP 1.1 and SOAP 1.2. Any new
integrations of interfaces should use SOAP 1.2 if possible, although SOAP 1.1 is still the most
widely used of the two versions.

Although the recommendation within SOAP documentation is to use SOAP 1.2 when applicable,
the templates created for the standard only account for SOAP 1.1. When creating the network
model WSDLs for this project, support was added for both 1.1 and 1.2 so that either system
could be used. The 61968-100 documentation also discusses in length the definition of a web
service in relation to the standard, which is detailed in this section.

Web Service
A web service is defined by the W3C (World-Wide Web Consortium) as ‘a software system
designed to support interoperable Machine to Machine interaction over a network.’ [4] Generally
a web service is simply an application programming interface (API) that can be accessed over a
network of some sort, such as the intranet, internet, or two linked computers. The web service is
then executed on the system hosting the requested services.

The W3C definition of web service comprises multiple systems, with the most common usage
being clients and servers communicating with each other through XML messages following the
SOAP standard. Typically, a SOAP web service contains a machine-readable description of the
operations supported by server in a document referred to as the Web Services Definition
Language (WSDL). Although the WSDL is not required for a SOAP endpoint, it is necessary for
automated code generation in many Java and .NET development tools.

Nouns and Verbs in the 61968 Standard
IEC 61968-1 defines information exchanges in terms of noun, verb, and payload. This
information can also be found in the IEC 61968-100. The noun and verb are defined in the
“Header” information of a SOAP message, while the payload will contain information about the
object regarding the noun and verb. The following table lists verbs associated with requests and
how they are associated with verbs used in a response message.

0

2-2

Table 2-1
List of verbs in the IEC 61968-100:2013 standard

Request Verb Reply Verb Event Verb Usage

get reply (none) query

create reply created transaction

change reply changed transaction

cancel reply canceled transaction

close reply closed transaction

delete reply deleted transaction

execute reply execute transaction

The usage of verbs are as follows.

• ‘get’ is used to query for objects of the type specified by the message noun
• ‘create’ is used to create objects of the type specified by the message noun
• ‘delete’ is used to delete objects of the type specified by the message noun
• ‘close’ and ‘cancel’ imply actions related to business processes, such as the closure of a work

order or the cancellation of a control request
• ‘change’ is used to modify objects
• ‘execute’ is used when a complex transaction is being conveyed using an OperationSet,

which could contain multiple verbs.

Message Header Structure
In the IEC 61968 standard, the Header structure has two fields that absolutely must be provided:
the noun and verb. Other than those two, all remaining fields are optional. For network model
transport, the following Header fields are utilized:

• Verb: Identifies a specific action to be taken. For Power Systems Model Transport, expected
verbs could be ‘get’, ‘create’, ‘change’, and ‘delete’.

• Noun: The noun is used to identify the subject of the action. In this case, the noun should
typically be ‘NetworkModel’.

• Timestamp: The timestamp is an ISO-8601 compliant string that identifies the time at which
the message was sent.

• Source: The source identifies the source of the message (e.g. the name of the system or
organization).

• User: User is a complex type consisting of both User ID and Organization.
• MessageID: A UUID type string that uniquely identifies a message.
• CorrelationID: A UUID type string that is used to tie two messages together. A reply

message’s correlation ID should always match the correlation ID of the message to which it
is responding.

• Comment: Any type of additional descriptive text the user would like to provide.

0

2-3

Message Payload Structure
The IEC 61968-100 standard requires that the document wrapped form be used for
interoperability. A WSDL is defined as being wrapped style if the wsdl:operation name is the
same as the input element name. The wrapped style gained immense popularity in part due to
Microsoft, since Microsoft tools by default generate WSDLs using the wrapped pattern. IEC
61968-100 defines the following characteristics of the wrapped pattern:

• The input message has a single part
• The part is an element
• The element has the same name as the operation
• The element’s complex type has no attributes

Templates using the wrapped style are provided in the appendices of the IEC 61968-100. This
same list is also defined by IBM in their article discussing WSDLs and which type should be
used. IBM lists the following strengths of using the wrapped style:

• There is no type encoding info
• Everything that appears in the soap:body is defined by the schema, allowing for easy

message validation
• The method name is in the SOAP message
• Document/literal is WS-I compliant, and the wrapped pattern meets the WS-I restriction that

the SOAP message’s soap:body has only one child SOAP message response will be
getNetworkModelResponse

The resulting WSDL is more complicated in nature, while the SOAP message sent becomes
clearer. When retrieving a network model, there is no doubt that the name of the method for the
message being sent is getNetworkModel and that the response message will contain the SOAP
message getNetworkModelResponse, as shown in the SoapUI message below.

0

2-4

Figure 2-1
Example SOAP response when querying a network model

0

2-5

Note in the screenshot above that SoapUI will not display the RDF data of the network model,
because the client is responsible for decoding and unzipping the data.

The payload of a message varies depending on whether the message is a request or a reply. If it’s
a reply, the main fields present will be the “file name” and “binary data” fields. IEC 61968-100
has a segment detailing how to handle zipped, base64 encoded messages in a manner like how
this project manages the transport of RDF files.

According to the 61968-100 standard, in cases where a zipped, base64 encoded string is
necessary, the message should contain the “Compressed” tag. The standard states that the gzip
(Gnu Zip) should be used to provide interoperability between Microsoft .NET and Java
platforms. Annex A of this document provides an example of how to create the gzipped, base64
encoded binary data. It also provides a .NET and Java example of decoding the data. Base64 and
gzip libraries exist in most programming languages, so comparable measures could be taken in
other languages (Rails, Python, C++, etc.).

The 61968-100 standard also defines when a payload should be gzipped. For the network model,
those reasons are as follows:

• The payload exceeds a predefined size (e.g. 1MB, 5MB, 10MB…)
• The payload is formatted using XML, but there is no XML schema and the data exceeds a

predefined size.

To that end, the payload of a getNetworkModel message would return only two things: the name
of the file retrieved and the binary data containing the RDF data of the network model. In the
initial learning process, the XSDs defined a “fileName” and “binaryData”. However, to remain
adherent to the CIM standard, the payload would be custom designed to provide the name,
format, and compressed data of the network model.

When retrieving the network model, the payload differs significantly, as the user must provide
either the Model Number or Model Date Time of the network model being queried. Future work
in further molding the existing XSDs and WSDLs to the 61968-100 standard includes following
the template for strongly typed WSDL. The following process describes how to go about making
a strongly typed WSDL.

1. Start with Message.xsd
2. Then create {object}Message.xsd. In this case that would be NetworkModelMessage.xsd
3. Create {object}.xsd. In this case, that would be NetworkModel.xsd
4. Create {service name}{object}.wsdl. In this case, a query-specific WSDL would be named

getNetworkModel.wsdl

This template can be easily applied by following the generic templates provided as part of the
61968-100 standard.

0

0

3-1

3
BUILDING THE SOAP WEB SERVICE
SOAP web services are mature and well understood, but as a result there are many ways of
implementing them. This section explores two different approaches to developing a SOAP web
service for transporting network models, and some of the issues encountered during
development. Another key element that is explored in this section is the role of WSDLs and
XSDs in the construction of a SOAP web service, and how their interaction with code-building
tools led to changes in how the WSDLs and XSDs were constructed.

WSDL Creation
The IEC 61968-100:2013 standard provides a variety of templates for creating WSDLs and
XSDs for both constrained or unconstrained profiles. This technical report is not intended to be
an extensive primer on the use of 61968-100:2013; however, an overview of the fundamentals is
presented to facilitate understanding of the network model WSDL and XSD creation.

The IEC 61968-100 standard provides templates for two different styles of querying information,
appropriately named Get_WSDL_Template.wsdl and Query_WSDL_Template.wsdl. During later
development of this project, it had been discovered that Get_WSDL_Template.wsdl was in the
process of being deprecated due to confusion caused by the 61968-100 verb get being used in
combination with the operation name of Get{Information_Object_Name}, resulting in auto-
generated code where the word get would appear twice in method or bean names. The following
template was modified for use with network model retrieval.

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions xmlns:tns="http://iec.ch/TC57/2016/Get{Information_Object_Name}"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:wsi="http://ws-
i.org/schemas/conformanceClaim/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:infoMessage="http://iec.ch/TC57/2016/Get{Information_Object_Name}Message"
xmlns:ns="http://iec.ch/TC57/2011/schema/message"
xmlns:ns1="http://iec.ch/TC57/2016/Get{Information_Object_Name}#"
xmlns:ns2="http://iec.ch/TC57/2016/{Information_Object_Name}#"
name="Get{Information_Object_Name}"
targetNamespace="http://iec.ch/TC57/2016/Get{Information_Object_Name}">
 <wsdl:types>
 <xs:schema
targetNamespace="http://iec.ch/TC57/2016/Get{Information_Object_Name}"
elementFormDefault="qualified">
 <xs:import
namespace="http://iec.ch/TC57/2016/Get{Information_Object_Name}Message"
schemaLocation="xsd/Get{Information_Object_Name}Message.xsd"/>

0

3-2

 </xs:schema>
 </wsdl:types>
 <wsdl:message name="Get{Information_Object_Name}RequestMessage">
 <wsdl:part name="Get{Information_Object_Name}RequestMessage"
element="infoMessage:Get{Information_Object_Name}RequestMessage"/>
 </wsdl:message>
 <wsdl:message name="Get{Information_Object_Name}ResponseMessage">
 <wsdl:part name="Get{Information_Object_Name}ResponseMessage"
element="infoMessage:Get{Information_Object_Name}ResponseMessage"/>
 </wsdl:message>
 <wsdl:message name="Get{Information_Object_Name}FaultMessage">
 <wsdl:part name="Get{Information_Object_Name}FaultMessage"
element="infoMessage:Get{Information_Object_Name}FaultMessage"/>
 </wsdl:message>
 <wsdl:portType name="Get{Information_Object_Name}_Port">
 <wsdl:operation name="Get{Information_Object_Name}">
 <wsdl:input name="Get{Information_Object_Name}Request"
message="tns:Get{Information_Object_Name}RequestMessage"/>
 <wsdl:output name="Get{Information_Object_Name}Response"
message="tns:Get{Information_Object_Name}ResponseMessage"/>
 <wsdl:fault name="Get{Information_Object_Name}Fault"
message="tns:Get{Information_Object_Name}FaultMessage"/>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="Get{Information_Object_Name}_Binding"
type="tns:Get{Information_Object_Name}_Port">
 <soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="Get{Information_Object_Name}">
 <soap:operation
soapAction="http://iec.ch/TC57/2016/Get{Information_Object_Name}/Get{Information_Ob
ject_Name}" style="document"/>
 <wsdl:input name="Get{Information_Object_Name}Request">
 <soap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="Get{Information_Object_Name}Response">
 <soap:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="Get{Information_Object_Name}Fault">
 <soap:fault name="Get{Information_Object_Name}Fault"
use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="Get{Information_Object_Name}">
 <wsdl:port name="Get{Information_Object_Name}_Port"
binding="tns:Get{Information_Object_Name}_Binding">
 <soap:address
location="http://iec.ch/TC57/2016/Get{Information_Object_Name}"/>
 </wsdl:port>
 </wsdl:service>
 <xs:schema
targetNamespace="http://iec.ch/TC57/2016/Get{Information_Object_Name}Message"
elementFormDefault="qualified">

0

3-3

 <xs:import
namespace="http://iec.ch/TC57/2016/Get{Information_Object_Name}Message"
schemaLocation="xsd/{Information_Object_Name}.xsd"/>
 <!--<xs:include
schemaLocation="xsd/Get{Information_Object_Name}Message.xsd"/>-->
 </xs:schema>

</wsdl:definitions>

The final version of the network model WSDL, however, saw some changes.

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions name="NetworkModel"
targetNamespace="http://www.epri.com/ws/networkmodel/NetworkModel_v1"

 xmlns:tns="http://www.epri.com/ws/networkmodel/NetworkModel_v1"
 xmlns:inputType="http://www.epri.com/ws/networkmodel/getNetworkModelParams_v
1"
 xmlns:outputType="http://www.epri.com/ws/networkmodel/getNetworkModelOutput_
v1"
 xmlns:faultType="http://www.epri.com/ws/networkmodel/fault"
 xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/">

 <wsdl:documentation>
 A web service for getting a full or incremental Network Model from an NMMS.
 Annotated with instructions for Doc/literal wrapped style from
 https://www.ibm.com/developerworks/library/ws-usagewsdl/
 </wsdl:documentation>

 <wsdl:types>
 <!-- "Part" Definitions are wrapper elements -->
 <xs:schema>
 <xs:import
namespace="http://www.epri.com/ws/networkmodel/getNetworkModelParams_v1"
schemaLocation="XSD/getNetworkModelParams_v1.xsd"/>
 </xs:schema>
 <xs:schema>
 <xs:import
namespace="http://www.epri.com/ws/networkmodel/getNetworkModelOutput_v1"
schemaLocation="XSD/getNetworkModelOutput_v1.xsd"/>
 </xs:schema>
 <xs:schema>
 <xs:import
namespace="http://www.epri.com/ws/networkmodel/fault"
schemaLocation="XSD/fault.xsd"/>
 </xs:schema>
 </wsdl:types>

0

3-4

 <!-- Only "One" Part Definition in the Input & Output Messages in WSDL -->
 <wsdl:message name="getNetworkModelRequestMessage">
 <!-- Input Wrapper Element name should match with Operation name -->
 <wsdl:part name="parameters" element="inputType:getNetworkModel"/>
 </wsdl:message>
 <wsdl:message name="getNetworkModelResponseMessage">
 <!-- <Output Wrapper Element Name> = <Operation Name> + "Response" --
>
 <wsdl:part name="parameters"
element="outputType:getNetworkModelResponse"/>
 </wsdl:message>
 <wsdl:message name="FaultMessage">
 <wsdl:part name="parameters" element="faultType:faultResponse"/>
 </wsdl:message>

 <wsdl:portType name="networkModelPortType_v1">
 <wsdl:operation name="getNetworkModel">
 <wsdl:input name="getNetworkModelRequest"
message="tns:getNetworkModelRequestMessage"/>
 <wsdl:output name="getNetworkModelResponse"
message="tns:getNetworkModelResponseMessage"/>
 <wsdl:fault name="standardFault" message="tns:FaultMessage"/>
 </wsdl:operation>
 </wsdl:portType>

 <wsdl:binding name="NetworkModelBinding" type="tns:networkModelPortType_v1">
 <!-- soap:binding style = "document" -->
 <soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="getNetworkModel">
 <soap:operation
soapAction="http://www.epri.com/getNetworkModel" style="document"/>
 <wsdl:input name="getNetworkModelRequest">
 <!-- the soap:body definitions must specify
use="literal" and nothing else -->
 <soap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="getNetworkModelResponse">
 <soap:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="standardFault">
 <soap:fault name="faultReturn" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 </wsdl:binding>

 <wsdl:binding name="NetworkModelBinding12" type="tns:networkModelPortType_v1">
 <!-- soap:binding style = "document" -->
 <soap12:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="getNetworkModel">
 <soap12:operation soapAction="http://www.epri.com/getNetworkModel"
style="document"/>
 <wsdl:input name="getNetworkModelRequest">

0

3-5

 <!-- the soap:body definitions must specify use="literal" and
nothing else -->
 <soap12:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="getNetworkModelResponse">
 <soap12:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="standardFault">
 <soap12:fault name="faultReturn" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 </wsdl:binding>

 <wsdl:service name="NetworkModelService_v1">
 <wsdl:port name="NetworkModelPort" binding="tns:NetworkModelBinding">
 <soap:address
location="http://www.epri.com/ws/networkmodel/NetworkModel_v1"/>
 </wsdl:port>
 <wsdl:port name="NetworkModelPort12" binding="tns:NetworkModelBinding">
 <soap12:address
location="http://www.epri.com/ws/networkmodel/NetworkModel_v1"/>
 </wsdl:port>
 </wsdl:service>

</wsdl:definitions>

Notably, SOAP 1.2 support was added to NetworkModel_v1.wsdl to allow interoperability with
Microsoft .NET, in addition to working with the common Java or SoapUI clients. Note in
NetworkModel_v1.wsdl that the WSDL was like the template, but not an exact replica. This is
intentional, as it allowed for custom names while still adhering to the 61968-100 standard.

XSD Creation
The XSDs for NetworkModel were created entirely without templates. When the XSDs were
created initially, software tools such as NetBeans’ JAX-WS code generator would give out error
messages if names were not matched up correctly. One of the initial problems creating the web
service was that NetBeans would not assign the proper type to the GetNetworkModel operation.
Problems also stemmed from defining elements as nillable=”true”, resulting in overcomplicated
typing.

Care should be taken to not reproduce elements in the message that already exist in a header file
used by the standard, Message.xsd, and serves as a “message wrapper” for domain-specific
messages such as the NetworkModel message defined in this project. The result was short and
simple XSDs that could be used to define each aspect of the network model transport. Below are
the XSDs for query parameters when requesting a network model, and Output parameters when
returning it, respectively.

0

3-6

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XMLSpy v2018 sp1 (x64) (http://www.altova.com) by Cynthia Elmore
(EPRI) -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:a="http://langdale.com.au/2005/Message#"
xmlns:sawsdl="http://www.w3.org/ns/sawsdl"
xmlns="http://langdale.com.au/2005/Message#"
xmlns:tns="http://www.epri.com/ws/networkmodel/getNetworkModelParams_v1"
xmlns:msg="http://iec.ch/TC57/2011/schema/message"
targetNamespace="http://www.epri.com/ws/networkmodel/getNetworkModelParams_v1"
elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:import namespace="http://iec.ch/TC57/2011/schema/message"
schemaLocation="./Message.xsd"/>
 <xs:annotation>
 <xs:documentation/>
 </xs:annotation>
 <!-- Input Wrapper Element name should match with Operation name -->
 <xs:element name="getNetworkModel"
type="tns:NetworkModelRequestMessageType"/>
 <xs:complexType name="NetworkModelRequestMessageType">
 <xs:sequence>
 <xs:element name="Header" type="msg:HeaderType"/>
 <xs:element name="Payload" type="tns:PayloadType"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="PayloadType">
 <xs:sequence>
 <xs:choice>
 <xs:element name="ModelDateTime"
type="tns:ModelDateParams"/>
 <xs:element name="ModelNumber"
type="tns:ModelNumberParams"/>
 </xs:choice>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="ModelDateParams">
 <xs:sequence>
 <xs:element name="ModelDateTime" type="xs:dateTime"/>
 <xs:element name="ModelRequest" type="tns:ModelRequestType"/>
 <xs:element name="LastModelDateTime" type="xs:dateTime"
minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="ModelNumberParams">
 <xs:sequence>
 <xs:element name="ModelNumber" type="xs:int"/>
 <xs:element name="ModelRequest" type="tns:ModelRequestType"/>
 <xs:element name="LastModelNumber" type="xs:int"
minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="ModelRequestType">
 <xs:sequence>
 <xs:element name="RequestType">

0

3-7

 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="Full"/>
 <xs:enumeration value="Incremental"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:a="http://langdale.com.au/2005/Message#"
xmlns:sawsdl="http://www.w3.org/ns/sawsdl"
xmlns="http://langdale.com.au/2005/Message#"
xmlns:msg="http://iec.ch/TC57/2011/schema/message"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:xmime="http://www.w3.org/2005/05/xmlmime"
xmlns:tns="http://www.epri.com/ws/networkmodel/getNetworkModelOutput_v1"
targetNamespace="http://www.epri.com/ws/networkmodel/getNetworkModelOutput_v1"
elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:import namespace="http://www.w3.org/2005/05/xmlmime"
schemaLocation="xmlmime.xsd"/>
 <xs:import namespace="http://iec.ch/TC57/2011/schema/message"
schemaLocation="./Message.xsd"/>
 <xs:annotation>
 <xs:documentation/>
 </xs:annotation>
 <xs:element name="getNetworkModelResponse"
type="tns:NetworkModelResponseMessageType"/>
 <xs:complexType name="NetworkModelResponseMessageType">
 <xs:sequence>
 <xs:element name="Response"
type="tns:NetworkModelResponseType"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="NetworkModelResponseType">
 <xs:sequence>
 <xs:element name="Header" type="msg:HeaderType"/>
 <xs:element name="Payload" type="tns:PayloadType"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="PayloadType">
 <xs:sequence>
 <xs:element name="fileName" type="xs:string" minOccurs="0"/>
 <xs:element name="binaryData" type="xmime:base64Binary"
minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

0

3-8

Web Service Creation
Developing a SOAP web service can be accomplished in a myriad of ways, with many of those
methods being provided by IDEs such as NetBeans, Eclipse, IntelliJ, or Microsoft Visual Studio.
Two different approaches were used to construct the SOAP Web Service for getNetworkModel,
with the final chosen approach being a model that would be easily reproducible regardless of
operating system being used by the developer. However, the SOAP web service itself, like any
SOAP web service, can be used by any type of client on any device or operating system.

Building a SOAP Web Service in NetBeans using JAX-WS
Building a SOAP web service is straight-forward with NetBeans. Start by creating a new Java
web application (File New Project Java Web Web Application).

After clicking “Finish”, simply right-click the project in the navigation pane (typically located on
the left-hand side of the IDE) and select New Web Service from WSDL. If that option doesn’t
appear, click “Other” instead to search for it.

From there, the IDE will handle all class creation for the SOAP web service, if there are no
errors within the WSDL/XSD files.

Spring-Maven with Hibernate
Another popular method for creating SOAP web services is utilization of Spring Boot and
Maven. This was ultimately chosen as the framework for Power Systems Model Transport
because of its portability and widespread use, making it easier to find help during
troubleshooting. Many IDEs support development of a Spring-Maven web service, and once they
are created, can easily be ported to a more restricted system where IDEs and GUIs cannot be
accessed, such as having terminal-only access on a server.

Various tutorials exist online detailing how to build Spring-Maven SOAP web services, so this
report does not go into detail on their development. However, if given the skeletal framework,
building a functioning web service can be accomplished using the following commands:

• mvn generate-sources: Using the provided pom.xml file, this will generate all Java class
files needed to create the web service by parsing the WSDLs/XSDs provided, using a plugin
called wsdl2java. Generated classes represent client stubs, server skeletons, and data types
needed to write both the server and client Java programs for the web services defined within
the WSDL.

• mvn compile: This command will compile all Java code written to implement the web
service.

• mvn package: This command will compile all Java code, eliminating the need to use mvn
compile. It will also create the WAR file needed to run the web service. The path is specified
in the pom.xml.

Setting up Hibernate for database access can be handled easily through IDEs such as IntelliJ,
NetBeans, or Eclipse. The mentioned IDEs have built-in support for the Hibernate framework
and will not only add the required dependencies to the pom.xml, but also set up the required
configuration files. Figure 3-1 below shows the hibernate configuration file for this project.

0

3-9

When setting up a database to store network model information, giving the SOAP web service
access to the database through Hibernate can be done with the help of the IDE or it can be done
manually by directly adding the database connection code, though this isn’t recommended.

If the database tables have many columns, then it would be best to handle Entity
class creation through an IDE such as Eclipse, IntelliJ, or NetBeans (see
https://netbeans.org/kb/docs/web/hibernate-webapp.html for a tutorial on NetBeans).
Keep in mind extra steps may need to be made, such as downloading the proper drivers for your
IDE to use mySQL, setting up the mySQL database, and creating the appropriate database tables
and columns.

Hosting the Web Service
The method chosen for hosting the SOAP web service for this project was Apache Tomcat
(http://tomcat.apache.org/). To use Tomcat, first download and install the software to a directory
that's easily accessed. This is important because its file structure must be accessed directly to
deploy the web service without relying on its GUI. The GUI is easily accessed at localhost:8080
once Tomcat is installed; however, it could be installed somewhere without access to a browser,
such as a server terminal or an instance in the cloud hosted by AWS.

To deploy the web service, build the WAR file for the project by either building it in the IDE or
running mvn package in the source directory. Place that WAR file in the webapps folder of
tomcat. To deploy the tomcat web services, use the command catalina run on the command line.
This window will now become a log for tomcat.

Creating a Windows Client
Interoperability was a focus of this project and is one of the key reasons that SOAP architecture
was chosen as the platform for development. As a result, two different clients were written for
the web service once it was completed: Java and .NET. The most common framework for
creating a web service client in .NET is known as Windows Communication Foundation (WCF).

Creating a web service client in C# can be handled in a variety of different ways. For example,
an ASP.NET client could be created if a client that runs in a web browser is desired.
Alternatively, if only a console application is needed, selecting New Project Console
Application works as well. Once the project is started, simply Right Click References on the
project navigation pane, as shown below.

0

https://netbeans.org/kb/docs/web/hibernate-webapp.html
http://tomcat.apache.org/

3-10

Figure 3-1
Adding a service reference to a .NET project

This will allow the user to reference the WSDL of the web service so that Visual Studio can
build the required classes to use the service. In the Figure 3-2 example below, the WSDL hosted
at http://localhost:8080/NetworkModel/get/NetworkModel?wsdl was used to create a web
service client using WCF.

Figure 3-2
Providing the WSDL address to create a web service client

To create a web service client using WCF it was necessary that the WSDLs support SOAP 1.2.
This step was unnecessary when building the Java client and there are likely other ways to build
C# classes from the WSDL using SOAP 1.1, but WCF requires that all WSDLs use SOAP 1.2.

Creating a RESTful Client for a SOAP Service
Representational State Transfer (REST) is a popular web services framework used today. Unlike
SOAP, REST is not a standards protocol but is the entire framework around which a web service
is built. RESTful web services (typically “REST” is changed to “RESTful” when describing web
services) generally send Javascript Object Notation (JSON) payloads, but can also use text,
XML, HTML, and others. RESTful web services also can use all standard HTTP verbs, such as

0

http://localhost:8080/NetworkModel/get/NetworkModel?wsdl

3-11

GET, POST, PUT, PATCH, etc. SOAP, on the other hand, is always sent over HTTP using
POST. Even a “get” message in the IEC 61968-100:2013 standard is sent as a POST message to
the receiving web service. REST can handle multiple payload formats and all HTTP verbs,
making it possible to send a SOAP message via POST in a RESTful service if desired. To
illustrate this, a Python web service client is shown using Flask for the RESTful web architecture
and Zeep for the SOAP encoding.

To start with, a server is set up using Flask default settings to launch a web client at
localhost:5000.

import os, json
from flask import Flask, render_template, request
from soapclient import send_soap
template_dir = os.path.abspath('templates/')

app = Flask(__name__, template_folder=template_dir)

@app.route("/")
def home():
 return render_template('index.html')

@app.route('/send_network_model_request', methods=['POST'])
def send_network_model_request():
 if request.method == "POST":
 NetworkModels = request.get_json(force=True)
 return json.dumps(send_soap(NetworkModels))

if __name__ == '__main__':
 app.run(debug=True)

In this code snippet, the client is set to automatically load the web page called “index.html” when
navigating to localhost:5000. That web page uses a combination of Javascript and Asynchronous
Javascript and XML (AJAX) to obtain data from the user and then send it to the backend Python
Flask server. Once that AJAX method sends over the obtained data as a POST command, the
method send_soap is called, which employs the Zeep library to encapsulate the data as a SOAP
message.

Zeep uses a dictionary of dictionaries to represent a SOAP message with proper namespaces
intact. The SOAP header, for example, would look like the code below.

 header = {
 "Verb": verb,
 "Noun": "NetworkModel",
 "Timestamp": datetime.datetime.now(),
 "MessageID": uuid.uuid4(),
 "CorrelationID": uuid.uuid4()
 }

The result is a client that uses JSON to represent its data all the way up till the point that it passes
that data on to Zeep to handle the SOAP XML conversion.

0

0

4-1

4
NEXT STEPS
Work has been underway in 2019 to advance the next addition of the IEC 61968-100 messaging
standard, and a second edition should be released by 2020. This new edition provides
functionality that addresses many of the shortcomings of the original standard. For example, the
new verb “update” allows for clear messages informing a receiving system whether it should
remove or add specified elements to an existing object. The alternative in the first edition is
sending a message with “change” verb that requires every field to be provided rather than only
the ones that are being changed or sending an OperationSet message which provides
functionality that is like “update,” but may be less intuitive to developers. The next step for this
is to provide guidance on making the switch between the first and second edition and to research
whether an adapter could be made to facilitate communication between two services using
different versions of the 61968-100 standard.

The Representational State Transfer (REST) framework was examined for this study but not
fully implemented. Although sending a gzipped, encoded network model over HTTP is easily
handled via REST, there is currently no standard for a REST message defined by the 61968-100.
It is not uncommon to see a RESTful wrapper for a SOAP client, however. For example, Python,
using the Flask library, can act as a SOAP client when used in combination with Zeep. Sending
the network model using REST is not the problem that needs to be solved; it is the problem of
how to send a RESTful message in a standards-based way that requires more work and will
certainly be addressed in the near future. In other words, work is still being done to create a
Javascript Object Notation (JSON) representation of the 61968-100 message envelope.

Other technologies could be useful for memory constrained devices. Extensible Messaging and
Presence Protocol (XMPP) and Message Queuing Telemetry Transport (MQTT) are widely used
by resource limited devices in the internet of things (IoT). Google Protocol Buffers was designed
as a smaller and therefore faster alternative to XML and could be a good choice for real-time
state changes.

In addition, EPRI could look at additional use cases or scenarios in addition to the exchange of
equipment model (EQ). Further work could investigate exchanging and processing planned
switch positions, state variables (SV), in both directions. Both EPRI and ENTSO-E have found,
during recent research, that there is increasing interest in communication across the transmission
and distribution interface, especially in the communication of grid state.

0

0

A-1

A
PAYLOAD COMPRESSION EXAMPLE
The purpose of this annex is to provide example code required for a web service to compress and
encode a payload, and for a client to decode and decompress that data. Payload compression can
be used for any messaging technology, such as generic web services, JMS, and strongly typed
web services. Note that a similar appendix can be found in the documentation for 61968-100.

The following is a Java class example that shows how to do compression and base64 encoding.
In this example, the variable modelData is an object containing all information about the model,
and the method getFileText() would return the RDF data of the network model.
import com.epri.get.NetworkModel.*;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.util.zip.GZIPOutputStream;
import com.epri.networkmodel.model.*;
import com.epri.networkmodel.dao.*;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Qualifier;
import java.util.Base64;
import org.apache.log4j.Logger;

public class compressAndEncode {

 private static org.apache.log4j.Logger log = Logger.getLogger(NetworkModel.class);

 @Autowired
 private ModelDataDao modelDataDao;

 public static byte[] compress(String str) throws IOException {

 ByteArrayOutputStream out = new ByteArrayOutputStream();
 GZIPOutputStream gzip = new GZIPOutputStream(out);
 gzip.write(str.getBytes(), 0, str.length());
 gzip.close();
 return out.toByteArray();
 }

 ModelData modelData = modelDataDao.findByHeaderId(requestParams.getheaderId());

 // gzip raw data from file to return
 byte[] gzipFile = null;
 gzipFile = compress(modelData.getFileText());
 Base64Binary binaryData = new Base64Binary();
 binaryData.setValue(Base64.getEncoder().encode(gzipFile));
}

0

A-2

To obtain the RDF data of the network model, the client must be able to decode the base64 data.
Two different examples are shown here. The first one is written for a Java client, and the second
one for a .NET client.

public static byte[] decompressAndDecode(byte[] compressedAndEncoded) throws IOException {
 byte[] unencoded = Base64.getDecoder().decode(compressedAndEncoded);
 ByteArrayInputStream bi1 = new ByteArrayInputStream(unencoded);
 GZIPInputStream gzin = new GZIPInputStream(bi1);
 ByteArrayOutputStream bio = new ByteArrayOutputStream();

 int res = 0;
 byte buf[] = new byte[1024];
 while (res >= 0) {
 res = gzin.read(buf, 0, buf.length);
 if (res > 0) {
 bio.write(buf, 0, res);
 }
 }
 byte[] val = bio.toByteArray();
 return val;
}

The next part for C# is a bit longer as it doesn’t involve as many libraries, however, there are
certainly multiple ways to achieve the same result.

public static void CopyTo(Stream src, Stream dest)
{
 byte[] bytes = new byte[4096];

 int cnt;

 while ((cnt = src.Read(bytes, 0, bytes.Length)) != 0)
 {
 dest.Write(bytes, 0, cnt);
 }
}

public static byte[] base64_decode(string encodedData)
{
 byte[] encodedDataAsBytes = Convert.FromBase64String(encodedData);
 return encodedDataAsBytes;
}

public static string Unzip(byte[] bytes)
{
 string byteStr = Encoding.ASCII.GetString(bytes);
 byte[] decoded = base64_decode(byteStr);

 using (var msi = new MemoryStream(decoded))
 using (var mso = new MemoryStream())
 {
 using (var gs = new GZipStream(msi, CompressionMode.Decompress))
 {
 CopyTo(gs, mso);
 }

 return Encoding.UTF8.GetString(mso.ToArray());
 }
}

0

B-1

B
61968-100 2ND EDITION
The IEC 61968-100 2nd edition standard is due to be released in 2020. Guidance is provided on
how a message in the part 100 envelope may be converted from XML to JSON. The IEC also
has changed some naming conventions and added a new verb, update, to allow partial changes of
an object using the sub-verbs modify, remove, and add. This new verb easily allows for the
modification of existing network models and as a result makes the newest edition of the standard
ideal for transporting and modifying network models in a standards-based way.

Another change between the editions is the remove of the <Payload><Compressed> element.
This had no normative definition in the IEC 61968-100:2013 and thus was replaced by a new
element, <CompressedPayload>. This element’s definition is shown below.

Figure B-1
CompressedPayloadType of the 61968-100 2nd Edition (Replaces <Compressed>)

Encoding compressed files in confined to base64 as of the 2nd edition of the IEC 61968-100,
while its compression type can be zip, gzip, or zip64. The standard gives no guidance on
security, however, making it important to take due caution when decompressing the
<CompressedPayload> data.

0

0

C-1

C
RDF
The primary purpose of this section is to provide an overview on how different RDF libraries
could be utilized to obtain a diff of two RDF graphs. Three popular RDF libraries are described
in this section: dotNetRDF (C#), Jena (Java), and rdflib (Python). These libraries were chosen
due to their popularity and accessibility.

DotNetRDF (C#)
The dotNetRDF library uses a class called GraphDiffReport[6] to show comparisons between
two RDF files. The GraphDiffReport object will contain the following properties:

1. AddedMSGs – Gets the MSG (Minimal Spanning Graphs i.e. sets of Triples sharing
common Blank Nodes) that must be added to the first graph to get the second graph.

2. AddedTriples – Gets the Ground Triples (i.e. no Blank Nodes) that must be added to the
first graph to get the second graph.

3. AreDifferentSizes – Gets whether the Graphs are different sizes, different sized graphs are
by definition non-equal.

4. AreEqual – Gets whether the Graphs were equal at the time the Diff was calculated.
5. Mapping – Provides the mapping from Blank Nodes in one Graph to blank nodes in another.
6. RemovedMSGs – Gets the MSG (Minimal Spanning Graphs i.e. sets of Triples sharing

common Blank Nodes) that must be added to the first graph to get the second.
7. RemovedTriples – Gets the Ground Triples (i.e. no Blank Nodes) that must be removed

from first graph to get the second.

To add to or retract from a Graph, use the methods Assert or Retract. This assumes the network
model has been converted to a Graph object. For example, if a network model was changed so
that new components were added, resulting in a new graph, the following might be used to show
the added information and then add it to the original graph.

IGraph g = new Graph();

IGraph g2 = new Graph();

FileLoader.Load(g, "rdf_files/epri-der-demo-base.rdf");
FileLoader.Load(g2, "rdf_files/epri-der-demo-combined.rdf");

GraphDiffReport report = gd.Difference(g, g2);

foreach (Triple t in report.AddedTriples)
 {
 g.Assert(t);
 }

0

C-2

Rdflib
Rdflib is currently the most up-to-date Python library for working with RDF data. Its graph_diff
method provides the ability to compare two graphs and view what data is in both files, what’s
only in the first, and what’s only in the second. Example code is given in the documentation[7].

 >>> g1 = Graph().parse(format='n3', data='''
 ... @prefix : <http://example.org/ns#> .
 ... <http://example.org> :rel
 ... <http://example.org/same>,
 ... [:label "Same"],
 ... <http://example.org/a>,
 ... [:label "A"] .
 ... ''')
 >>> g2 = Graph().parse(format='n3', data='''
 ... @prefix : <http://example.org/ns#> .
 ... <http://example.org> :rel
 ... <http://example.org/same>,
 ... [:label "Same"],
 ... <http://example.org/b>,
 ... [:label "B"] .
 ... ''')
 >>>
 >>> iso1 = to_isomorphic(g1)
 >>> iso2 = to_isomorphic(g2)

These are not isomorphic::

 >>> iso1 == iso2
 False

Diff the two graphs::

 >>> in_both, in_first, in_second = graph_diff(iso1, iso2)

Present in both::

 >>> def dump_nt_sorted(g):
 ... for l in sorted(g.serialize(format='nt').splitlines()):
 ... if l: print(l.decode('ascii'))

 >>> dump_nt_sorted(in_both) #doctest: +SKIP
 <http://example.org>
 <http://example.org/ns#rel> <http://example.org/same> .
 <http://example.org>
 <http://example.org/ns#rel> _:cbcaabaaba17fecbc304a64f8edee4335e .
 _:cbcaabaaba17fecbc304a64f8edee4335e
 <http://example.org/ns#label> "Same" .

Only in first::

 >>> dump_nt_sorted(in_first) #doctest: +SKIP
 <http://example.org>
 <http://example.org/ns#rel> <http://example.org/a> .

0

C-3

 <http://example.org>
 <http://example.org/ns#rel> _:cb124e4c6da0579f810c0ffe4eff485bd9 .
 _:cb124e4c6da0579f810c0ffe4eff485bd9
 <http://example.org/ns#label> "A" .

Only in second::

 >>> dump_nt_sorted(in_second) #doctest: +SKIP
 <http://example.org>
 <http://example.org/ns#rel> <http://example.org/b> .
 <http://example.org>
 <http://example.org/ns#rel> _:cb558f30e21ddfc05ca53108348338ade8 .
 _:cb558f30e21ddfc05ca53108348338ade8
 <http://example.org/ns#label> "B" .

To add or remove Triples from a Graph object in rdflib, the Graph library uses the methods
Add() and Remove(). These methods require the subject, predicate, and object as parameters.

Using rdflib, the process to send an updated network model could follow this potential pattern
(this assumes a central web service would have both the original and modified version of a
network model stored in its database):

1. Web Service compares original version of the model with the changed version that has added
data.

2. Web Service first checks to see if in_first contains any data. This would mean that data has
been removed from the model.
a. If data has been removed, it will send an update message with remove as the

UpdateAction element1.
3. Web Service then checks to see if in_second contains any data. This would mean that data

has been added to the model.
a. If data has been added, it will send an update message with modify as the UpdateAction

element1.

Jena
Jena is a Java API for RDF. It was designed for programmers who are unfamiliar with RDF itself
but have some working knowledge of XML and Java. Like the rdflib and dotNetRDF libraries,
Jena provides means for comparing two different graphs, represented using the Model class.

Union
Jena’s Model class has a method called union that will merge two similar models, removing
duplicate notes and combining them to form one model. Below is an example as illustrated in the
Jena tutorial[8].

1This is for the 2nd edition of the IEC 61968-100 only.

0

C-4

Figure C-1
Two separate RDF models that share identical nodes

These models share the node http://..../JohnSmith and also have a duplicate vcard:FN. When
union is called, these models combine into one, removing the duplicate elements.

Figure C-2
Merging the two models from Figure B-1 into one model

0

http://..../JohnSmith

C-5

In cases where a network model is modified to include additional data that would have duplicate
examples, the union method would be ideal for seamlessly combining models. Code for it would
look similar to the example below.

// read the RDF/XML files
model1.read(new InputStreamReader(in1), "");
model2.read(new InputStreamReader(in2), "");

// merge the Models
Model = model1.union(model2);

Obtaining the intersection (similar elements) or difference (different elements) of the models can
be accomplished in a similar manner by using the difference and intersection methods. The
primary method illustrated here for sending partial models, however, is difference. The
difference method creates a new model containing all statements in the calling model that are
not in the other. For sending the message using the IEC 61968-100 messaging standards, these
methods would be ideal and would work in the following manner.

1. Web Service compares original version of the model with the changed version that has added
data by using the difference() method.

2. Upon calling the difference() method, all data that is not present in the original model will be
returned.
a. To tell the receiving system what information it needs to add, it will send an update

message with modify as the UpdateAction element2.
3. Step 1 must now be reversed. In other words, if model1.difference(model2); was used in step

1, then this time model2.difference(model1); will be used. The result for this will show
elements that were moved from the original model.
a. To tell the receiving system what information it needs to remove, it will send an update

message with remove as the UpdateAction element2.

2 This is for the 2nd edition of the IEC 61968-100 only.

0

0

D-1

D
REFERENCES
1. Microsoft Azure Service bus quotas. https://docs.microsoft.com/en-us/azure/service-bus-

messaging/service-bus-quotas

2. IBM WebSphere Application Server messaging.
https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.0/com.ibm.websphere.nd.m
ultiplatform.doc/ae/rmj_jmsp_sibvmq.html

3. https://www.ibm.com/developerworks/library/ws-
whichwsdl/index.html#listing9https://www.w3.org/TR/soap12-part1/

4. https://www.w3.org/TR/soap12-part1/

5. https://www.w3.org/TR/ws-arch/

6. http://www.dotnetrdf.org/api/html/T_VDS_RDF_GraphDiffReport.htm

7. https://rdflib.readthedocs.io/en/4.0/_modules/rdflib/compare.html

8. https://jena.apache.org/tutorials/rdf_api.html

0

https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-quotas
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-quotas
https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.0/com.ibm.websphere.nd.multiplatform.doc/ae/rmj_jmsp_sibvmq.html
https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.0/com.ibm.websphere.nd.multiplatform.doc/ae/rmj_jmsp_sibvmq.html
https://www.ibm.com/developerworks/library/ws-whichwsdl/index.html#listing9https://www.w3.org/TR/soap12-part1/
https://www.ibm.com/developerworks/library/ws-whichwsdl/index.html#listing9https://www.w3.org/TR/soap12-part1/
https://www.w3.org/TR/soap12-part1/
https://www.w3.org/TR/ws-arch/
http://www.dotnetrdf.org/api/html/T_VDS_RDF_GraphDiffReport.htm
https://rdflib.readthedocs.io/en/4.0/_modules/rdflib/compare.html
https://jena.apache.org/tutorials/rdf_api.html

0

0

Electric Power Research Institute
3420 Hillview Avenue, Palo Alto, California 94304-1338 • PO Box 10412, Palo Alto, California 94303-0813 • USA

800.313.3774 • 650.855.2121 • askepri@epri.com • www.epri.com

The Electric Power Research Institute, Inc.
(EPRI, www.epri.com) conducts research and
development relating to the generation, delivery and
use of electricity for the benefit of the public. An
independent, nonprofit organization, EPRI brings
together its scientists and engineers as well as
experts from academia and industry to help address
challenges in electricity, including reliability,
efficiency, affordability, health, safety and the
environment. EPRI also provides technology, policy
and economic analyses to drive long-range
research and development planning, and supports
research in emerging technologies. EPRI members
represent 90% of the electricity generated and
delivered in the United States with international
participation extending to 40 countries. EPRI’s
principal offices and laboratories are located in Palo
Alto, Calif.; Charlotte, N.C.; Knoxville, Tenn.; Dallas,
Texas; Lenox, Mass.; and Washington, D.C.

Together…Shaping the Future of Electricity

© 2019 Electric Power Research Institute (EPRI), Inc. All rights reserved.
Electric Power Research Institute, EPRI, and TOGETHER…SHAPING THE
FUTURE OF ELECTRICITY are registered service marks of the Electric
Power Research Institute, Inc.

3002016043

0

http://www.epri.com/

	1 INTRODUCTION
	Background
	The Need for Smaller Files
	Compressing RDF Files
	The “Diff” Approach

	2 OVERVIEW OF IEC 61968-100:2013
	SOAP
	Web Service

	3 BUILDING THE SOAP WEB SERVICE
	4 NEXT STEPS
	A PAYLOAD COMPRESSION EXAMPLE
	B 61968-100 2ND EDITION
	C RDF
	DotNetRDF (C#)
	Rdflib
	Jena
	Union

	D REFERENCES

