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Image Classification
The Image Classification model simply indi-
cates the presence of any one of the given types 
of damage in each image tile, without localiz-
ing it. The result is illustrated in Figure 2: each 
tile that composes the larger input image is 
tagged with the type of damage (if any) that 
the model predicts it to contain. Although not 
localizing the damage, it provides information 
about what damage type to look for and re-
duces the search area: the currently chosen tile 
size of 640x640 pixels corresponds to approxi-
mately 20% of the area of the typical high-def-
inition image (1920x1080 pixels). Computa-
tionally, the classification model is considerably 
lighter and faster than the defect localization 
model, and thus more amenable for real-time 
implementation. One possible use case is that 
of informing the pilot in real-time of identified 
regions that warrant a closer inspection. 

Results from an initial classification model are 
summarized in Table 1. The metrics in this 
table are:

•	 Positive Tiles (P): Number of tiles that 
contain the damage.

•	 Negative Tiles (N): Number of tiles that do 
not contain the damage.

•	 True Positive (TP): Number of tiles cor-
rectly predicted to contain the damage.

•	 True Negative (TN): Number of tiles cor-
rectly predicted not to contain the 
damage.

Figure 1 – Feature Count in Available Dataset

This technical brief summarizes the progress 
to date on the efforts to develop machine vi-
sion models to automatically detect damage 
in concrete structures. For example, it is en-
visioned that such tools would enable utilities 
to maximize the benefits found in deploying 
unmanned aerial systems for remote visual in-
spection of containment buildings. Although 
not ready for deployment, the results of the 
initial model on a limited dataset show that 
this approach is feasible and can provide value 
to the industry. A number of activities for im-
provement have been identified and are under-
way, targeting field trials in 2021-2022.

INTRODUCTION
Traditionally, visual inspection of containment 
buildings and other large concrete structures 
in the nuclear industry are time-consuming 
tasks incurring considerable risk to person-
nel safety. More recently, the industry begun 
assessing the use of unmanned aerial systems 
(UAS) to perform such inspections, and noted 
that besides considerably reducing the risks to 
personnel safety, such an approach can also de-
crease inspection time and cost while still sat-
isfying all regulatory inspection requirements 
[1] [2]. A business case for the use of drones in 
nuclear power plants is planned for early 2021 
that will provide more details on the cost ben-
efit of the approach.

The benefit of this approach is diminished 
by the increased burden on data analysis that 
come from the large amounts of high quality 
image or video data that are typically gener-
ated. Looking to enable utilities to maximize 
the value of remote inspections with UAS, 
EPRI has started the development of machine 
vision models to automatically detect damage 
in concrete to assist in the analysis and review 
of the data.

WHAT DATA DID WE USE?
Artificial Intelligence (AI) projects rely to a 
great extent on the available data to support it. 
To date, EPRI has leveraged the data obtained 
in a field trial [1] covering a fraction of a con-
tainment building, and data from a full con-
tainment building inspection performed with 
UAS provided by one member utility.  

Data was recorded either in the form of videos 
or sequential images with varying resolutions 
(most commonly 1080x1920; some as high 
as 4912x7360) and at different distances from 
the structures. Individual frames were extract-
ed from the videos at a rate of approximately 
one frame every 2 seconds. Altogether, there 
were roughly 2,500 images available for the 
effort, out of which approximately 90% were 
used for model development; the remaining 
images were held back for model assessment.

The different types of damage included in 
the available dataset and their approximate 
quantity are listed in Figure 1 (see [3] for a 
description of each damage type). Note that 
this count is the approximate number of times 
a defect appears in the image collection; it 
does not reflect the number of defects in the 
structures, since the same defect may appear 
in multiple sequential images. Abrasion, hon-
eycomb and pattern cracking do not appear in 
sufficient quantities to be part of the scope of 
the project; the limited quantities of corrosion 
and spall examples may also limit the model 
performance on these damage types.

WHAT SOLUTIONS ARE 
WE DEVELOPING?
Two separate models, image classification and 
defect localization, were initially developed as 
described below. For computational efficiency, 
both models break up the image into smaller 
tiles of fixed sized, with prescribed overlap, 
and operate on the tiles.
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•	 False Positive (FP): Number of incorrect 
positive predictions.

•	 False Negative (FN): Number of incorrect 
negative predictions.

•	 Tile Detection Rate (TDR): Fraction of 
tiles with damage that have been detected 
(TDR = TP/P).

•	 False Call Rate (FCR): Fraction of nega-
tive tiles classified as positive (FCR = 
FP/N).

•	 Defect Count (DC): Number of unique 
defects.

•	 Defects Detected (DD): Number of unique 
defects that were detected.

•	 Defect Detection Rate (DDR): Fraction of 
unique defects that were detected (DDR = 
DD/DC).

Key observations about the performance of 
this initial classification model are:

1.	 Reasonable detection: Tile Detection 
Rate (TDR) indicates how many of the 
tiles with damage have been detected 
and is, therefore, a measure of the detec-
tion capability of the model. For crack, 
corrosion and efflorescence, TDR is near 
or above 80%. Grease stain and spall 
show lower tile recall values (63% and 
73%, respectively).

	 Because of the sequential nature of the 
images and tile overlap, the same physi-
cal defect will typically appear in multi-
ple tiles. Considering that in practice 
each defect only needs to be detected in 
one of those opportunities, the detection 
rate at the tile level typically underesti-
mates the true detection rate of the 
model. As seen in Table 2, the detection 
rate for unique defects for all damage 
types within the scope of the model is 
higher than 85%.

2.	 Screening despite high number of false 
positives: The results in Table 1 show that 
the current model is typically perform-
ing with a relatively high number of false 
positives. However, with the exception of 
cracks, the number of false positives is 
small compared to the total number of 
negative tiles, and the model still pro-
vides screening (low false call rate). Addi-
tionally, this may be an application 
where the desired model performance is 
biased towards better detection at the 

expense of false calls to a certain extent. 
Notwithstanding, efforts are underway 
to improve the precision of the models to 
decrease the number of false positives.

3.	 Performance & data availability: Con-
sidering both the detection rate and the 
number of false positives, the best perfor-
mance is seen for efflorescence, which is 
the damage type with most examples in 
the dataset. Cracks have a considerably 
poorer performance especially in terms 
of false calls; data sufficiency may be an 
issue (comparatively, cracks have 60% of 
the examples of efflorescence). Grease 
stain shows reasonable performance (bet-
ter than cracks if detection and false calls 
are balanced) despite having fewer exam-
ples, showing that this may be an easier 
damage type to characterize as compared 
to cracks. This indicates that perhaps dif-
ferent damage types may require differ-
ent models, which is something that can 

be explored in continuing efforts. With 
fewer than 1,000 examples in the data-
set, spall and corrosion show the worst 
overall performance. While these results 
show that this approach is feasible, more 
examples and datasets are needed to 
bring model performance to the desired 
level. EPRI continues with efforts to 
obtain more field datasets from utilities 
as well as generating synthetic data to 
support further model development.

Damage Detection
The damage detection model localizes the 
damage in the individual image tiles before ag-
gregating the results back to the original im-
age. Typical results are illustrated in Figure 3 
through Figure 5, where the red shaded regions 
indicate the model predictions with accompa-
nying label. As can be seen, the model provides 
precise localization of the defect in the image. 
Being heavier computationally, this model 

Figure 2 – Illustration of the Results of the Image Classification Model (Tile Overlap not Shown)

Table 1 – Initial Classification Model Results

Damage Type P N TP TN FP FN TDR FCR
Defect 
Count

Defects 
Detected DDR

Abrasion 0 4584 – 4584 0 0 – 0% 0 0 –

Corrosion 75 4509 61 3863 646 14 81% 14% 8 7 88%

Crack 383 4201 294 2227 1974 89 77% 47% 101 87 86%

Efflorescence 292 4292 239 4160 132 53 82% 3% 108 106 98%

Grease Stain 282 4302 179 4003 299 103 63% 7% 10 10 100%

Honeycomb 0 4584 0 4575 9 0 – 0% 0 0 –

Pattern Cracking 67 4517 3 4511 6 64 4% 0% 1 1 100%

Spall 124 4460 90 3299 1161 34 73% 26% 21 18 86%
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is more suitable for offline analysis, although 
initial estimates make it possible to run at a 
sub-sampling of the typical image frame rate, 
such as 1 frame per second, which is enough 
to provide coverage. Another possible real-time 
implementation involves chaining the models, 
so that localization would only be performed in 
specific regions of a subset of frames as selected 
by the classification model.

Performance is summarized in Table 2. The 
initial model achieves high detection rates 
(95%) for efflorescence and corrosion (despite 
the low number of corrosion examples) and 
around 80% for cracks and grease stain. Spalls 
are seen to be challenging, and the model was 
unable to detect any of its instances. Again, it 
is noted that a defect needs to be detected only 
once, so the instance detection rate presented 
in Table 2 typically underestimates the true de-
fect detection rate.

In this case, the number of negative examples 
or the true negative count is not defined, and 
one looks at the precision of the model in-
stead: the fraction of the model calls that are 
actually correct. For instance, the 24% preci-
sion for corrosion indicates that only about 
one quarter of the model predictions for that 
damage type are actually correct. Similar to 
the classification model, the defect localization 
model has a considerable number of false posi-
tives, lowering the model precision. Here, it 
should be noted that the model is identifying 
a small, very specific region of the image, and 
false calls would be less burdensome in review 
than for model classification. Additionally, in 
some cases the model correctly detected dam-
age that was not identified during the initial 
labeling process, so that review of the model 
results is also leading to improvement of the 
labeling process in an iterative fashion; at this 
time, such cases are computed as false positives 
in Table 2. Further efforts are underway to im-
prove model precision.

Again, in terms of both detection rate and 
precision, the best performance is seen for 
efflorescence, the most common defect type 
in the dataset. The model performs similarly 
on cracks and grease stains despite the larger 
number of crack examples.

Figure 3 – Example of the Results of the Damage Detection Model. Details show: a crack 
detected between tendon caps (top left); grease stain detection around tendon caps (bottom left); 
crack and grease stain detections on the wall, with a miss-called efflorescence (bottom); a 
missed spall (top right); and corrosion detection (bottom right).

Figure 4 – Damage Detection Model Results Showing Mainly Efflorescence on the Dome

Figure 5 – Damage Detection Model Results Showing Cracks on the Wall
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GOING FORWARD
In summary, the results obtained in this first-
cut model with a limited dataset show that de-
veloping machine vision algorithms to detect 
damage in concrete and aid in the analysis of 
remote visual inspection of large structures is 
feasible. While the performance of the cur-
rent models may not be sufficient for efficient 
implementation (especially in terms of false 
positives), a number of improvement efforts 
informed by the above assessment have been 
identified and are underway. Future activities 
include:

•	 Enrich the dataset: EPRI is engaging in the 
development of synthetic images for this 
application, focusing on the less common 
or more challenging defect types: corro-
sion, cracks, pattern cracking and spalls. It 
is expected that having more examples of 
these damage types will help improve 
model performance. Also, more field data-
sets are needed for testing and performance 
assessment; while the model can leverage 
synthetic data for development and train-
ing, it should be assessed in real field data. 
EPRI continues to engage with member 
utilities to obtain data for this purpose. 
Utility members interested in participating 
should contact EPRI; benefits of providing 
data include receiving annotations (labels) 
for their data and ensuring representation 
of their structures in the model.

•	 Re-train, tune and expand models: Once 
more data is available, the models can first 
be further assessed on the new field data 
and then re-trained to incorporate both 
the new field and synthetic datasets. 
Observations from this assessment will 
inform model tuning and selection. For 
instance, it may be more adequate to have 
different classification models for different 
damage types. 

•	 Integrate & implement models: Once a 
new generation of models is developed, 
implementation strategies will be consid-
ered. One possibility is to chain classifica-
tion and damage detection models, for 
instance. EPRI will look at different imple-
mentation approaches to be tested in field 
trials.

•	 Share datasets & models: EPRI aims to 
make the anonymized datasets and bench-
marked models available to member utili-
ties. They can then leverage the models 
and data to develop their own applica-
tions, which may go beyond the types of 
structures included in the scope of this 
project.

It is expected that the activities above will im-
prove model performance and allow for initial 
field implementation of the technology in the 
near future, enabling utilities to automate the 
bulk of the analysis of data resulting from 
remote visual containment inspections or to 
obtain real-time feedback and assessment to 
improve inspection efficiency and reliability.
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Table 2 – Initial Damage Detection Model Results

Damage Type P TP FP FN

Detection Rate Precision 

Abrasion 0 – – 0 – –

Corrosion 63 60 195 3 95% 24%

Crack 477 403 883 74 84% 31%

Efflorescence 749 710 646 39 95% 52%

Grease Stain 230 174 398 56 76% 30%

Honeycomb 0 0 44 0 – 0%

Pattern Cracking 12 6 104 6 50% 5%

Spall 85 0 0 85 0% –

TP

TP
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