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 v  

Abstract 

 

 

 

 

 

Foresight assumptions are central to long-term electric sector 
planning and energy systems models. These model features can alter 
investments and shape policy analysis. With a particular focus on 
intertemporal perfect foresight and sequential myopic approaches, 
this investigation analytically and numerically assesses the conceptual 
and computational implications of model foresight assumptions. 
Results of the investigation include a mathematical outlining of the 
mechanism of divergence between model outputs with different 
foresight assumptions, development of a validated sequential myopic 
mode for EPRI’s REGEN model, and associated numeric insights. 
The investigation concludes with recommendations for REGEN and 
long-term energy models more broadly, including a preliminary 
exploration of systematic combination of foresight approaches. 
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Deliverable Number: 3002021161 
Product Type: Technical Report  

Product Title: Analysis of Foresight in Long-Term Energy Systems Models 

 
PRIMARY AUDIENCE: Electric company staff and analysts engaged in developing and applying long-term 
energy system models for resource planning, technology assessment, and policy analysis. 
SECONDARY AUDIENCE: Consumers of model outputs and other stakeholders who want to understand how 
assumptions about foresight can influence assessments. 

KEY RESEARCH QUESTION 

Foresight assumptions are central to long-term electric sector planning and energy systems models, 
potentially altering investments and shaping policy analysis. However, implications of foresight assumptions 
for model outputs and tradeoffs in how they are represented are less clear. 

RESEARCH OVERVIEW 

With a particular focus on intertemporal perfect foresight and sequential myopic approaches, this investigation 
analytically and numerically assesses the conceptual and computational implications of model foresight 
assumptions. Results of the investigation include a mathematical outlining of the mechanism of divergence 
between model outputs with different foresight assumptions, development of a validated sequential myopic 
mode for EPRI’s REGEN model, and associated numeric insights. 

KEY FINDINGS 
• A divergence in valuation of capital-intensive technologies under an intertemporal perfect foresight 

approach relative to a sequential myopic approach stems from a different distribution of costs and 
revenues over time for these technologies relative to competing options. Such differences would not 
be picked up by the sequential myopic approach and its constant annualization factor (Section 3). 

• An alternate foresight approach (“sequential limited foresight”) solves the model in sequential myopic 
mode but with some foresight information included, based on an intertemporal solve. To harness any 
computational benefits associated with the sequential approach, the intertemporal model could solve 
at lower resolution, not including energy storage for example, and then a more computationally 
detailed sequential approach would include more detail (Section 4). 

• Under certain circumstances, model outputs may not differ greatly across approaches, while in others, 
specific technologies may be disadvantaged in a sequential myopic approach relative to an 
intertemporal perfect foresight approach (Section 5). 

WHY THIS MATTERS 

Foresight assumptions can have a marked effect on model outputs, and yet may be embedded in technical 
details with less salience than technology and policy assumptions in the use of long-term energy models. This 
research provides recommendations for model development and interpretation in light of different foresight 
approaches for long-term electric sector and energy systems models. 
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HOW TO APPLY RESULTS 

The analytic model in Section 3 provides general insights about different foresight approaches. However, 
numerical findings in Section 5 are conditional on scenario-specific assumptions and regions of analysis. 

LEARNING AND ENGAGEMENT OPPORTUNITIES 

EPRI members and others who are interested in learning more about EPRI research into long-term planning 
and modeling should refer to the following research programs: 
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EPRI CONTACT: John Bistline, Program Manager, jbistline@epri.com 

PROGRAM:  201  
 

 

0

mailto:jbistline@epri.com


 

 ix  

Table of Contents 

 

Abstract ............................................................................ v 

Executive Summary ........................................................... vii 

Section 1: Introduction: Analysis of Foresight ...............1-1 

Section 2: Background ................................................2-1 
Context ....................................................................2-1 
Consequences of Foresight Assumptions ...................2-2 

Section 3: Analytic Investigation ..................................3-1 

Section 4: Code Development and Validation .............4-1 
Development ............................................................4-1 
Validation ................................................................4-2 
Sequential Limited Foresight .....................................4-2 

Section 5: Selected Numeric Insights ...........................5-1 
Comparison of Numerical Results .............................5-1 
Enabling Hourly Resolution.......................................5-6 

Section 6: Conclusion .................................................6-1 

Section 7: References ..................................................7-1 
 

 

0



0



 

 xi  

List of Figures 

 

 

Figure 1-1 Intertemporal and sequential myopic 
approaches ............................................................ 1-2 

Figure 5-1 Generation, no carbon price scenario, 
intertemporal foresight ............................................ 5-2 

Figure 5-2 Generation, no carbon price scenario, 
sequential myopic foresight ..................................... 5-2 

Figure 5-3 Generation, a carbon price scenario, 
intertemporal foresight ............................................ 5-4 

Figure 5-4 Generation, a carbon price scenario, 
sequential myopic foresight ..................................... 5-4 

Figure 5-5 Generation by technology in 2025 
under different foresight approaches ....................... 5-5 

 
 

0



0



 

 xiii  

List of Tables 

 

 

Table 3-1 List of sets ..................................................... 3-1 

Table 3-2 List of variables ............................................. 3-1 

Table 3-3 List of parameters ......................................... 3-2 

Table 5-1 Computation comparison .............................. 5-3 

Table 5-2 Carbon price scenario ($ per metric ton) ...... 5-3 

Table 5-3 Sequential myopic solution time (hours) at 
hourly resolution (with storage) ................................ 5-6 

 

 

0



0



 

 1-1  

 

Section 1: Introduction: Analysis of 
Foresight 

Foresight assumptions are central to long-term electric sector planning and 
energy systems models. These model development decisions can alter 
investments and shape policy analysis, making them of interest to planners and 
policymakers to understand the implications of deep decarbonization and high 
renewables scenarios. This investigation aims to elucidate the implications of 
foresight assumptions for the outputs of these models. 

To accurately characterize system investments and operations, especially for 
variable renewables and energy storage, forward-looking scenarios may require 
additional temporal and spatial detail than currently represented in many long-
term planning models, presenting a computational challenge. Foresight 
approaches with shorter time horizons can have fewer variables to keep track of 
over time, potentially providing a solution to this computational challenge. 
However, a shorter model foresight horizon may introduce a conceptual 
challenge, by failing to represent relevant intertemporal dynamics for these 
scenarios. This motivates this investigation into the conceptual and 
computational tradeoffs of foresight representation in long-term energy models. 

This investigation focuses on the sequential myopic foresight approach, and what 
it gains and loses relative to the intertemporal approach. The latter approach is 
currently employed by EPRI’s Regional Economy, Greenhouse Gas, and Energy 
(REGEN) 1 model [1], which we use for numeric analysis in this investigation. 
Figure 1-1 introduces the concepts of intertemporal foresight and sequential 
myopic foresight, the primary subjects of this investigation. A model with 
intertemporal foresight solves all operation and capacity decisions simultaneously, 
while a model with sequential myopic foresight sequentially solves for each 
individual time period. Under a decarbonization scenario with the intertemporal 
approach for example, the model can make its early investment decisions 
knowing there is a steep carbon price in the future, while with the sequential 
myopic approach, investment decisions in early time periods would have no 
knowledge of this carbon price increase. 

 
1 REGEN features regional disaggregation and technological detail of the power sector and 
linkages to other economic sectors. This state-of-the-art model has been used in many analyses and 
peer-reviewed articles (https://esca.epri.com/models.html) 
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Figure 1-1 
Intertemporal and sequential myopic approaches 

Note there are, in some sense, two modeling dimensions presented in Figure 1-1, 
a) sequential / intertemporal, and b) myopic / perfect foresight. That is, a model 
can be solved in sequential mode with a greater degree of foresight than myopic 
foresight, and similarly, an intertemporal model can be solved without perfect 
foresight, but with explicit modeling of uncertain future parameters. These 
distinctions will be discussed in Section 2.  

To conduct this analysis of foresight in long-term energy models, Section 2 
provides background and a literature review, Section 3 compares the 
mathematical structure of intertemporal and sequential myopic approaches, 
Section 4 outlines the code development to EPRI’s REGEN model to 
incorporate a sequential myopic mode, and Section 5 presents associated numeric 
analysis. 

Results from this investigation include a context in which to place modeling 
choices around foresight, a mathematical outlining of the mechanism of 
divergence between intertemporal model outputs and sequential myopic outputs, 
validated sequential myopic REGEN code and associated insights, including the 
analysis of a limited foresight sequential mode. From these results, the 
investigation concludes with an outlining of actionable next steps for the 
REGEN model, and long-term energy models in general. As will be shown, 
foresight assumptions can have a marked effect on model outputs, and yet may be 
embedded in technical details with less salience than technology and policy 
assumptions in the use of long-term energy models. This investigation should 
contribute to the community of model developers and users who want to 
understand how assumptions about foresight can influence model-based 
assessments. 

2025 2030 2035 2040 2045 2050

2025 2030 2035 2040 2045 2050

Investment and operations decisions solved 
together in one optimization

Investment and operations decisions solved sequentially, with 
only knowledge of the current timestep

Intertemporal Perfect Foresight:

Sequential Myopic:
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Section 2: Background 
Foresight is a central assumption to planning models in all domains, as it shapes 
the model solution landscape. In this section, we discuss foresight at a broad 
contextual level followed by an overview of related energy modeling literature. 

Context 

Descriptive models of foresight in human and biological decision systems may 
provide some guidance on how to represent foresight in normative models such 
as long-term electric sector planning and energy systems models. Of particular 
interest is when decisions taken with only local information could lead to 
aggregate decisions “as if” there was full global knowledge, for example if agents 
following simple rules with no apparent foresight produce outcomes leading to 
the perception of foresight to the external observer. This dynamic underlies 
economic insights from Adam Smith to Arrow and Debreu. Similarly, we learn 
from Wolfram [2] how simple rules can lead to arbitrary complex structures, 
while the free energy principle [3] shows “as if” behavior at many scales in natural 
systems through local responses to local information. Furthermore, the key 
enabler of tractable solution of convex optimization problems is that this type of 
problem admits algorithms where local updates based on local information can be 
guaranteed to reach a global optimum.  

While such examples may indicate that models with local foresight only could 
model how real systems work, they also indicate that a normative model that 
models the “as if” behavior directly may also be able to capture the essential 
dynamics of a system and the decision-making options facing it. In this spirit, 
EPRI’s REGEN model, for example, adopts a perfect foresight intertemporal 
optimization approach.  This approach allows exploration of questions such as 
decarbonization of the power system, where multi-decade investment decisions 
are explicitly traded off against cumulative short-term operational decisions and 
associated costs.  

Trutnevyte [4] places the outputs of optimization models in context, stating that 
the optimization approach can help decision makers through a “bounding 
analysis” of possibilities, as optimization model solutions geometrically occur, by 
definition, where constraints intersect. A suite of solutions, generated through 
scenario analysis for example, can bound the space of solutions, potentially 
providing insight to model consumers. This argument may be extended to 
foresight approaches, with intertemporal optimization bounding the solution 
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space to intertemporal questions, whereas a sequential myopic solution has no 
such optimality guarantee to an intertemporal question. 

Referring to Figure 1-1 above, we note that a model may be solved with 
intertemporal perfect foresight or sequential myopic foresight assumptions, and 
still have the exact same parameter assumptions, for example solar power costs in 
2040. In this sense, the sequential myopic approach is also a perfect information 
approach, just that the horizon has been curtailed at each sequential step. This 
highlights that alongside the foresight horizon assumptions at a decision step, 
what information is assumed at that timestep is an important consideration. An 
alternate to perfect foresight assumptions is the broad literature2 on stochastic 
optimization. Stochastic optimization approaches can be set up to be sequential 
(potentially with explicit learning at each step) or solve an intertemporal problem 
across uncertain parameters.3  

With this context underlying approaches to modeling foresight, we next consider 
literature that analyzes the consequence of different foresight assumptions on 
model outputs, specifically between the two foresight modes displayed in Figure 
1-1, intertemporal perfect foresight and sequential myopic. 

Consequences of Foresight Assumptions 

That the foresight assumption is material to model outputs is shown in a multi-
model comparison study by Misconel et al. [8], where foresight assumptions were 
shown to be a primary driver of differences across model outputs. This study 
considered shorter time horizon questions than in this study, however a similar 
importance of foresight was shown in the long-term MESSAGE model by 
Keppo and Strubegger [9]. Keppo and Strubegger also discuss the technological 
consequences of a sequential limited foresight assumption relative to 
intertemporal foresight, with “lagging investments” in earlier model periods 
leading to higher investment requirements in later model periods, along with 
more reliance on fossil fuels for the scenarios analyzed. 

Babrowski et al. [10] show one of the motivating factors for imple menting a 
sequential myopic approach, reporting a 10x reduction in computing time to 
solve a long-term optimization model of the German power system when solved 
in sequential myopic mode instead of intertemporal mode. Similarly, Thomsen et 
al. [11] show a “significantly reduced” run time in sequential myopic mode, while 
noting that for some technologies with high upfront costs, the sequential myopic 
approach cannot compute the benefits over time, leading to underinvestment 
relative to the intertemporal model. Both papers deem the change in model 

 
2 For example, Powell [5] states that there are “over 15 distinct communities that work in the 
general area of sequential decisions and information.” For an overview of stochastic programming 
methods for the electricity capacity planning problem, see Bistline & Weyant [6]. 
3 The concept of sequential decision making under uncertainty, where there is often an explicit 
learning stage at each timestep, is particularly worth mentioning, as it useful to make a distinction 
with the deterministic sequential myopic approach discussed in this document. See Kann & 
Weyant [7] for a discussion of sequential decision making under uncertainty in energy/economic 
policy models. 
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outputs with this approach to be acceptable for the scenarios at hand, and 
mention that there are sets of input parameters where there is not a large 
difference in output between the foresight approaches. 

While we have discussed in this section the differences in model outcomes 
between foresight approaches, both Nerini et al. [12] and Heuberger et al. [13] 
integrate these modeling differences into policy implications, stating how myopic 
strategies in the real world could increase the cost of electric sector 
decarbonization. Of relevance to the analysis in Sections 4 and 5 below, Nerini et 
al. state the benefits of using intertemporal and sequential myopic foresight 
approaches in tandem. 

In the numerical analyses below, we see that there are findings that certain 
technologies may be disadvantaged in a sequential myopic approach, but also that 
under certain circumstances, model outputs may not differ greatly across 
approaches. These are numeric findings, conditional on the scenario specific 
assumptions. We next outline the general mechanism for these effects in the 
optimization model structure, before using the mechanism as a validation check 
on our own numerical analysis, and as a guide to using the foresight approaches 
in parallel. 
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Section 3: Analytic Investigation 
In this section, we analytically investigate the difference between solving a long-
term energy model with intertemporal foresight or sequential myopic foresight. 
Examples in the literature we have discussed make this comparison numerically, 
with the comparisons then contingent on specific parameterizations. The 
analytical approach can guide us to mechanisms driving the difference, from 
which we can inform our implementation and use of a sequential myopic 
approach.  

The model analytically outlined here is based on EPRI’s REGEN model in the 
essence of vintaging and time steps, essentials for foresight analysis. For clarity, 
the analytical model does not include other REGEN features not central to this 
foresight analysis including multiple regions, transmission, and retrofit 
technologies. 

Table 3-1, Table 3-2, and Table 3-3 introduce the sets, variables, and parameters 
in our analytical model. 

Table 3-1 
List of sets 

Set Description 

𝑡𝑡 ∈ 0,1,2, … ,𝑇𝑇 Time steps (model years) 

𝑣𝑣 ∈ 0,1,2, … ,𝑉𝑉 Vintage of generation capacity 

𝑠𝑠 ∈ 0,1,2, … , 𝑆𝑆 Dispatch periods (e.g. hours) 

𝑔𝑔 ∈ 0,1,2, … ,𝐺𝐺 Generation technology 

 

Table 3-2 
List of variables 

Vector variables Description 

𝑥𝑥𝑣𝑣,𝑡𝑡 ∈  ℝ+
𝑆𝑆×𝐺𝐺   Electricity generation 

𝑧𝑧𝑣𝑣,𝑡𝑡 ∈ ℝ+
𝐺𝐺   Generation capacity 

𝑦𝑦𝑡𝑡 ∈ ℝ+
𝐺𝐺  Generation investment 
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Table 3-3 
List of parameters 

Parameter Description 

𝑐𝑐𝑥𝑥 ∈ ℝ+
𝑆𝑆×𝐺𝐺 Generation cost 

𝑐𝑐𝑧𝑧 ∈ ℝ+
𝐺𝐺 Capacity (O&M) cost 

𝑐𝑐𝑦𝑦 ∈ ℝ+
𝐺𝐺  Investment cost 

𝑎𝑎 ∈ ℝ+
𝐺𝐺×𝑆𝑆 Generator availability 

𝑑𝑑𝑡𝑡 ∈ ℝ+
𝑆𝑆  Electricity demand 

Each timestep t of the sequential myopic approach may be represented as the 
following optimization: 

 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  (𝑐𝑐𝑥𝑥𝑥𝑥𝑡𝑡 + 𝑐𝑐𝑧𝑧𝑧𝑧𝑡𝑡 + 𝑐𝑐𝑦𝑦𝑦𝑦𝑡𝑡) Eq. 3-1 

 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡  ∑ 𝑥𝑥{𝑣𝑣,𝑡𝑡}𝑣𝑣 ≥ 𝑑𝑑𝑡𝑡                                   ∶ 𝜆𝜆𝑡𝑡  

                        𝑥𝑥{𝑣𝑣,𝑡𝑡} ≤ 𝑎𝑎𝑎𝑎{𝑣𝑣,𝑡𝑡}    ∀ 𝑣𝑣                 ∶ 𝜌𝜌𝑡𝑡          

                                𝑧𝑧𝑣𝑣,𝑡𝑡 = 𝑦𝑦𝑡𝑡            ∀ 𝑣𝑣 = 𝑡𝑡         ∶  𝛾𝛾𝑡𝑡            

                                𝑧𝑧𝑣𝑣,𝑡𝑡 ≤ 𝜅𝜅𝑣𝑣,𝑡𝑡        ∀ 𝑣𝑣 < 𝑡𝑡          ∶ 𝛿𝛿𝑣𝑣,𝑡𝑡               

Where 𝜅𝜅𝑣𝑣,𝑡𝑡  is a parameter representing the capacity, 𝑧𝑧𝑣𝑣,𝑡𝑡−1 solved for in the 
previous period of the sequential solve, and λ, ρ, γ, and δ are the vectors of dual 
variables associated with their respective constraints.4 

Then in the intertemporal setting, x, z, and y are solved across all time periods 
simultaneously. 

 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  ∑ (𝑐𝑐𝑥𝑥𝑥𝑥𝑡𝑡 + 𝑐𝑐𝑧𝑧𝑧𝑧𝑡𝑡 + 𝑐𝑐𝑦𝑦𝑦𝑦𝑡𝑡)𝑡𝑡  Eq. 3-2 

 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡  ∑ 𝑥𝑥{𝑣𝑣,𝑡𝑡}𝑣𝑣 ≥ 𝑑𝑑𝑡𝑡             ∀ 𝑡𝑡                    ∶ 𝜆𝜆𝑡𝑡  

                         𝑥𝑥{𝑣𝑣,𝑡𝑡} ≤ 𝑎𝑎𝑎𝑎{𝑣𝑣,𝑡𝑡}    ∀ 𝑣𝑣, 𝑡𝑡                ∶ 𝜌𝜌𝑡𝑡    

                                 𝑧𝑧𝑣𝑣,𝑡𝑡 = 𝑦𝑦𝑡𝑡             ∀ 𝑡𝑡 = 𝑣𝑣           ∶ 𝛾𝛾𝑡𝑡     

                              𝑧𝑧𝑣𝑣,𝑡𝑡+1 ≤ 𝑧𝑧𝑣𝑣,𝑡𝑡          ∀ 𝑣𝑣, 𝑡𝑡               ∶ 𝛿𝛿𝑣𝑣,𝑡𝑡            

After introducing both models, we next assess when they will produce equivalent 
outputs. Analyzing the optimality conditions of the intertemporal model, we 
obtain the following identity that is active when some positive investment is 
made in a technology: 

 
4 Note that the sequential myopic approach may be interpreted as the first iteration of an 
instantiation of an Alternating Direction Method of Multipliers (ADMM) approach to solving the 
intertemporal problem. Solving the problem with ADMM is discussed in [14]. 
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 𝑐𝑐𝑦𝑦 = ∑ 𝜌𝜌𝑠𝑠𝑠𝑠 + 𝛿𝛿{𝑣𝑣,𝑡𝑡} Eq. 3-3 

This can be interpreted that marginal costs (left-hand side) must equal marginal 
benefits (right-hand side). The first marginal benefit term is the current-timestep 
net revenues and the second term is future revenues (how much the new capacity 
is “sold” to the future for).  

The analogous optimality condition in the sequential myopic formulation is as 
follows: 

 𝑐𝑐𝑦𝑦 = ∑ 𝜌𝜌𝑠𝑠𝑠𝑠  Eq. 3-4 

That is, the investment is only made if current net revenues can match the 
investment cost of the new capacity. This clearly is an unrealistically high hurdle 
for an electricity generation investment, so sequential models are set up such that 
the investment cost is annualized. A typical annualization factor, for example, is 
in the range of 5%-10% (Eq. 4-1). 

It follows that we may set up a sequential myopic model to match the output of 
an intertemporal model if we do not annualize the costs but adjust the 
investment costs by the δ dual variable vectors returned from the solved 
intertemporal optimization model, leading to an implicit technology-specific 
annualization factor, dependent on future conditions, rather than the default 
same rate applied to each technology. Equivalently, there could be a 
parameterization of an intertemporal model where the solution is such that the 
implicit annualization factor for each technology is identical. 

We may relate this analytic finding to the numeric findings observed in the 
literature, both for the case where the sequential myopic approach matches the 
output of an intertemporal model for a set of “stable” input parameters and for 
the case where they diverge. We can see how a divergence in valuation of capital-
intensive technologies for example stems from a different distribution of costs 
and revenues over time for these technologies relative to competing technologies, 
and this would not be picked up by the sequential myopic approach and its 
constant annualization factor. 

This analysis is focused on new investments, but the same logic and analogous 
optimality conditions may be shown for capacity retirement decisions. While 
there is no investment cost to annualize in this case, it is still true that sequential 
myopic models do not see any future net revenues from a unit that an 
intertemporal model would see, and thus may, at the margin, be relatively over-
enthusiastic to retire units. The magnitude of this effect relative to the changes in 
current year valuations of capacity due to the changes in the investment mix 
outlined above is a numerical matter. We now turn to our numerical 
investigation, which the analytical principles outlined here guide. 
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Section 4: Code Development and 
Validation 

This section describes the code development and validation under this 
investigation. As previously mentioned, EPRI’s REGEN model employs an 
intertemporal foresight approach, and the code developed under this 
investigation enables the model to be alternately solved with a sequential myopic 
foresight approach. 

Development 

A sequential myopic mode for the REGEN model was developed in 
collaboration with EPRI staff.5 The implemented sequential myopic mode aligns 
with the analytic representation introduced in Section 3. Implementation of the 
sequential myopic mode involved code changes around all intertemporal model 
constraints. In Section 3, our analysis included a core intertemporal constraint on 
generation capacity, while in the REGEN model intertemporal constraints are 
also present on existing capacity retirements and investments in transmission, 
retrofit technologies, electricity storage, and hydrogen infrastructure. 

As discussed in Section 3, in sequential myopic mode, to tradeoff long-term 
investments with operational costs and considerations, an annualization factor is 
applied to investment costs. The annualization factor f for a generation 
technology of lifetime l with a discount rate r, we calculate as follows:6 

𝑓𝑓 =
𝑟𝑟

1 − (1 + 𝑟𝑟)−𝑙𝑙 

  Eq. 4-1 

With this identity, f goes to r as l goes to infinity, implying that for a technology 
with a long lifetime, investment costs are annualized by simply multiplying by the 
discount rate, while for shorter lifetime technologies, the annualization factor 
increases, increasing the investment costs in a given sequential model year for 
that technology. For example, assuming a discount rate of 5%, a technology with 

 
5 The intertemporal REGEN model is coded in the GAMS modeling language. Sequential myopic 
mode was implemented such that a switch enabled REGEN be solved in either foresight mode. 
6 Eq. 4-1 follows the formulation for annualization factor used in the static mode of the REGEN 
model outlined in Section 2.7 of [1]. 
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a 50-year lifetime has an annualization factor of 5.4%, while a technology with a 
25-year lifetime has an annualization factor of 7.1%. While this technology-
specific feature allows for some difference in payback duration when in a 
sequential myopic mode, it remains that technologies with the same lifetime will 
have the same annualization factor despite potential difference in the distribution 
over time of costs and revenues across different scenarios. 

Validation 

To validate the implementation, Equation 3-3, and the associated analytic 
guarantee of when a sequential myopic solve would match an intertemporal solve, 
was harnessed. Information from an intertemporal solve essentially enables the 
provision of technology-specific and scenario-specific annualization factors, 
encoding information about the future. When the model is run in sequential 
myopic mode with this information, and it returns the same outputs as the 
intertemporal solve, we have a validation check against coding errors in the 
implementation of sequential myopic mode.7 

Sequential Limited Foresight 

This validation exercise suggests an alternate foresight approach for REGEN, 
where the model is solved in sequential myopic mode but with some foresight 
information included, based on an intertemporal solve. To harness any 
computational benefits associated with the sequential approach, the 
intertemporal model could solve at lower resolution, not including energy storage 
for example, and then a more computationally detailed sequential approach 
would include storage as an option. This could be considered a “sequential 
limited foresight mode.” While there is no guarantee of a global intertemporal 
optimum with this adoption of mixed resolutions, there is also none with default 
myopic assumptions earlier discussed. 

We next discuss numeric implications of the sequential implementations across 
selected REGEN model scenarios. 

 

 
7 In practice, a combination of numerical issues and the presence of knife-edge solutions prevented 
this validation being fully realized in all scenarios with the REGEN model, but all deviations were 
small in terms of objective function value and model technology choice. 
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Section 5: Selected Numeric Insights 
This section compares model outputs across both intertemporal and sequential 
myopic foresight modes. The comparisons illustrate the implications of the 
analysis in previous sections within the numerical grounding of the 
aforementioned8 state-of-the-art REGEN model. 

We then harness the computational benefits of the sequential myopic approach 
to run REGEN at hourly resolution, maintaining chronology between dispatch 
periods and facilitating the inclusion of energy storage technologies.9 These 
computational benefits are discussed alongside any conceptual tradeoffs. 

Comparison of Numerical Results 

Figure 5-1 and Figure 5-2 present model outputs for a reference scenario with 
current state and federal policies and incentives (e.g., tax credits, portfolio 
standards) but no federal carbon pricing. In this illustrative example, the most 
important aspect is not the absolute values presented in Figure 5-1 and Figure 
5-2 or the exact nature of the scenario, but the insights based on difference 
between the figures. We see in sequential myopic mode, relative to intertemporal 
mode, that there is less wind generation, more gas generation, and no decline in 
nuclear generation. 

 
8 See Footnote 1. 
9 See Merrick et al. [14] for analysis of storage representation and associated computational 
challenges. 
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Figure 5-1 
Generation, no carbon price scenario, intertemporal foresight 

 

Figure 5-2 
Generation, no carbon price scenario, sequential myopic foresight 

This result is driven primarily by new wind investment in the 2025 model year 
under intertemporal foresight. We may state from our previous analysis that the 
mechanism underlying differences between the two figures is that, in the 
sequential myopic case, wind investment is relatively undervalued. If it was valued 
appropriately, its presence would crowd out the generation from existing gas and 
nuclear assets we see in the sequential myopic case relative to the intertemporal 
case.10  

 
10 Sequential myopic mode has a representation of future revenues from new investments and no 
representation of future revenues from existing capacity. When existing capacity is retained in this 
mode at the expense of new investment, we then know it is through relative undervaluation of the 
new investment, and not overvaluation of existing capacity. 

Nuclear

Hydro+
Coal

Gas

Wind

Solar

Load

0

1000

2000

3000

4000

5000

2015 2020 2025 2030 2035 2040 2045 2050

TW
h

Intertemporal

Nuclear

Hydro+
Coal

Gas

Wind

Solar

Load

0

1000

2000

3000

4000

5000

2015 2020 2025 2030 2035 2040 2045 2050

TW
h

Sequential Myopic

0



 

 5-3  

As outlined in Section 3, we may use the dual of the intertemporal solution to 
extract what implicit annualization factor would be required for sequential 
myopic model outputs to match intertemporal model outputs. In this example, 
for model year 2025, we may calculate an implicit annualization factor of 7.6% 
from the intertemporal case, a decline from the 8.6% factor employed by default 
in this sequential myopic instance. In this intertemporal solution, the distribution 
of benefits to wind are more heavily weighted in the future than that implied by 
the default annualization factor. While there are numerous moving parts that 
determine model outcomes, with different technology options and associated 
annualization factors interacting, this result aligns with the earlier statement that 
the default sequential myopic mode was missing a portion of the future benefits 
of wind power. Also, it is worth noting that the relatively small change in 
annualization factor indicates that the two technology outcomes of Figure 5-1 
and Figure 5-2 have similar overall costs (i.e., a “flat” optimal solution). 

Concluding this comparison and confirming a motivation for the sequential 
myopic approach in the literature, Table 5-1 shows computational requirements 
for the respective foresight modes for these REGEN model scenarios. 

Table 5-1 
Computation comparison 

 Intertemporal Sequential Myopic 

Running time (laptop) 32 minutes 12 minutes 

Peak Memory 885 MB 229 MB 

Figure 5-3 and Figure 5-4 compare foresight modes for a carbon price scenario. 
The carbon price trajectory is displayed in Table 5-2. 

Table 5-2 
Carbon price scenario ($ per metric ton) 

2025 2030 2035 2040 2045 2050 

7 100 140 197 276 387 

One might expect in this scenario, with a rising carbon price, that there could be 
a substantial difference in model outcomes in earlier model periods under 
sequential myopic foresight. However, in contrast to our previous comparison, 
there is less noticeable difference in generation outcomes across Figure 5-3 and 
Figure 5-4. 
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Figure 5-3 
Generation, a carbon price scenario, intertemporal foresight 

 

Figure 5-4 
Generation, a carbon price scenario, sequential myopic foresight 

For this scenario, the myopic decisions in response to the carbon price in each 
period better align with the intertemporal decisions. For example, the implicit 
annualization factor for wind power in 2025 from the dual of the intertemporal 
solution is 8% in this scenario, closer to the sequential myopic default 
annualization factor.11  

However, on closer inspection of the 2025 model year, we may observe the 
myopic effects through lower retirement of coal generation, and lower 
deployment of wind, relative to the intertemporal scenario. Figure 5-5 presents a 

 
11 That there happens to be a lower distribution of future net revenues for wind power (per unit 
capacity) in this case despite rising carbon prices shows the difficulty of knowing a priori whether 
sequential myopic mode will match intertemporal mode. 
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time slice through the 2025 model year for our two comparisons. Myopic 
foresight can mean a delay in investments and retirements relative to an 
intertemporal optimum. 

 

Figure 5-5 
Generation by technology in 2025 under different foresight approaches 

These numerical comparisons show a broad pattern aligned with the literature, 
where a model with sequential myopic foresight can underinvest or delay 
investment relative to intertemporal foresight, especially in technologies where 
value could change over time. While we focus on the primal model solution here, 
particularly aggregate generation, this observed underinvestment and delayed 
investment across scenarios leads to increased aggregate cost and subsequently 
dual solution prices. We also see the reduced computational time that is 
referenced in other papers in the literature, and a case where the sequential 
myopic approach, depending on the perspective and the question asked, produces 
similar outcomes to the intertemporal approach. There are also likely scenario 
definitions where the divergence would have been greater than what we report.  

In contrast to the literature, we show analytically the mechanism of divergence 
across foresight approaches, and show that, due to the many moving parts 
involved in a numeric computation, it is challenging to state a priori in what cases 
sequential myopic foresight will match intertemporal foresight. 
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Enabling Hourly Resolution 

Table 5-1 displays one of the motivations of the sequential myopic approach, 
namely, the lower computational burden. We harness this computational benefit 
to run REGEN at hourly resolution, maintaining chronology between dispatch 
periods and facilitating the inclusion of energy storage technologies. 

Note that the computational cost of an increase in model resolution from the 
standard REGEN resolution of 120 “representative” periods [1] to 8,760 hourly 
modeling is compounded by the inclusion of variables tracking the state of energy 
storage in each dispatch period in each model year. We currently cannot solve the 
intertemporal version of REGEN at this scale, so no direct comparison of the 
sequential myopic approach is possible. We only may work from the principles 
established earlier in this report in assessing associated model outputs. 

Table 5-3 shows a running time of greater than 32 hours when REGEN is run at 
hourly resolution in sequential myopic mode with storage included (on a desktop 
machine). There is a marked increase in solution time for the later model periods 
as REGEN keeps track of technology vintages, which accumulate over time.12 

Table 5-3 
Sequential myopic solution time (hours) at hourly resolution (with storage) 

2025 2030 2035 2040 2045 2050 

0.9 1.1 5.8 8.3 7.5 8.9 

While the computational benefits of the sequential myopic approach enable 
solving REGEN at hourly resolution with energy storage included, this is likely 
an unacceptable run time relative to roughly 0.5 hours or less with 120 
representative hours (Table 5-1). With tuning of the model implementation and 
the CPLEX solver, this run time is very likely possible to improve. However, this 
first attempt indicates the computational challenge of solving a model with the 
regional breadth and technological detail of REGEN at hourly resolution, even 
in a sequential myopic mode. 

Finally, we note that the sequential myopic version of REGEN at hourly 
resolution may be solved with the default annualization factors earlier discussed, 
or with annualization factors derived from a lower resolution intertemporal run, 
what we term “sequential limited foresight.” This will have the same 
computational cost as shown in Table 5-3, plus the additional computational cost 
of the lower resolution intertemporal run. The adjusted annualization factors 
counter the delayed and reduced investment in new generation observed with the 
sequential myopic approach, however, have no guarantee of guiding the proposed 
sequential limited foresight approach to an intertemporal optimum. 

 
12 Long-term energy models that do not keep track of technology vintages experience faster 
sequential myopic solution times, with similar solution times for each model timestep. 
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Section 6: Conclusion 
The representation of foresight in long-term energy models, while at one level, is 
quite a technical and functional matter, at another level, is core to the 
philosophical underpinnings of what a model is doing and what questions it is 
attempting to answer. The EPRI REGEN model has been developed on the 
premise that an intertemporal foresight approach aligns well with the questions it 
was designed to answer. This analysis has thus investigated how the move to a 
sequential myopic foresight approach from an intertemporal approach would 
change model outcomes, and the scale of computational benefit achievable in 
return. The consequences of the analysis extend beyond REGEN to any long-
term energy models of this type. 

To conduct this investigation, this analysis has reviewed relevant literature on the 
topic, outlined the mechanism of divergence between foresight modes 
analytically, implemented a sequential myopic mode for the REGEN model, and 
conducted numeric analysis.  

In our analysis, the computational benefit of the sequential myopic approach was 
apparent. However, at an hourly resolution, facilitating the modeling of energy 
storage in the REGEN model, the computational burden was still significant. At 
that resolution, we cannot directly assess how sequential myopic foresight affects 
model outcomes relative to intertemporal foresight. At resolutions where we may 
compare outcomes, the divergence in model outcomes varied by scenario, is 
challenging to predict a priori, and has a significance that depends on the lens 
through which it is viewed.  

Underinvestment, and delayed investment, in technologies where a greater 
fraction of net revenues occurs in future model years than implicitly expected by 
standard annualization factors are a feature of the sequential myopic solutions. 
Applying technology specific annualization factors derived from a lower 
resolution intertemporal model is a novel option we introduce to offset this, but 
there is no guarantee that this approach would bias the model’s solution less than 
default annualization factors across all scenarios. Similarly, it is a question of 
judgment whether changes in model outcomes introduced by a sequential 
approach are more grievous than not accurately representing energy storage 
technologies in an intertemporal approach. 
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Finally, directions for future research following this investigation include: 

 An improvement in computation time for the sequential myopic approach at 
hourly resolution, particularly for models like the EPRI REGEN model that 
track technology vintaging.  

 Computational and conceptual research to include storage representation at 
the scale of the EPRI REGEN model in intertemporal mode, particularly if 
intertemporal foresight is the preferred modeling approach philosophically. 

 An understanding of how to adjust the framing of model results if a 
sequential approach is adopted, given what has been shown here and 
elsewhere on how it affects model outcomes. 
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