
production. Performance was evaluated against real-world sites with dis-
tributed PV, with an emphasis on timescales relevant to Distribution 
operations (minutes to days ahead).

KEY FINDINGS
•	 Short-term PV forecasts can be used together with net load measure-

ments to estimate disaggregated load (gross load) for “real-time” opera-
tions, without requiring PV measurement data. This includes estimates 
down to the customer-level, though estimates are more accurate when 
aggregated to coarser granularities. For example, customer-level esti-
mates achieved errors of 6.4% ± 2.6%, while feeder-level estimates 
were 4.8%, relative to the peak load.

•	 Short-term PV forecasts can also be used to forecast gross load over times-
cales of interest to Distribution operations, without requiring PV measure-
ment data. As with real-time estimation, forecasting can be done down to 
the customer-level, though forecasts are more accurate when aggregated to 
coarser granularities, e.g., feeder-level, due to diversity benefits.

•	 Gross load forecasts can be created by either a) first forecasting net load 
and DER production separately, then disaggregating to get a gross load 
forecast (‘indirect’), or b) first disaggregating to estimate past gross load 
and then training a model to predict gross load (‘direct’). Generally, the 
direct method results in more accurate forecasts, but there may be prac-
tical reasons to prefer the indirect method in Distribution operations, 
such as simplicity of implementation and transparency of results.

•	 Improving the accuracy of input DER forecasts enables improvements in 
the accuracy of gross load estimation and forecasting, all else being equal.

Abstract
Distribution operators are facing challenges from load masking, where lim-
ited visibility of Distributed Energy Resources (DERs) can obscure the true 
(aka native or gross) load on the distribution system. While short-term 
forecasting is a cost-effective and scalable solution to providing DER visibil-
ity, a key question is how best to leverage DER forecasts to counteract load 
masking, thereby ensuring safe, reliable, and cost-effective operations of the 
distribution grid. This document details key learnings from a study with a 
large US utility and commercial forecast providers, with the goal of com-
bining advanced solar and load forecasting techniques to estimate the cur-
rent – and forecast the future – gross load for use in Distribution opera-
tions. Practical methods for real-time estimation (via load disaggregation) 
and forecasting are presented and validated against historical measure-
ments. The presented methods are shown to be viable and capable of appli-
cation at granularities from feeder-level down to customer/nodal-level.
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KEY RESEARCH QUESTION
This document aims to provide guidance on leveraging short-term fore-
casts to counteract load masking, with a focus on practical solutions that 
can be incorporated into Distribution operations. It further addresses 
how to use SCADA and AMI measurements to provide operational visi-
bility of disaggregated load (gross load) in both real-time and operational 
planning timeframes This also includes validation of the proposed meth-
ods on a comprehensive dataset that includes contains net load, photovol-
taic (PV) production, and gross load actuals.

RESEARCH OVERVIEW
The analysis evaluated the use of advanced forecasting techniques to pro-
vide customer and feeder-level estimates of gross load for scenarios where 
the net load is known from measurements, but not the distributed PV 
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WHY THIS MATTERS
The continued growth of DERs provides challenges to ensuring safe, reli-
able, and cost-effective operation of the distribution grid. These chal-
lenges are exacerbated by limitations on the visibility of DER production, 
which can mask the true (aka native or gross) load. This document pro-
vides insights and guidance on leveraging short-term DER forecasts for 
load disaggregation and forecasting. The learnings here can potentially be 
aggregated to the transmission level or used in Distribution planning, 
although this is not the focus of the paper.

HOW TO APPLY RESULTS
Distribution operators may use this report as a starting point on the inte-
gration of short-term solar and load forecasting, particularly in applica-
tions where there is a lack of DER visibility. The results may also be used 
as benchmarks for expected performance in terms of estimation and fore-
cast accuracy. 

LEARNING AND ENGAGEMENT OPPORTUNITIES
•	 This work is being conducted as part of a New York State Energy 

Research and Development Authority project. Future reports from this 
project will describe the application of these efforts. 

•	 EPRI continues to collaborate with members and other industry stake-
holders to improve the development and integration of distributed 
energy resources forecasting and load disaggregation. For utilities in 
the New York State area, engaging with this effort would allow use of 
the information in this report in grid operations. 

EPRI CONTACTS: 	Mobolaji Bello, Technical Leader, mbello@epri.com 
	David Larson, Engineer/Scientist III, dlarson@epri.com

PROGRAM:  Distribution Operations and Planning

IMPLEMENTATION CATEGORY: Reference

Introduction
Short-term forecasting can be used to address challenges related to Dis-
tributed Energy Resource (DER) visibility for Distribution operations. 
Figure 1 illustrates how lack of DER visibility can lead to uncertainty 
regarding the gross load, aka the ‘native’ load. Without knowledge of 
DER production (i.e., no DER visibility), a Distribution operator cannot 
conclusively determine the ‘true’ gross load. This lack of visibility can be 
particularly challenging with the growth of behind-the-meter (BTM) and 
small-scale DER systems (e.g., <50 kW), which are rarely equipped with 
monitoring equipment due to a variety of factors. But by using estimates, 
e.g., forecasts, of DER production in lieu of direct measurements, an 
operator can narrow down the range of possibilities and estimate the gross 
load. The question then is how to integrate short-term DER and load 
forecasting for use in Distribution operations.

This document aims to address the challenge of integrating forecasts of 
DER production vs load to maintain safe and reliable operation of the 
distribution grid, with learnings based on analyses using real-world DER 
installations in the US. For more details on the challenges of DER visibil-

ity and methods for short-term DER forecasting, readers are referred to 
the companion Technical Brief “Short-Term Forecasting for DER Visibil-
ity in Distribution Operations” [1].

The rest of the document is organized as follows. Utility Field Experience 
overviews sites and datasets used as the basis for this report. Load Disag-
gregation covers how to leverage short-term DER forecasts to disaggre-
gate net load and estimate gross load, including benchmarks of estima-
tion accuracy at the customer and feeder-level. Gross Load Forecasting 
builds upon the load disaggregation approach to then predict future gross 
load for use in Distribution operations. Finally, Conclusions summarizes 
the key takeaways from the work and future research directions.

Utility Field Experience
This document is based on learnings from on-going work between EPRI, 
a large US utility (hereafter referred to as Utility), a commercial solar 
forecast provider (hereafter referred to as Solar Forecaster), and a com-
mercial load forecast provider (hereafter referred to as Load Forecaster). 
The details provided here will be referenced throughout the rest of this 
document. Note that the work presented here is from the same project 
referenced in [1].

Sites
The Utility, in coordination with EPRI, identified over 70 sites for use in 
the study. The selection of sites was based on the following criteria: (1) 
sites with existing small-scale (<50 kW) PV and BTM installations, (2) 
sites with co-located meters for (separately) measuring net load and PV 
production, and (3) sites located within the same region of the Utility’s 
service territory. In total, the selected sites represent over 400 kW of PV 
nameplate capacity.

Datasets
For each site, the Utility provided approximately two years (2019–2020) 
of hourly-resolution net load and 15-min resolution PV production actu-
als. EPRI aggregated the site-level net load and PV production data to 
create ‘pseudo’ feeder-level datasets. In parallel, the Solar Forecaster pro-
vided 15-min resolution PV production forecasts for each site covering 
horizons of minutes to days ahead. Additionally, both the PV and load 
forecasts were created in accordance with operational constraints, i.e., the 
models only used information that would be available at the time of fore-

Figure 1. Example of how a single net load profile can be the result of any 
number of gross load and DER profile combinations.
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cast. Note that the PV production forecasts were generated using a meth-
odology that does not rely on measurements of PV production and 
instead only requires standard information regarding the PV system 
details, e.g., installed capacity, DC:AC ratio, panel orientation and tilt. 
See [1] for more details on the PV forecast methodology.

Note: unless stated otherwise, all reported results are based on the hourly-
resolution data from Summer 2020 (June–September). The data from 
January 2019–May 2020 was used for training the load forecast models and 
therefore was not included when evaluating forecast model performance.

Forecast Use Cases
Table 1 summarizes forecast horizon vs use cases for short-term forecasts 
in Distribution operations that were identified by EPRI in collaboration 
with the Utility:

•	 Fault Location, Isolation and Service Restoration (FLISR)
•	 Dynamic Operating Envelopes for Constraint Management
•	 Volt-Var Optimization (VVO) with DER (smart inverters)
•	 DER dispatch, e.g., energy storage (ES)
•	 Maintenance/scheduling
•	 Contingency analysis

where the horizons are classified here as nowcasts (<5-mins ahead), intra-
hour (<1-hour), intra-day (≥1 hour), day-ahead (≥24 hours), week-ahead 
(≥7 days) and month ahead (≥30 days). Note however that this is not an 
exhaustive list and that integrating forecasts in Distribution operations is 
an area of active research.

Load Disaggregation
The first task was to focus on the problem of estimating gross load–aka the 
native load–when the net load is known but not the DER production. This 
problem can be thought of as a specialized case of non-intrusive load moni-
toring (NILM), where the goal is to disaggregate a (net) load signal into its 
underlying components. For example, given AMI measurements of load of 

a home, NILM methods could be used to estimate what percentage of the 
aggregate load is due to a refrigerator vs washing machine vs air condition-
ing. However, in the task evaluated, the concern is solely with disaggregat-
ing DER production from (measured) net load to get the gross load, which 
we will refer to as ‘load disaggregation.’

One solution to estimating gross load is to use short-term forecasts as a 
proxy for (direct) measurement of DER production. Assuming net load 
measurements are available and that the forecasts are sufficiently accurate, 
the gross load can then be estimated as:

Gross Load = Net Load + DER Production,

which is a simple rearrangement of:

Net Load = Gross Load – DER Production.

Figure 2 provides a visual explanation of this approach to load 
disaggregation.

The challenge then is in estimating the DER production without access 
to measurements of DER production. In the case where the DER is PV 
without energy storage, the PV production can be estimated using physi-
cal modeling based methods and details regarding the PV system, e.g., 
nameplate capacity, DC:AC ratio, panel orientation and tilt. For exam-
ple, solar irradiance at any location in the US can be estimated from 
geostationary satellite imagery, which can then be translated into PV pro-
duction using commercial or open-source irradiance-to-power modeling 
tools, e.g., PVLIB [2] or the System Advisor Model (SAM) [3]. For other 
DER, further assumptions must be made regarding the DER operation 
and therefore purely physical modeling based methods may not be viable 
for estimated DER production. For example, a battery energy storage 
system (BESS) could be operated for demand-charge reduction, energy 
arbitrage, demand response or a number of other applications, each 
resulting in a different DER production profile despite being based on the 
same DER technology.

Table 1. Forecast horizon vs use cases for Distribution operations.

Horizon FLISR Hosting Capacity VVO DER Dispatch
Maintenance/

Scheduling
Contingency 

Analysis

Nowcast    

Intra-hour     

Intra-day    

Day-ahead    

Week-ahead  

Month-ahead  
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Estimation Accuracy
The proposed load disaggregation approach for estimating gross load can 
be used regardless of the spatial granularity. This commenced with site-
level estimation using hourly-resolution net load measurements from 
AMI and PV production nowcasts (<5-min ahead) provided by the Solar 
Forecaster, with the gross load actuals computed from net load and PV 
production measurements provided by the Utility. Figure 3 shows the 
accuracy of the gross load estimation–in terms of root mean square error 
(RMSE) normalized by peak load–as a function of the PV nameplate 
capacity and peak load per site. Excluding one outlier site (with a RMSE 
of 62.5%)1, the RMSE values are fairly uniform (6.4% ± 2.6%), indicat-
ing that estimation accuracy is not (strongly) dependent on peak load, PV 
capacity or other variations between sites.

Applying the same approach to estimate the feeder-level gross load results 
in a RMSE of 4.8%. The lower error (higher accuracy) of the feeder-level 
estimation can be primarily attributed to two complementary factors. 
First, aggregating PV production from spatially distributed sites tends to 
reduce variability due to spatial smoothing effects and lower variability 
PV production is easier to predict. Second, aggregating forecasts to 
coarser granularities can be more accurate due to errors from finer granu-
larity forecasts canceling each other out such that the overall error is 
reduced.

Figure 4 compares the daily profiles of gross load calculated from mea-
surements vs estimated using forecasts. While the profiles are not identi-
cal, the figure illustrates how the proposed approach can also be used to 
develop load profiles for use in planning studies, though that is beyond 
the scope of this document.

Gross Load Forecasting
Next is addressing the forecasting problem. More specifically, how to 
leverage short-term PV forecast when forecasting gross load. Here the 
goal is to make a prediction at time T of the gross load at future times 
{T+1, T+2, …} using only information available at time T or before {T-1, 
T-2, …}. Two approaches are considered, which are referred to as ‘indi-
rect’ and ‘direct’ (as illustrated in Figure 5). Unless stated otherwise, all 

1 The outlier site had uncharacteristically large PV forecast errors, which were due 
to incorrect PV system details (e.g., AC capacity). The site was left in the analysis 
to highlight how results depend on the accuracy of the PV system details and that 
measurements can be used to diagnose model performance.

Figure 3. Site-level gross load estimation error (marker color) as a function of 
PV capacity and peak load. Each circle marker represents one site.

Figure 4. Distribution of feeder-level gross load by hour of the day using net 
load measurements with either (a) measurements of PV production or (b) 
estimated PV production from forecasts.

Figure 2.  Illustration of the gross load estimation method.
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results are based on a schedule where hourly-resolution forecasts are gen-
erated once per day at midnight (local time) for the next 24 hours.

The indirect method involves first forecasting the net load for future times 
{T+1, T+2, …}, and then disaggregating the net load forecast using a 
DER forecast to predict the gross load for {T+1, T+2, …}. In contrast, the 
direct method starts by estimating the gross load for the prior times {T-1, 
T-2, …} by disaggregating the past net load and then applying a model to 
directly predict the gross load for future times {T-1, T-2, …}. In other 
words, either (a) forecast net load first and then disaggregate to predict 
the gross load (indirect method) or (b) disaggregate the past net load first 
and then forecast using the estimated past gross load as input (direct).

Forecast Accuracy
Figure 6 shows the accuracy of the indirect method for site-level forecasting 
using PV production forecasts from the Solar Forecaster and net load fore-
casts from the Load Forecaster using Machine Learning models trained on 
historical net load data. Similar to the gross load estimation results (Figure 
3), the forecast accuracy (normalized RMSE) is fairly uniform across sites, 
aside from the same outlier site. And at the feeder-level, the indirect method 
achieves a RMSE of 12.2%. While the forecast error magnitudes are greater 
than the gross load estimates, this is an expected result given that forecast 
accuracy tends to decrease as the horizon increases.

The direct method of forecasting gross load–using PV production fore-
casts from the Solar Forecaster and net load measurements from the Util-
ity–shows similar trends to the indirect method, i.e., fairly uniform accu-
racy across sites and higher RMSE values than the gross load estimation 
results. However, the direct method results in lower error for both site-

Figure 5. Comparison of indirect vs direct forecasting approaches. The indirect approach involves first forecasting net load and DER production (separately), 
and then disaggregating to get the gross load forecasts. In contrast, the direct approach first disaggregates the past load and then uses a statistical model to 
predict the gross load.

Figure 6. Site-level gross load forecast RMSE (marker color) as a function of 
PV capacity and peak load. Each circle marker represents one site.

0



EPRI Technical Brief	 6	 November 2021

level (15.9% ± 7.2% vs 17.3% ± 7.5% for the indirect method) and 
feeder-level forecasts (9.8% vs 12.2% for the indirect method). These 
results have parallels to transmission level load forecasting, including the 
use of short-term forecasts of distributed PV to counteract lack of DER 
visibility [4].

The higher accuracy (lower error) of the direct method can be attributed 
to the two factors. First, training of the Machine Learning model allows 
the direct method to minimize error by tuning the model using historical 
data, whereas the indirect method (as implemented) assumes the input 
net load and PV production forecasts are already ‘optimal’. Therefore, the 
indirect method can lead to compounding errors, e.g., over-prediction of 
net load at the same time as over-prediction PV production would result 
in even greater over-prediction error. Second, gross load tends to be less 
variable than net load with PV production and therefore easier to predict. 
However, note that while these two factors are likely to apply to other 
systems, leading to the direct method (generally) resulting in lower error 
than the indirect method, the results may vary significantly between dis-
tribution grids due to differences in, e.g., weather/climate, penetration of 
DER and customer behaviors.

Impact of DER Forecast Accuracy
While the direct method achieves lower error than the indirect method 
using the same PV production forecasts, a natural follow-up question is 
whether the error can be further decreased by improving the PV produc-
tion forecasts. Direct forecasts produced are compared using the same 
procedure, with the only change being the input PV production 
forecasts:

•	 Baseline: same PV production forecasts as the prior subsection; PV 
forecasts generated once per day at midnight (local time) for the next 
24-hours hours

•	 Improved: PV production nowcasts (<5-min ahead), which represent 
an upper bound on the accuracy of commercially available PV produc-
tion forecasts

•	 Perfect: measurements of PV production, which represent PV fore-
casts with zero error and therefore a ‘best case’ scenario for gross load 
forecasting

Figure 7 compares the distribution of site-level RMSE for the indirect 
method and three variations of the direct method. Direct forecasting 
using the improved PV production forecasts reduces the mean RMSE but 
has a negligible impact on the spread of RMSE values (14.9% ± 6.9% vs 
15.9% ± 7.2% for direct baseline). In comparison, direct forecasting with 
perfect PV production forecasts further reduces the mean RMSE while 
also significantly reducing the RMSE spread (12.9% ± 3.2%). A similar 
trend is observed for feeder-level forecasts, with the choice of PV produc-
tion forecasts reducing the RMSE from 9.8% (baseline) to 7.3% 
(improved) to 6.3% (perfect). The reduction in error indicates that the 
direct method accuracy is dependent on the PV production forecast accu-
racy, but only to a limit.

Considerations Beyond Forecast Accuracy
The accuracy results imply that the direct method is preferable over the 
indirect method when the primary goal is minimizing gross load forecast 
error. However, there are practical considerations that may influence a 
Distribution operator to adopt the indirect method despite its (compara-
tively) lower accuracy. Here, some of these factors are briefly discussed, 
while emphasizing that the importance of these factors and their influ-
ence on the final decision may vary significantly between Distribution 
operators, as well as change over time.

•	 Simplicity of implementation: The indirect method requires overlap-
ping forecasts of both net load and DER production but is otherwise 
agnostic to how the input forecasts are produced and only requires 
adding the two forecasts, which makes the method implementable in 
almost any scripting language (Python, Matlab, etc.), Excel spread-
sheets or even directly via a database query. In contrast, the direct 
method requires coordination between the DER and load forecasters, 
who can be different entities.

•	 Transparency of results: The simplicity of the indirect method (i.e., 
gross load forecast = net load forecast + DER production forecast) also 
means it may be viewed as clearer to forecast users, particularly in terms 
of the causes of forecast errors. In contrast, the direct method may be 
viewed as more of a “black box” and therefore less directly informative 
to Distribution operators.

•	 Robustness and scalability: The separation of the net load and DER 
production forecasts means the indirect method can immediately 
switch to improved or alternative forecasts as they become available, 
without any retraining. This also means the indirect method may be 
able to adapt more quickly to changes in a system, e.g., additional 
DER capacity coming online, and use multiple forecasts in an ensem-
ble, which is a common practice in transmission level forecasting.

Figure 7.  Site-level gross load forecast RMSE for the indirect method vs the 
direct method with three levels of input PV forecast accuracy (baseline, 
improved and perfect).
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Conclusions
Distribution operators are facing challenges related to DER visibility and 
load masking as the growth of PV and other DERs continue to increase. 
A potential solution to these challenges–that is both cost-effective and 
scalable–is to leverage short-term forecasting techniques. Results from 
on-going work with a larger US utility and commercial forecast providers 
have resulted in several key takeaways on leveraging short-term forecast-
ing for Distribution operations:

•	 Nowcasts (<5-min ahead) of PV production can be combined with net 
load measurements to provide “real-time” estimation of gross load in 
scenarios where the PV production (and therefore gross load) is 
unknown. At the feeder-level granularity, gross load estimation error 
can be as low as 4.8% of the peak load, compared to 6.4% ± 2.6% for 
customer-level estimates.

•	 Gross load forecasts can be created by either a) forecasting net load first 
and using a DER forecast to disaggregate to get the gross load (indi-
rect) or b) disaggregate past net load to estimate past gross load and 
then forecasting using the past gross load as input (direct). Results indi-
cate the direct forecast approach achieves higher accuracy (lower error) 
overall.

•	 The accuracy of both gross load estimation and forecasting can be 
increased by improving the input DER forecast data, all else being 
equal.

•	 Gross load estimation and forecasting at coarser granularities, can be 
more accurate, e.g., aggregating site-level estimates to produce feeder-
level estimates can yield higher accuracy (lower relative error) than 
individual site-level estimates. But site-level estimates and forecasts 
may still be sufficiently accurate for use in Distribution operations.

•	 While not the focus here, similar methods could be leveraged to pro-
vide forecasts of aggregate DER to bulk system use cases, realizing that 
the granularity needed would likely be different.

The next step is to build upon the learnings from this document to focus 
on integrating short-term forecasts into Distribution operations. A fol-
low-up technical brief is planned that will demonstrate use cases for 
short-term forecasts in Distribution operations, e.g., FLISR, dynamic 
operating envelopes for constraint management, VVO, and DER dis-
patch. This is expected to include benchmarks and guidance for Distribu-
tion operators looking to incorporate short-term forecasting.
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