
attention and review. In this approach, much of the inspector’s energy 
and the analysis time is inevitably spent on benign portions of the data 
(the white records in Figure 1).

• Instead, AI technology prescreens the data volume and flags the suspi-
cious portions of the data volume. Thus, it enables qualified inspectors 
to adequately focus their energy on those regions. This is expected to 
effectively reduce inspector fatigue, minimize distraction-induced 
errors, and decrease overall analysis time.

Note that in the AI-assisted approach, the AI technology simply identifies 
regions for the inspector to review, and does not make final calls. Final 
disposition of the flagged indications remains the responsibility of the 
qualified inspector. It is expected that most flagged indications, although 
a small fraction of the entire data volume, still represent normal operating 
aspects, such as weld interference or other fabrication conditions, and not 
necessarily service-induced degradation (see field trial example). An 
inspector’s expertise is required to make such determination.

There are two main methods by which AI can flag the data for the inspec-
tor. At the first level, AI can flag a relatively small region without precisely 
indicating where the potential indication(s) is (are); this is illustrated in 
Figure 2. At a more detailed implementation level, it can directly flag the 
indication itself, specifying bounding boxes to indicate its precise location 
in the data for the inspection to review; this is illustrated in Figure 3.

Although the more detailed implementation is preferred, it comes at the 
cost of requiring more training data annotated at a greater detail level and 
more complex models. The simpler, region-flagging approach might suf-
fice for certain applications, whereas others will require the more detailed 
indication method to properly differentiate between the flaw and other 
non-relevant responses.

This technical brief provides an overview of EPRI’s recent efforts to develop 
artificial intelligence (AI)-assisted analysis of ultrasonic inspections. It 
describes what AI-assisted analysis is, its envisioned value and uses, and its 
implementation methodology. It reviews the state of the technology for two 
target applications, including the results from a recent field trial supported by 
the industry, and considers its prospects for qualification as a credited exami-
nation. The results suggest that AI-assisted analysis has the potential to increase 
inspection reliability while decreasing analysis time and provide a positive 
outlook on its qualification.

Overview
Background

Ultrasonic testing (UT) is the main volumetric inspection method in the 
nuclear power industry and an essential part of every plant’s nondestruc-
tive evaluation (NDE) program. UT is employed to assess the condition 
of several safety-related components, such as nozzle and piping welds.

Some of the UT inspections performed in the field yield large volumes of 
data that must be carefully reviewed by multiple qualified inspectors dur-
ing an outage. Even though the vast majority of the data are benign, with 
no indications of interest, a detailed review of all data is still needed. This 
requires inspectors to maintain high levels of focus for extended periods 
in an environment with multiple sources of distraction and pressure. 
Under these conditions, human factors such as fatigue and momentary 
lack of focus can challenge the reliability of these inspections.

Additionally, the data analysis and review for these inspections require 
significant qualified resources and time. Multiple qualified inspectors 
(from the inspection vendor and utility) must be available over several 
days. This adds stress to the industry workforce and outage schedules.

AI-Assisted Inspections

Artificial intelligence (AI) can alleviate these inspection challenges. AI-
assisted inspections can lead to increased inspection reliability in shorter 
analysis times by enabling the qualified inspectors to focus their time and 
energy on the portions of data that most require it. This is illustrated in 
Figure 1.

• In the traditional inspection, the qualified inspector is presented with 
all the data. This typically represents a large volume of records, most of 
which are benign. Having no alternative, they must distribute their 
time, energy, and attention equally across all data, even though only a 
small fraction of the data (the red records in Figure 1) is expected to 
contain suspicious indications that require most of their concentrated 

AI-Assisted Analysis of Ultrasonic Inspections 
Technical Brief — Nondestructive Evaluation

Figure 1. In the traditional inspection, the inspector is forced to distribute their 
energy over all the data records, even though only a small fraction (indicated 
by the red shading) includes conditions that need review. AI technology can 
prescreen the data and present only the records that need the inspector’s 
attention.
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Figure 2. At the first level, AI flags a small region for review (indicated by red highlights). The specific triggering indication is not localized in the flagged region.

Figure 3. At the mode detailed level, the AI directly localizes individual indications in the data, as illustrated by the color bounding boxes. The data can then be 
automatically gated to each indication for review.
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Added Value: Envisioned Uses

The main envisioned use of the technology is as part of a credited, quali-
fied inspection. Although that requires qualification (see later section on 
qualification prospects), the technology can be leveraged to bring value to 
the industry even before that is accomplished.

Additional, more immediate uses that do not require qualification 
include:

• To aid in utility oversight. Review of the data and results provided by 
their inspection vendors is an important oversight activity for the util-
ity. However, a comprehensive review in the traditional approach 
would require considerable resource allocation from the utility staff 
during the outage, which makes this valuable review difficult to per-
form. By automatically identifying a subset of the data for review, the 
AI-assisted approach makes it possible for the utility to perform a 
meaningful review of the results, enabling them to conduct a more 
efficient oversight of the activity.

• To assess needed resources. Utilities can quickly obtain an estimate of 
the fraction of the data that is flagged for review by applying the tech-
nology to the data from the last outage. This can be accomplished 
through automated reports, without requiring data review. Having an 
estimate of the volume of data needing review allows utilities to plan 
and allocate resources for the next outage accordingly.

• To prioritize inspection order. Utilities can leverage the technology to 
quickly review the last outage data to identify which components are 
more likely to contain relevant indications and prioritize the inspection 
order accordingly. Because data analysis is much faster than in the tra-
ditional approach, this can be accomplished even after the plant is 
offline but before the specific inspections begin.

• To familiarize examiners with component conditions. The technology 
enables inspectors to perform a meaningful review of previous inspec-
tion data in minimal time, even in between the time the outage has 
begun and the time the specific inspection starts. This would allow the 
inspectors to quickly familiarize themselves with the expected condition 
of the component immediately prior to the examination, making it 
easier to identify changes that might indicate evolving conditions.

Another benefit of the technology is that it is well suited to automation of 
the otherwise time-consuming, error-prone clerical tasks related to 
reporting. Also, AI technology can be leveraged to facilitate data compari-
son across different outage inspections.

Simple and Secure Implementation

The implementation methodology is illustrated in Figure 4. No changes 
are required during data collection—data are acquired according to the 
qualified procedure as usual. After collection, the UT data file is copied to 
the machine learning (ML) box which acts as an external drive. The ML 
box automatically detects and processes the UT data file, generating the 
output for review. It is expected that the entire process will take less than 
a minute.

Data security and simplicity are key aspects of this approach, as follows:

• Data security. The data do not leave the site. No cloud or other remote 
resources are used. The UT data and output can be erased from the ML 
box after the results are copied to the desired location on site.

• Simplicity. No specific training or knowledge is required to use and 
run the models. The ML box automatically detects the presence of 
compatible UT data files and generates the output. Also, no custom or 
special software is required for data analysis: the results are presented as 
HTML files that can be reviewed in any common browser. Lastly, the 
browser interface is simple and intuitive, requiring no training.

Reactor Vessel Upper Head 
Penetrations
The first application for which AI-assisted inspection is developed is reac-
tor vessel upper head (RVUH) penetrations. This examination commonly 
uses time-of-flight diffraction UT techniques to inspect all penetrations 
on the vessel head. Given the number of penetrations, this yields large 
volumes of data for analysis. Furthermore, industry operating experience 
(OE) has suggested that data analysis is challenging.

Figure 4. Implementation: 1) UT data are collected as usual; 2) the data are copied into the ML box, which automatically detects and processes the UT data; and  
3) generates the output for review.
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Models were developed for this application based on field data from 
retired vessels, pre-service inspection (PSI) data, and open mockup data. 
The approach leveraged virtual flaw technology to augment the available 
datasets to generate the amount of data needed for training ML models. 
The model was trained to identify both the arc-like tip response signals 
from inner- and outer-diameter (ID and OD) flaws as well as disruptions 
in the lateral wave (LW) usually caused by ID flaws (see Figure 5). Note 
that the available data for training contained only axial flaws; support for 
circumferential flaws was added through virtual flaw technology.

The performance of the model was initially assessed on the following two 
case studies:

• Industry OE. In this case, the model was presented with data from 
inspections at a U.S. plant where ID axial flaw indications were uniden-
tified or mischaracterized for multiple sequential examinations. The AI 
tool flagged 13% of the data volume review, which included all the 
flawed regions in every opportunity. Most datasets in this case use an 
inspection setup that is underrepresented in the training data. In the 
tests, this is seen to lead to a relatively higher flag rate (see Table 2 for a 
comparison with the other study cases) but not to affect detection 
capabilities.

• Pre-service inspection. The model was presented with PSI data for 65 
penetrations on a new vessel head that included tapered configurations. 
The AI tool flagged less than 1% of the unflawed data volume for review.

Field Trial

The most significant performance assessment was conducted during a 
field trial at a volunteer U.S. host utility. A team of EPRI analysts and the 
AI contractor performed an AI-assisted data analysis during a regularly 
scheduled outage inspection. The field trial provided an opportunity to 
evaluate the performance of the AI in a field setting, the implementation 
methodology, and the potential time savings offered.

This analysis was performed in parallel to, and independent from, the 
traditional inspection performed by the qualified inspection vendor 
engaged by the host utility. Following an established communication 
plan, there were no interactions between the EPRI analysts and their con-
tractor and the utility’s inspection vendor, except as directed and reviewed 
by the utility lead NDE staff responsible for the inspection. The utility 
lead NDE staff provided the UT data as they were collected and was 
briefed on and reviewed the results of both analyses. The parallel AI-
assisted analysis did not interfere in any way with the schedule, analyses, 
or results of the traditional inspection.

The activity began by performing an AI-assisted analysis of the previous 
outage data. This was done after the outage had started but before the 
scheduled RVUH examination started. This enabled the team to obtain a 
preliminary assessment of the tool’s performance and the implementation 
method in preparation for the current outage examination. The observed 
overall performance of the tool in this analysis was good. It flagged 
approximately 5% of the full data volume for review, which allowed the 
full analysis to be completed in 4 hours; based on the analyst’s experience, 
it would have taken nearly three days to complete the same analysis with-
out the AI tool. Previously repaired locations with embedded indications 
were correctly flagged.

At the same time, the team noted a known end-of-tube condition that, 
although benign, consistently triggered flags, and identified an opportu-
nity for improvement. The EPRI team and AI contractor then leveraged 
three files from the previous outage to retrain the model on site to inform 
the model about the identified condition. The retrained model was vali-
dated against benchmark data to ensure that detection performance was 
not degraded. All this was accomplished on site, after the outage had 
begun but before the scheduled RVUH examination started.

Figure 5. The RVUH model was trained to identify the arc-like responses caused by ID and OD flaw tips (left) and the disruption in the lateral wave caused by ID 
flaws (right).
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The results of the retrained model on the field data were positive. The 
identified issue was addressed, and the flag rate was reduced to 2% of the 
entire volume, which represents a 60% reduction in the amount of data 
flagged for review while maintaining the same detection performance. 
This result showcases the notable value in including site-specific data in 
the model training, highlighting the benefit to utilities when they share 
their data for inclusion in the model development.

The new model trained on site was applied to the current outage data as 
they were collected on the site’s 78 penetrations. It flagged approximately 
2% of the data volume for review. The AI-assisted analysis averaged  
~4 minutes per penetration, and that included time to fully record the 
trigger reason of all flagged regions. This was done for learning purposes 
in the field trial; such level of detailed characterization would not be 
required in a typical data analysis. The tool successfully flagged all relevant 
locations and yielded the same results as the traditional analysis from the 
qualified inspection vendor while only reviewing 2% of the entire data 
volume. Table 1 compares the amount of data requiring inspector review 
in each approach: over the 78 penetrations inspected during the field trial,  
the 2% flag rate leads to a reduction from 4.4 miles (7.0 km) of data to 
463 ft (141 m). The relevant indications were all contained in the 463 ft 
(141 m) of data identified by the AI tool.

The results of the detailed analysis of the conditions leading to a flag trigger 
are shown in Figure 6. The analysis indicates that most of the flags (~56%) 
were triggered by weld interface or mechanically induced responses. These 
types of responses require inspector review to proper characterization and 
disposal; therefore, their flagging is deemed adequate. Only ~13% of the 
flags were true “false flags” from the underlying ML model and had no 
identifiable trigger reason related to tube condition.

 

The field trial provided the opportunity to identify further ways the AI-
assisted analysis can benefit the inspection process. Namely, it was noted 
that the automation of clerical tasks (such as recording certain inspection 
attributes) that it enables can bring considerable added value to the activity 
in that it reduces time and minimizes opportunities for errors. Further-
more, it was noted that the simplicity of the tool can be leveraged to allow 
inspectors to more easily compare the results from the current and previous 
outages. These areas are noted for further evaluation and development. 

The field trial activities, results, and timeline are summarized in Figure 7.

Table 1. Approximate amount of data requiring review in each approach at 
field trial.

Traditional Inspection AI-Assisted Inspection

4.4 miles 463 ft

7.0 km 141 m

Figure 6. Types of responses flagged by the AI tool during the field trial. High 
weld interface disturbances and mechanically induced indications triggered 
most flags (about 56%); only ~13% of the flags were true ML false calls 
triggered by noise.

Figure 7. Summary of field trial activities.
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Dissimilar Metal Welds
The second target application for AI-assisted analysis is dissimilar metal 
welds (DMWs). Encoded examinations of these components commonly 
include multiple skew and refraction angles. This multitude of ultrasonic 
beams is valuable to improve detection capabilities because different tar-
get flaws respond better to different beams. At the same time, it also leads 
to voluminous and laborious data analysis because each channel needs to 
be reviewed independently.

For this case, the AI-assisted solution under development leverages the 
more detailed approach, where it localizes each individual indication for 
review. The process is illustrated in Figure 8: the AI tool exhaustively goes 
through all channels in detail, localizing areas of interest in each; then, it 
consolidates related responses into indications and provides a C-scan-type 
overview with bounding boxes, complete with an indication table, as 
illustrated in Figure 3. Once an indication is selected, the user can review 
the corresponding response from each channel where it appears. The 
interface also allows simple preliminary measurements (see detail in bot-
tom-left image of Figure 3).

Data from EPRI open-qualification samples have been extensively used to 
support the development of this application, again augmented by virtual 
flaw technology. Some additional data from thermal fatigue flaws are also 
being leveraged.

As of the writing of this brief, the model has been initially trained and 
assessed on open samples with good results. Further evaluation on blind 
samples is underway, as well as efforts to fine-tune the reporting and 
workflow to fully leverage the more detailed output provided by the 
model. Qualification prospects will also be assessed.

Based on the experience with the RVUH application, a field trial of an AI-
assisted DMW ultrasonic examination is crucial to support the further 
development and assessment of the approach. The field trial will provide a 
unique opportunity to assess the performance of the model and the pro-

posed workflow under real field conditions. Therefore, EPRI is seeking vol-
unteer utilities to host such a field trial in 2023. As with the RVUH field 
trial in early 2022, the activity is to be performed in parallel to but com-
pletely independent from the traditional inspection by the qualified vendor, 
without interfering with the outage schedule. Data security will be main-
tained—all data remain on site. EPRI member utilities interested in sup-
porting this effort by hosting a field trial are encouraged to contact EPRI.

Qualification Prospects
As mentioned, the main envisioned use case for the technology is as part 
of a credited inspection, for which qualification is required. The natural 
question then is, what could qualification of an AI-assisted analysis be 
like? Although the answer is not yet clear and definitive because this is a 
first-of-its-kind technology in the industry, some prospects for qualifica-
tion can be discussed.

First, the AI-assisted analysis would likely be subject to a procedure quali-
fication, where 100% detection is required. Assuming the hypothetical 
procedure specifies that the inspector reviews only the regions flagged by 
the tool, this would require the underlying AI model to flag all the flawed 
regions within the scope of the procedure for inspector review. Otherwise, 
the inspector would not have an opportunity to detect all flaws, and the 
procedure qualification detection requirement cannot be met.

To assess whether the AI model can meet such a high detection perfor-
mance demand, the RVUH model was exposed to more than five times 
the amount of data required for a traditional Performance Demonstration 
Initiative (PDI) procedure qualification. The results show that the model 
accurately flagged all flawed regions, which included:

• Craze cracking

• Axial, circumferential, and off-axis oriented flaws

• Small and large through-wall flaws

• ID and OD surface-connected flaws

The observed flag rate varied from 13% to 59%. The considerably higher 
value when compared to the other case studies is explained by the fact 
that the specimens are much more flaw-dense in this case. Notwithstand-
ing, review of the results still indicates the capability of the model to dis-
tinguish between flawed and non-flawed regions. As discussed, the final 
determination (flawed or non-flawed) is still the responsibility of the 
inspector reviewing the regions flagged by the model. This result simply 
indicates that the human analyst would have the opportunity to detect all 
flaws within the scope of the procedure, as required for successful proce-
dure qualification. Therefore, the observation from this study is that the 
AI-assisted analysis is expected to be able to meet the qualification 
requirements.

A potential qualification approach is illustrated in Figure 9. First, a proce-
dure would be updated to include a defined process for the AI-assisted 
evaluation. All necessary AI algorithms for qualification would be pro-
vided to the qualification body prior to the activity; at this stage, the 
model version is frozen and would no longer be able to change without 

Figure 8. AI analysis process for DMW application.
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invalidating the qualification. The potential qualification process illus-
trated in Figure 9 is as follows:

1. Data are collected as determined in the procedure. Typically, this 
follows the same data collection approaches used today.

2. The pre-recorded data are loaded into the ML box, which applies 
the AI model and generates a report identifying the flagged regions 
for review.

3. The qualification body then reviews the output from the ML box 
to determine whether all flawed regions in the scope of the 
procedure have been flagged. If they have, the process continues 
with the flagged regions being presented to the candidate for 
review. If all flawed regions were not flagged, the qualification exam 
is unsuccessful because the candidate, if exposed only to the flagged 
regions, would not have the opportunity to detect all flaws and 
achieve the required 100% detection for the procedure.

4. The candidate reviews only the regions flagged by the ML box and 
makes his or her calls. The qualification body reviews the final 
candidate’s calls and assesses pass/fail based on the typical 
applicable detection and false-call criteria.

The preceding generic outline assumes a procedure in which the candi-
date reviews only the regions flagged by the model, and it is perhaps more 
directly applicable to a model that provides the screening output (like for 
the RVUH application covered previously) rather than the indication 
table. Several variations can be incorporated; for example, it could call for 
the flagged regions plus a certain extent to either side of it to be reviewed 
by the candidate inspector. The specific desired approach needs to be 
defined in the procedure.

Summary
Table 2 summarizes the results of the studies covered in this brief. They 
suggest that the AI-assisted analysis significantly reduces the data volume 
for review because it maintains low flag rates while still providing the 
analyst with all the available opportunities to detect the flaws. This 
enables them to focus their attention and energy on the portions of data 
that need it the most. Inspection reliability is increased by minimizing 
opportunities for human performance issues caused by momentary lack 
of focus or fatigue, and data analysis time is shortened considerably.

Qualification prospects were also assessed, and it is expected that the AI-
assisted analysis can meet the qualification exam requirements. A poten-
tial qualification process that leverages the existing industry qualification 
framework is proposed; it can be adapted or used as a starting point 
toward defining a method to qualify AI-assisted procedures.

Finally, work in this area continues for other applications. In particular, 
models for AI-assisted DMW examinations are in advanced stages of devel-
opment, and EPRI is seeking volunteer utilities to host a field demonstra-
tion of the technology to support further assessment and development.

Additional EPRI Resources
Refer to the following EPRI resources for more information on this topic 
and other ways AI can be leveraged to benefit NDE and the nuclear sector.

• Automated Analysis of Ultrasonic Inspection of Reactor Vessel Upper Head 
Penetration Welds (3002021043)

• Quick Insight Brief: Leveraging Artificial Intelligence for Nondestructive 
Evaluation (3002021074)

• Quick Insight Brief: Leveraging Artificial Intelligence for the Nuclear 
Energy Sector (3002021067)

Table 2. Summary of performance case studies.

Industry OE PSI Field Trial Mock Qualification

Flag rate 13% <1% 5% initially; 2% after on-site retraining 13–59% (higher flaw density)

Detection All flawed regions 
flagged

— Provided same results as independent 
analysis from qualified inspection vendor

All flawed regions flagged in more than five times the amount of data 
typically required for procedure qualification

Figure 9. Potential qualification process. The AI model is provided to the qualification body and frozen prior to the activity.
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