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 v  

Abstract 

 

This report describes the application of stationary airborne acoustic 
sensing to provide area-wide monitoring of the health of electrical 
motors and generators. Airborne acoustic sensing can provide many 
of the same detection and monitoring capabilities as contact vibration 
sensing for measuring machinery health and detecting and classifying 
faults. The project analyzed the design and implementation of 
airborne acoustic monitoring systems using single microphones and 
microphone arrays as discussed in EPRI report 3002015880, Area-
Wide Acoustic and Electromagnetic (AEM) Signature Health 
Monitoring: Phase 2. The project also analyzed the design of 
microphone arrays to improve source localization and reduce 
interference from other noise sources. Data are presented herein 
which demonstrate the detection of motor faults from laboratory 
testing of motors with seeded electrical and mechanical faults using 
machine learning (ML) techniques applied by EPRI and the 
principal investigators. 
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Deliverable Number: 3002023744 
Product Type: Technical Report  

Product Title: Acoustic Emissions Monitoring Study: Application of Airborne Acoustic 
Sensing for Motor Generator Fault Detection in a Laboratory Environment 

 
PRIMARY AUDIENCE: Research and development personnel with an interest in developing, implementing, or 
commercializing airborne acoustic monitoring systems for electrically-driven rotating machinery. 
SECONDARY AUDIENCE: Utility personnel involved in equipment online monitoring, and vendors developing 
acoustic sensing systems 

KEY RESEARCH QUESTION 

Can area-wide airborne acoustic monitoring be effective to identify equipment degradation or failure in motors 
and generators? 

RESEARCH OVERVIEW  

This project used airborne acoustic sensors consisting of a single microphone and multi-microphone arrays 
for the detection and classification of faults in electric motors and generators. The project investigated the 
effects of distance and angle on acoustic signatures to examine the differences between independent 
“signatures” taken from faulty equipment and baseline data from healthy equipment of similar form, fit, and 
function. Experiments compared the detection capabilities of a small, 3-element, triangular array to larger 
linear acoustic arrays. Furthermore, the project examined the theoretical and practical limits of linear arrays 
to localize acoustic signals to specific points of origination and developed recommendations on array 
geometry and the number of arrays or subarrays to use based on machinery layout. Artificial intelligence (AI) 
and machine learning (ML) techniques were also developed for array processing/source detection and 
localization, and for the detection and classification of mechanical and electrical faults in electric motors. Data 
was collected from a healthy electric motor and identical motors with seeded electrical and mechanical faults 
to test the ability of airborne acoustic sensors to detect and classify the fault conditions. 

KEY FINDINGS  
• Airborne acoustic sensors (microphones) can be used to detect and diagnose mechanical faults such 

as damaged bearings, damaged shafts, and load imbalance, and electrical faults such as in bad 
electrical connections, and damaged rotor or stator laminations and windings. 

• Multi-element microphone arrays can be used to locate the direction of origination of acoustic signals 
from motors or other equipment and reject noise from other sources. 

• Acoustic array design is affected by the acoustic frequencies being detected which are based on the 
type of machinery faults and layout of the machinery being monitored.  

• The use of airborne acoustic sensors is better suited for mechanical faults, but also shows appreciable 
success with certain electrical faults. 

• Traditional spectral analysis can be used to detect fault frequencies in the measured acoustic data. 
• AI and ML techniques can distinguish between different types of faults detected in the acoustic data 

using trained models. 
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WHY THIS MATTERS 

The results of this research provide guidelines for the design of airborne acoustic sensing systems and the 
design of multi-microphone arrays. The use of airborne acoustic arrays can aid in the localization of acoustic 
signatures in an operational environment with multiple machines but can also be affected by the size of the 
space and the spacing between the machines. AI and ML techniques can be applied to help distinguish 
between healthy and faulted motors, as well as distinguish between the different types of faults encountered. 
The ability to detect faults with an airborne acoustic sensor can minimize the cost and complexity of the 
instrumentation required to monitor the state of machinery through a reduction in the number and type of 
sensors located on each machine. This may be a preferred approach for certain machinery in the generation 
environment. 

HOW TO APPLY RESULTS 

This project focused on the use of airborne acoustic sensors consisting of single microphones and multi-
microphone arrays for the detection and classification of faults in electric motors and generators.  Earlier 
reports described the design of microphone arrays and the use of acoustic signal frequency spectra to detect 
faulted bearings in motors. This report describes the design of a 3-element microphone array and the 
application of AI and ML to the detection and classification of mechanical and electrical faults in a series of 
test motors. The number of sensors and the array design (if used) are dependent on the frequencies 
associated with the faults of interest and the relative locations of the machinery and the acoustic sensors 
within the space. Utilized data acquisition systems do not need to support full audio bandwidth but can be 
tailored to the bandwidth of the faults of interest. The AI and ML techniques required to process the acoustic 
data are suitable for implementation on standard computing platforms such as a laptop computer once the 
algorithms are sufficiently trained. 

Research and development personnel with an interest in developing, implementing, or commercializing 
airborne acoustic monitoring systems for electrically-driven rotating machinery can follow the example 
described in this report to design microphone arrays capable of isolating the source of an acoustic signal or 
reduce the influence of noise from an interfering or distracting source on the measured acoustic signal. Data 
from a single microphone, or the output from a microphone array, can be used to train machine learning 
algorithms capable of detecting and classifying motor faults. The report described the processing steps used 
to create the spectra and preprocess the spectra to reduce the complexity of the ml models. The models used 
in the fault detector/classifier are built using techniques available in standard ML libraries. 

LEARNING AND ENGAGEMENT OPPORTUNITIES 
• Fleetwide Monitoring Interest Group 
• Integrated Monitoring and Diagnostics Technical Advisory Committee 
• I&C Reliability Technical Advisory Committee 

EPRI CONTACT: Stephen Lopez, Principal Technical Leader, slopez@epri.com 

PROGRAM: Instrumentation and Control, P41.05.03 

IMPLEMENTATION CATEGORY: Reference 
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 Introduction 
Project Background 

This project investigated the use of airborne acoustic sensors consisting of a 
single microphone and multi-microphone arrays for the detection and 
classification of faults in electric motors and generators. The project investigated 
the effects of distance and angle on defect signatures to examine the correlation 
between independent acoustic “signatures” in the frequency-domain, taken over a 
variety of distances and angles, to compare them to baseline data from healthy 
equipment of similar form, fit, and function. Experiments compared results using 
a small, 3-element, triangular array to larger linear acoustic arrays. The project 
also examined the theoretical and practical limits of linear arrays to localize 
acoustic signals to specific points of origin and developed recommendations on 
array geometry and the number of arrays or subarrays to use based on machinery 
layout. Lastly, the project examined the application of artificial intelligence (AI) 
and machine learning (ML) techniques to both the array processing/source 
detection and localization problem, and the problem of classifying collected 
acoustic signatures to diagnose specific machinery faults. 

Condition Based Maintenance for Electric Motors 

Condition based maintenance has become a critical part of the energy industry’s 
ability to reliably deliver power to the public at an optimal cost. Its 
implementation can lead to significant increases in uptime and safety, as well as 
reductions in operations and maintenance costs. All equipment is maintained one 
of four ways – reactively, preventatively, condition-based, or predictively. 
Reactive, or break-down maintenance, is the practice of waiting until an asset or 
machine has completely failed to fix it. One common example of reactive 
maintenance is changing burned-out light bulbs. Preventative, or time-based 
maintenance, is the practice of preforming specific maintenance actions at 
specified intervals, based often on calendar time or run time. Condition-Based 
Maintenance (CBM), is the practice of periodically measuring the health of an 
asset and performing maintenance only when the health of the asset begins to 
degrade. An example of CBM is the practice of taking vibration readings on a 
high-value motor, and only changing the motor bearings when the vibration 
readings show that there is a significant bearing fault present in the motor. 
Lastly, predictive maintenance uses condition-based maintenance techniques to 
assess current health and predicts when maintenance is needed based the  
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expected degradation due to intended future use. An example of this is using 
vibration data to predict that there is an incipient bearing fault in a high value 
motor and then scheduling bearing replacements to be performed during a 
scheduled outage. 

CBM relies on the ability to accurately measure the health of an asset. When 
dealing with electromechanical machines such as electric motors or generators, 
faults can originate from either the electrical or mechanical components. 
Examples of mechanical components include bearings and shafts; examples of 
electrical components include wiring, windings, and electronic components. 
Mechanical faults, generally, create vibrations and can be detected with vibration 
or displacement sensors. Electrical faults typically cause changes in the signal 
currents or voltages which can be detected using the associated measurement 
probes. Additionally, there is interaction between the electrical and mechanical 
forces in an electromechanical system which means that electrical faults may 
produce mechanical effects and vice versa. 

There are several common ways to measure health in electromechanical systems, 
including vibration analysis (VA), thermography, oil analysis, and motor current 
signature analysis (MCSA). VA and MCSA can reveal fine details regarding 
motor health but may involve costly data collection systems, invasive installations, 
and specific subject matter knowledge to get the full benefit. Both also require 
one or more physical connections between transducer(s) (either accelerometer(s) 
for VA or current measuring device(s) for MCSA) and the motor under test. 
Common solutions involve either a portable data collection system or a 
continuous monitoring solution. Portable data collectors require a technician to 
visit each asset under consideration and collect data during rounds, which can 
significantly limit the amount of data that can be processed. These monitoring 
solutions require up-front costs to purchase and install multiple sensors, possibly 
cable, and database solutions. Recent advancements in wireless technology have 
reduced the costs of monitoring, but they also present other risks, including cyber 
security and electromagnetic interference.  

Mechanical vibrations, such as those measured by VA, have the potential to 
interact with a surrounding medium (for example, air or water) and produce 
sound waves. Theoretically, these acoustic signals will carry the information 
necessary to perform limited VA at some distance if they are collected and 
analyzed. The conversion efficiency of mechanical vibrations into airborne 
acoustic signals depends on the frequency of the vibration, the materials 
properties of the vibrating component, the size of the component, and the 
propertied of the surrounding medium. These factors will determine the 
amplitude and directivity of the sound produced by an object. 

This report focuses on using airborne acoustic measurement without physically 
contacting the motor under test, which is one of the most substantial limiting 
factors of standard VA implementation. Depending on the characteristics and 
intensity of the fault, the distance may be great enough that multiple motors can 
be monitored from a single collection point. Once emissions from multiple 
acoustic sources can be collected, a direction localization technique becomes 
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useful to capitalize on the ability to detect degradation or a fault. Using the 
known geometric details of the microphone array used to collect the acoustic 
emissions, several techniques which utilize the phase differences between 
microphones exist which may be able to identify the direction of a specific 
acoustic source in relation to the array. Broadly, these terms fall under the signal 
processing category of beamforming. Combining the acoustic vibration analysis 
concept with beamforming may allow one data collection point, measuring and 
processing acoustic signals emitted by multiple sources, to monitor several motors 
or generators simultaneously. Understanding the potential of this technology, 
including the analysis required and fault detection capability, is the end goal of 
this project performed by EPRI. 

Scope of Work 

The early detection of anomalies and unusual performance prior to the 
occurrence of equipment faults and failures is critical to cost effective 
maintenance. However, comprehensive monitoring can be difficult, costly, and in 
some cases impractical when using sensors that are embedded or placed in direct 
contact with actual systems or equipment. It may require equipment 
modifications, as well as the purchase, installation, and maintenance of numerous 
sensors. A potentially more cost-effective approach is to develop a non-invasive, 
area-wide monitoring system that, from a distance, can collect signals emitted 
from a variety of electrical and mechanical equipment and perform data analysis 
that can reveal potential anomalies or provide an early indication of developing 
malfunctions. 

This project collected and analyzed data from two sets of experiments.  The first 
set of experiments was conducted in the Condition Based Maintenance 
development laboratory at the Pennsylvania State University Applied Research 
Laboratory (PSU-ARL). This effort focused on collecting repeatable datasets 
that represented different stages of degradation for a bearing fault in a specially 
modified motor-generator test bench. The study focused on using spectral 
analysis to find potential differences in the acoustic signatures collected with the 
motor/generator in different conditions (healthy and faulted), statistical analysis 
to estimate the differences observed in collected spectra, and beamforming 
analysis to determine the direction of various sources relative to the microphone 
array. Beamforming analysis was also used to study noise rejection from 
secondary, interfering, noise sources. 

The second set of experiments were conducted by EPRI to expand the dataset 
and investigate detection capabilities for several additional electrical and 
mechanical faults. Data were collected from ten,1-horsepower (hp) (0.74 kW) 
460VAC 3-phase induction motors individually subjected to ten common motor 
faults at increasing levels of severity. All three phases of motor current and 
voltage were measured to investigate several electrical signature analysis (ESA) 
systems, and airborne acoustic data was collected using a 3-element microphone 
array mounted on the wall above the motor. Data was also collected from an  
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accelerometer mounted on the motor to provide ground truth for the source of 
the radiated acoustic signals. AI and ML techniques were applied to the recorded 
acoustic data to discriminate between the healthy motor(s) and the motors with 
each of the faulted conditions. 

Prior Research  

Earlier phases of this research project focused on the collection of data to show 
the utility of acoustic sensing for monitoring mechanical and electrical faults in 
motors. The results are described in EPRI Report 3002015880, Area-Wide 
Acoustic and Electromagnetic (AEM) Signature Health Monitoring: Phase 2 [1]. 
Extensive acoustic data was collected from a test stand at PSU-ARL using three 
different bearings to simulate the progression of a mechanical fault. One bearing 
was unaltered, one featured extensive damage to both races as well as numerous 
rolling elements, and the third featured limited damage to the outer race. Data 
was collected with the target machine running alone and with an external noise 
source present in the room to provide extraneous acoustic emissions to further 
test the algorithm. Spectral and statistical analysis was performed on all collected 
data with the purpose of determining if the data collected in both levels of 
severity were significantly and consistently different than the data collected in the 
assumed healthy condition, and related only to the bearing condition, not the 
presence of the external source. Further signal processing was done to test the 
ability to identify the direction from which acoustic signals were collected, from 
the extraneous noise source and from the target machine. 

Previous work also explored using arrays of microphones to isolate noise sources 
of interest (e.g., the motor being monitored) from other sources of radiated noise, 
or to localize the sound from one of potentially many machines within a single 
facility. Depending on the characteristics and intensity of the fault, the distance 
may be sufficient, such that multiple motors can be monitored from a single 
collection point. Once emissions from multiple acoustic sources can be collected, 
a direction localization technique can be used to capitalize on the ability to detect 
degradation or a fault. Using the known geometric details of the microphone 
array, several techniques which utilize the phase differences between 
microphones were investigated. Broadly, these techniques fall under the signal 
processing category of beamforming. Combining the acoustic vibration analysis 
concept with beamforming allowed one collection point, which persistently 
measures, and processes acoustic signals emitted by numerous sources, to 
simultaneously monitor the sources for changing acoustic signatures.  
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Report Organization 

This report is organized into the following sections: 

 Section 2 describes the application of AI and ML techniques for the 
detection and classification motor faults in acoustic data 

 Section 3 describes the design and installation of acoustic sensors used to 
collect acoustic data from a series of 10 test motors with seeded faults. This 
section also describes the performance of AI and ML fault detection and 
classification algorithms on the acoustic data from the seeded fault testing. 

 Section 4 summarizes the findings and conclusions from the research. 
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 Application of AI and ML for 
Fault Detection and 
Classification 

Manual Fault Detection and Classification 

Bearing faults generate vibrations at frequencies determined by the bearing 
geometry and the motor speed at levels correlated with the severity of the 
vibration. The vibrations generated by the bearing fault radiate into the air and 
are detectable using airborne acoustic sensors (microphones). Note, however, that 
different structures have different radiation efficiency and the ability to detect 
surface vibrations with airborne acoustic sensors must be experimentally verified. 

EPRI report 3002015880, Area-Wide Acoustic and Electromagnetic (AEM) 
Signature Health Monitoring: Phase 2 [1], described the use of a microphone array 
and beamforming to improve the signal-to-noise ratio of the airborne acoustic 
measurements and isolate the source of acoustic radiation. In general, the process 
for detecting and classifying faults based on airborne acoustic measurements is 
the same regardless of whether the system uses a single acoustic sensor or an array 
of sensors. Beamforming and source localization can be separated from fault 
detection and classification processing, which decouples the two processing steps. 
The output of the beamforming processing is presented as a single input signal to 
the fault detection and classification process the same as a single microphone 
output. 

For simple mechanical faults, such as a bearing raceway spall, fault detection 
relies on the detection of energy at a single frequency. In a simple system, the 
condition monitoring software can detect a fault by identifying a frequency (or 
set of frequencies) in the spectrum where the energy exceeds the baseline and 
background "noise" by a predefined threshold. In cases where the background 
noise exceeds the level of the signal generated by the fault at a particular 
frequency, the signals can be averaged in time to improve the signal-to-noise 
ratio. There is also an inherent improvement in the signal-to-noise ratio resulting 
from calculating the frequency spectrum. The underlying assumption is that 
faults present themselves as narrowband (single frequency) components in the 
broader acoustic signal. The same assumptions are generally used in electrical 
signature analysis (ESA). The exception to this model is when the fault causes 
modulation of an underlying frequency resulting in amplitude or frequency   
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modulation, which distributes the fault-generated signal energy across a range of 
frequencies.  Nevertheless, even in the case of amplitude or frequency 
modulation, the detection of the fault (used to trigger further analysis) is typically 
based on detecting fault-related frequency components in the measured signal.  

The statistical characteristics of the signals and noise, characterized by their 
respective probability density functions, can be used to calculate the threshold 
used to detect the signal in the presence of broadband noise and maintain a 
desired probability of detection (the probability that a signal is present when the 
energy at a particular frequency exceeds the background noise by the threshold) 
and probability of false alarm (the probability that the exceedance of the 
threshold is due to a random large contribution of the noise at the frequency of 
interest). This process is known in the signal processing literature as Constant 
False Alarm Rate (CFAR) detection [2]. 

This approach to signal detection and classification works well for detecting a 
single type of fault, an assessment of the fault severity and ultimately a prediction 
of the remaining useful life or time until the equipment must be taken out of 
service. When a piece of equipment may be subject to several different types of 
faults, as is usually the case, monitoring algorithms must be applied that can 
distinguish between the different types of faults or employ a sequence of fault 
detection algorithms that attempt to detect one fault at a time. For example, in 
the case of an electric motor, the condition monitoring software may need to 
process the data once for each fault: bearing inner race, bearing outer race, stator 
winding, rotor winding, etc. Even if all of the fault detection algorithms use the 
same sensors and pre-processing (e.g., calculation of the frequency spectrum), the 
fault detection and identification process must be repeated for the specific 
frequencies associated with each fault. 

Multiple faults can be detected within a single measurement (e.g., spectrum) by 
applying templates to the spectra matching the fault's spectral signature. This is 
where it is beneficial to leverage the power of ML to detect and classify faults 
from a particular type of measurement. 

Supervised Learning of Acoustic Frequency Domain Features 

There are many ML techniques for machinery fault detection. This project 
developed, implemented and tested several different techniques. Each was based 
on processing acoustic spectra with the goal of identifying whether the data were 
from a healthy motor (no fault) or from a motor with one of several known types 
of faults. The fault detection and classification steps were combined into a single 
process by including the no-fault condition as a class. Alternatively, ML can be 
applied to time-series data, however, using spectra as the input makes it easier for 
subject matter experts in machinery vibration to compare data from different 
motor conditions and provide an assessment of how much one signature differs 
from another. 
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Supervised learning refers to techniques in which the ML models are trained 
using data that are labeled with the associated fault. Supervised learning is 
generally considered "expensive" because the data must be labeled with the 
correct class. In most cases, labeling the data must be done by human subject 
matter experts, based on an independent assessment of the machinery condition. 
Unsupervised learning techniques, by comparison, learn or separate the data into 
different classes without knowledge of what those classes are. In some cases, the 
unsupervised learning process will separate the data into the same classes as a 
human subject matter expert. In other cases, the unsupervised learning may 
identify more or fewer classes in the data. Unsupervised learning is generally 
considered less expensive because it doesn’t require independent analysis by 
human experts. Hybrid learning techniques attempt to use unsupervised learning 
to separate the data into classes and then use experts to label the learned classes 
with appropriate labels corresponding to the classes of interest. 

In addition to determining the type of fault affecting a machine, it is often 
desired to determine the fault severity. Sometimes, it is possible to determine 
fault severity by simply measuring the strength of the signal components 
attributed to the fault (the fault frequency). In other cases, the frequency content 
of the signal may change as the severity of the fault increases, as may be the case 
when modulation increases. Another approach to determining the severity of the 
fault, is to include examples of the same fault at different severity levels as 
separate classes in the data (e.g., no fault, mild inner race fault, severe inner race 
fault, etc.), or the data can be processed again to determine the severity after the 
fault class has been determined (e.g., inner race fault). This was the approach 
used in this research. 

Tree-Based Fault Classification 

This project developed a tree-based fault classifier using acoustic spectra as the 
input. Regression analysis was applied to the acoustic spectra to identify the 
subset of frequencies within the data that provided the best separation between 
fault classes. The data analysis begins with a time recording of the measured 
acoustic signal. The spectra are generated by calculating the Fast Fourier 
Transform (FFT) of the time-series data and using Welch's Power Spectral 
Density (PSD) method to estimate the power spectral density [3,4]. To train the 
ML models, the PSD values were flattened. That is, each frequency component 
in the spectra became a column in a data table or matrix, and one row was added 
to the matrix for each data collected spectrum. 

ML models were trained with spectra whose magnitudes were represented in 
their native linear amplitudes (e.g., Pascals, for microphone data) or in decibels. 
One general trait of machine learning models is that they work better on data 
whose range of values is compressed; consequently, data are often normalized or 
scaled to a predefined range. This is because models are often trained, through 
which model parameters are adapted, proportional to an error between input and 
output parameters. If all of the input values have the same normalized range,  
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then it prevents the model adaptation from being biased toward inputs with 
larger values (and therefore potentially larger errors). Because of this, better 
results were found using spectra whose amplitude was expressed in decibels 
instead of being linear. 

From hyper parameters to the decision of scaled data, there are many features 
that need to be accounted for in the training of a ML model. In the models used 
in this project, the data was broken up for all permutations that were 
characteristic to the dataset. All methods, whether including the occurrence of 
scaling using a standard scaling approach, feature engineering, decibel scaling, 
and the number of samples per segment (typically 2560 samples per segment), 
were used in identifying fault health with the decision tree or random forest 
algorithms. The decision tree algorithm was chosen due to its ability to accept 
variable data types like categorical (discrete) or continuous [6] and its ability to 
make accurate predictions if handed a large volume of high-quality data [7]. The 
random forest algorithm is usually perceived as an extension of the decision tree 
algorithm since, as a forest has many trees, the random forest algorithm is 
comprised of many decision tree algorithms. Similar to the decision tree 
algorithm, the random forest algorithm takes on the properties of the decision 
tree algorithm and denotes each decision tree to evaluate the different classes or 
targets mentioned below.  

To ensure that all proposed classifiers were judged fairly, data sets were carefully 
managed to ensure that all different classifiers were presented with identical, 
paired, sets of train and test data. The target/response column was the health 
status of the system, which has three possible values - healthy, mild, and severe. 
Training and test data sets were selected by randomly extracting data sets from 
each class. 

Figure 2-1 shows an example classification tree for bearing health based on data 
collected for the test motor/generator described in EPRI Report 3002015880, 
Area-Wide Acoustic and Electromagnetic (AEM) Signature Health Monitoring: Phase 
2. Starting with the block at the top, the classifier assumes the bearing is healthy, 
then compares the data to decision criteria to decide if the data indicate a severe 
fault or a healthy condition. At the second level, the severe case is separated into 
severe and mild fault cases, while the healthy case is separated again into healthy 
and severe. The colors of the blocks represent the classification at that level in the 
tree: purple → healthy, green → severe, orange → mild. The shade of the color 
in a box correlates to the Gini index for the decision. The Gini index is a 
measure of how well a decision tree is split [12]. The Gini index ranges from 0 to 
0.5; a lower score reflects greater certainty in the decision between classes at the 
next level (darker shade), while a higher index value indicates lower confidence 
(lighter shade).  
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The actual decision criteria in the decision tree are learned by training the model 
on data representing the different states or classes. The criteria listed in the 
blocks in Figure 2-1 refer to indices and values in the acoustic spectra and are not 
meant to be human readable. The decision trees are trained from the top down 
(relative to the picture in Figure 2-1) or from the base to the branches and leaves. 
Additional branches are added during training to improve the accuracy of the 
classifier. One thing that is interesting to note is that there are several branches 
which can lead to the same final health assessment. For example, Figure 2-1 
shows three possible paths to the final decision of a healthy bearing, four paths 
for a mild fault, and three paths for a decision that the fault is severe. A 
traditional, case-based decision tree, on the other hand, would have a single set of 
criteria for each decision and just three branches. 

Figure 2-1 
Example classification and regression tree for bearing fault classification 

Table 2-1 
Performance comparison of classifiers and validation approachs 

Scale NperSeg Return (dB) Classifier Normal/Validate Accuracy RMSE 

TRUE 2560 TRUE Decision Tree Normal 0.92157 0.2549 

TRUE 2560 TRUE Decision Tree Validate 0.95635 0.10318 

TRUE 2560 TRUE Random Forest Normal 1 0 

TRUE 2560 TRUE Random Forest Validate 0.97222 0.0754 

TRUE 2560 FALSE Decision Tree Normal 0.94118 0.11765 

TRUE 2560 FALSE Decision Tree Validate 0.96429 0.08333 

TRUE 2560 FALSE Random Forest Normal 0.92157 0.2549 

TRUE 2560 FALSE Random Forest Validate 0.89683 0.26984 

TRUE 5120 TRUE Decision Tree Normal 0.98039 0.07843 

TRUE 5120 TRUE Decision Tree Validate 0.948413 0.146825 
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The experiments defined in Table 2-1 were performed to exhaustively compare 
the decision tree algorithm to the random forest algorithm under different 
validation approaches. The column "Normal/Validate" denotes two separate 
approaches for training - for observations denoted as "normal", the full training 
data set was used to fit one, single, classifier, while rows marked "validate" used a 
5-fold cross-validation approach to estimate the optimal classifier given the 
training data. Cross-validation partitions the training data set into k=5 equal 
segments, and actually fits k different classifiers before deciding on optimal 
parameters given a particular set of training data. Cross-validation is intended to 
reduce the risk of overfitting a model, which is a significant concern for tree-
based classifiers. Given the results in Table 2-1, the additional effort of cross-
validation does not generally improve performance, which indicates that 
overfitting is not a significant concern for this analysis. 

Usually, accuracy is a good metric to gauge how well your model performed, but 
accuracy only justifies the short-term negligence of the model. Error is a strong 
indicator of how a model will perform in the long run; hence, the reduction of 
error or the observance of a small error is key to a model's long-term 
performance. In this case, the testing of error was done using residual mean 
square error (RMSE), and the first 10 values provide an interesting insight. One 
would expect an inverse or Bayesian relationship (if accuracy goes up, RMSE 
must go down and vice versa). This is shown to be true in the third row where 
accuracy is 1 and error is 0, hence showing the tradeoff. A good example of a bad 
data point, where the classifier should not be utilized, is in the seventh row where 
accuracy is 0.92157 but the RMSE is 0.2549. This illustrates the difference 
between the two metrics, including the weighting importance of incorrect 
predictions on the RMSE. 

Figure 2-2 shows that no method completely outperforms the others. Each bar is 
designated by its classifier and the presence of validation during training. For 
example, “DecisionTree_Validate” represents scores of the decision tree classifier, 
when trained with cross validation. For each classifier and validation technique, 
models were fit using ten different values of the number of points per segment 
parameter in the Welch’s PSD estimate (2560, 5120, 7680, etc.), both with and 
without the results scaled to decibels. This comparison was independent of 
whether the training was done using cross validation. Figure 2-3 demonstrates 
this type of relationship, where NPS refers to the "points per segment" or 
“number (of points) per segment" in the PSD. For two different NPS values in 
Figure 2-3 and Figure 2-4, the models which did not use cross validation 
outperformed the models that did use cross validation. The results in Table 2-1 
indicate that overfitting, which often occurs with the normal validation approach, 
is not expected to be a problem in this case. 
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Regularized Regression Methods for Feature Selection in the 
Acoustic Frequency Domain 

Regularization is a process that aims to improve a model’s performance 
throughout training, testing, and prediction. The regularization technique used 
for feature engineering during this effort was the Least Absolute Shrinkage and 
Selection Operator (LASSO), which combines variable selection and 
regularization [8]. In the current case, LASSO’s regularization and feature 
selection methods are crucial to the identification of outlying points since it 
shrinks the regression coefficients, for unnecessary frequency features, to zero. If 
the LASSO algorithm determines that a features coefficient can be shrunk to 
zero, then the feature is removed. LASSO utilizes the L1 least squares penalty for 
optimal loss. LASSO also minimizes an objective function with a parameter, λ, 
that controls the strength of the L1 penalty. By default, λ is set to one so that the 
loss penalty is not influenced by strength. The application of LASSO regression 
reduces the number of inputs (frequencies in the PSD) for the ML model instead 
of using the full spectrum.  

Figure 2-2 
Comparison of decision tree classifier performance 
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Figure 2-3 
Decision tree accuracy by "number per segment" for both validation options  

Figure 2-4 
Coefficient values from Kept LASSO regression by classifier and NPS for severe faults for 
scaled (true) or non-scaled (false) data 
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In Figure 2-4, violin plots were constructed to understand the distribution 
between the scaled and non-scaled data. As described above, the points that were 
shrunk to zero as a result of LASSO regression were removed, and the points 
that were kept revolve around zero in each plot, either negative or positive. These 
values were kept indicating their relative importance. Typically, the farther away 
from zero a dataset is, either negative or positive, the more important the feature 
is since fewer values are closer to zero. Figure 2-4 shows that, “Random 
Forest_2560” and “Decision Tree_2560” were the most important classifier and 
NPS combinations for both scaled and non-scaled data. While Figure 2-4 shows 
that there are other classifier and NPS combinations worth consideration, these 
two designations clearly stand out amongst the others. Ultimately, the 
“Random_Forest_2560” designation proved to be much more valuable than any 
other combination for scaled and non-scaled data. 

Larger numbers of NPS correspond to more data and more inputs to the 
classifier. An interesting observation is that there is a gradual collapse in 
distribution size for each classifier following 2560 NPS which was the highest 
(largest spread in Figure 2-4). Generally, this phenomenon appears to be true, 
especially for the random forest classifier with random sampling for data 
redundancy. 

Figure 2-5 and Figure 2-6 illustrate the results of LAASO regression applied to 
the acoustic spectra from the motors. The purple boxes in Figure 2-5 denote the 
frequency range of interest to which the regression was applied (0-2000 Hz). 
Having fewer features (frequencies) has two primary benefits. First, it helps 
reduce the tendency to overfit the model during classifier training. Second, 
reducing the number of features reduces the amount of data required to train the 
classifier and the time required to train the model. 

Using LASSO regression to reduce the number of features used in the final 
classifier resulted in a negligible difference in classification accuracy compared to 
using the full spectrum but reduced computational complexity. For all 
experiments conducted, less than 10% of features (i.e., frequencies) were ever 
retained as significant. The percentage of features retained decreases 
logarithmically as the absolute number of features increases (controlled by 
number of points per segment). Of the 2,000 points per segment, typically ~2% 
of presented features were retained. 
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Figure 2-5 
Example acoustic spectra for two measurements  

Figure 2-6 
Spectra showing significant frequencies identified through LASSO regression (gray vertical 
lines) 
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 Experimental Demonstration and 
Results 

Motor Test Bed 

The final phase of the project included the deployment and testing of a 
microphone array during motor testing conducted on EPRI’s behalf by Analysis 
and Measurement Services Corporation (AMS). The purpose of the testing was 
to evaluate electric motor condition monitoring technology through laboratory 
testing of commercially available ESA systems. A custom motor test chamber 
was designed and constructed to perform fault testing of 1 horsepower (hp) 
induction motors. Ten common types of faults were artificially induced in the 
motors at increasing levels of severity while current and voltage data was collected 
by several ESA systems to determine if the analysis can detect the fault. A three-
element microphone array and accelerometer were also installed to supplement 
the voltage and current data collected for each motor. Data from the microphone 
array were recorded and post-processed to assess classifier performance. Details 
of the test setup and procedures are described in EPRI Report 3002020869, 
Electrical Signature Analysis (ESA) for On-Line Equipment Condition Monitoring: 
Fault Detection Testing [5]. 

The motor testbed consisted of a 1 hp (0.74 kW), 460 volt three-phase motor 
and a 25 ft-lb (33.9 Nm) magnetic brake with forced air. Fifteen of these motors 
were procured for this project: eleven for fault testing and four spares. The brake 
was controlled by a DC power supply with variable output current for adjusting 
the braking force on the motor shaft to ensure desired loading. The motor and 
brake were mounted on an 80/20 frame connected to a wooden base structure 
measuring 2 x 6 x 0.5 ft (0.61 x 1.8 x 0.15 m) and containing over 350 lbs  
(158.8 kg) of sand to dampen vibration. 

Figure 3-1 shows a photo of the motor, brake, and fan. The investigators used 
information provided by AMS, regarding motor specifications, to identify 
expected acoustic features and critical frequencies associated with common 
bearing faults. The motor manufacturer provided specifications for the bearings 
mounted on the drive and non-drive ends. The manufacturer’s catalog provided 
the necessary information to calculate the bearing fault frequencies at the motor 
operating speed (1760 RPM). Table 3-1 lists the calculated frequencies at 1760 
RPM for common bearing faults: outer race (BPFO), inner race (BPFI), 
fundamental train or cage (FTF), and ball (BSF). Although the bearings differ in 
size, they have proportional dimensions, resulting in the same fault frequencies. 
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Figure 3-1 
Photograph of motor, brake and blower used in the seeded fault testing  

Table 3-1 
Bearing fault frequencies at 1760 RPM motor speed, matching specifications for similar 
bearings from SKF corporation [9] 

SKF 6204-2Z (Drive-end Bearing) 

BPFO  89 Hz 

BPFI 145 Hz 

FTF 11 Hz 

BSF 58 Hz 

SKF 6202-2Z (Non-drive-end Bearing)  

BPFO 89 Hz 

BPFI 145 Hz 

FTF 11 Hz 

BSF 58 Hz 
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Array Design and Installation 

As described in the previous project report [1], the design of an acoustic 
beamforming array depends on the frequencies of interest and the desired angular 
resolution of the array. The range of frequencies over which the array can localize 
a source is determined by the spacing of the array elements and the highest 
frequency of interest. The bearing fault frequencies show that the maximum 
frequency of interest is 145 Hz. If detectable, electrical motor faults are expected 
to present themselves at multiples of the motor speed (29 Hz). 

A microphone array was designed to collect airborne acoustic data from the 
motors under test. Figure 3-2 shows a photograph of the acoustic array installed 
in the test chamber. The array was a three-element linear array with the 
microphones spaced 2 ft (0.61 m) apart. The overall size was limited by the 
dimensions of the room, while the spacing was determined by the upper range of 
the frequencies of interest. Acoustic foam was mounted on the wall below the 
array and above the microphones to reduce reflections of the acoustic signals 
from the walls and ceilings which can introduce multi-path effects and distort the 
phase of the acoustic signals at each microphone. Additional details on the array 
design and performance specifications are listed in Table 3-2. In addition, details 
on microphone array design can be found in standard acoustics texts [10] and can 
be calculated using online tools or analysis software such as Matlab® [11]. 

Table 3-2 
Acoustic array characteristics 

3-element linear array specifications 

Number of elements 3 

Spacing 2 ft (0.61 m) 

Total length 6 ft (1.83 m) 

Bandwidth 290 Hz (2x bearing BPFI) 

First-null beam width  80⁰ 

Main lobe half-power beam width (HPBW) 3.8 ft (1.16 m) at 6 ft (1.83 m) 

Figure 3-3 shows the nominal beam pattern from the array (all microphones 
simply added together), and Figure 3-4 shows the array beam pattern with first 
null in the array steered toward the load-end motor bearing. The main lobe beam 
width gets narrower at higher frequencies and the nulls in the beam pattern 
disappear at lower frequencies. Theoretically, the main lobe of the array beam 
pattern can be steered toward one end of the motor or the other to help 
determine whether a bearing fault frequency is coming from the drive end or the 
non-drive end, or to help localize sounds from the motor or the blower (if they 
had the same frequency content). Steering 40 degrees will aim null center at the 
motor. However, because of the small space and reflections from the walls, there 
was little difference in the array output with any beam steering. 
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Figure 3-2 
Acoustic array installed in the test chamber  
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Figure 3-3 
Nominal array beam pattern with no steering  
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Figure 3-4 
Array beam pattern with first null steered at load-end motor bearing  

Acoustic Detection and Classification Performance 

The goal of the test was to collect data from identical motors with ten common 
faults and several levels of degradation, listed in Table 3-3. It can be difficult to 
recreate naturally occurring faults in test motors, and in some cases, it took 
several tries to create the desired fault conditions; hence the test included 
multiple instances of the electrical connection and stator winding faults. Table 
3-4 lists the actual test assets and their associated condition, which resulted in a 
total of thirty-three test conditions across eighteen test assets. The investigators 
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collected 357 data sets over the course of the testing. EPRI Report 3002020869, 
Electrical Signature Analysis (ESA) for On-Line Equipment Condition Monitoring: 
Fault Detection Testing [5] contains additional details on the motor selection, 
methods for inducing the faults, and data collection. 

Table 3-3 
Motor faults 

Item Fault Degradation Description 

1 Bearings (front and rear) Wear and tear 

2 Rotor Fan Looseness and Improper Cooling 

3 Electrical Connections Loose Connections and High Resistance 

4 Winding Connections Brazed Windings and High Resistance 

5 Stator Windings Insulation Degradation 

6 Stator Laminations Lamination Degradation 

7 Rotor Laminations Stress Fatigue Cracks 

8 Rotor Bar Cracked of Loose Joints 

9 Shaft Cracking of Shaft material 

10 Load Imbalance Imbalance on Shaft at the Load 

Table 3-4 
Motor test assets and conditions 

Item Fault Degradation Description 

1 Rotor Fan 1. Baseline 

2. Bend/break a blade 

3. Remove retaining clip, making the fan blades 
loose 

4. Split the plastic between the blades so it is not so 
tight around the bar, making it slip / with no pin 

2 Electrical Connections 1. Baseline 

3 Electrical Connections 2 1. Baseline 

4 Electrical Connections 
Actual 

1. Baseline 

2. Bad Crimp on one of the phases 

3. Pool Cleaner Diminished Connector 

4. Pool Cleaner Diminished Wire 

5. Aged Cable 1601 Hours 

6. Aged Cable 2250 Hours 

5 Winding Connections 1. Baseline 

2. Bad solder with HCL corroded cable 

6 Stator Windings Bad 1 1. Baseline 

7 Stator Windings Bad 2 1. Baseline 
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Table 3-4 (continued) 
Motor test assets and conditions 

Item Fault Degradation Description 

8 Stator Windings Official 1. Baseline 

2. Turn-to-turn short 

9 Stator Laminations 1. Sand down laminations 

2. Bend laminations 

10 Rotor Laminations 1. Baseline 

2. Sand down laminations 

3. Bend laminations 

11 Front Bearing 1. Corrosion (HCL introduced to bearing) 

12 Rear Bearing 1. Heat grease out of bearing 

13 Rotor Bar 1. Baseline 

14 Front Bearing 1. Heat grease out of bearing 

15 Stator Laminations 1. Acid attack 

16 Front Bearing 1. Introduce blasting sand 

17 Rotor Bar 1. Crack bar 

2. Undisclosed 

18  Shaft 1. Baseline 

2. Shaft 1 

In general, acoustic monitoring is expected to perform best on faults which 
induce vibrations in the motor. Faults that induce imbalance can also generate 
noise from gross motion of the motor on its mounts. Faults of a purely electrical 
nature do not generate noise as efficiently, but if they change the rotational speed 
of the motor or introduce modulation of the speed, the effect may be detectable 
as changes in the vibrations generated by the rotation rate.  

The principal investigators used random sampling of 300 of the 357 data 
collection samples for training and testing the classifier. The classifier was trained 
on a random subset of 75% of the selected data and then tested against the 
remaining 25% (73 samples). Figure 3-5 shows the confusion matrix of the 
classifier results, for one training and testing cycle. The confusion matrix 
compares the predicted condition to the true condition. The classifier used dB 
scaling of the spectra with 3000 frequencies in the PSD. 

Overall performance for the case shown in Figure 3-5 was 97%. The results 
represented in the confusion matrix correspond to a total of seventy-one cases 
representing thirteen different faults.  The system correctly classified eight of the 
thirteen conditions with 100% accuracy. There was some confusion in one of the 
data sets from the fan fault between a fan fault and an electrical connection fault, 
and confusion between the stator lamination and stator winding faults; however,  
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all stator related faults were classified as stator faults. One additional thing to 
note in the results is that there was no healthy motor case. Therefore, it is 
possible that one of the electrical faults could be confused with a healthy motor if 
it did not result in significant acoustic radiation. 

Table 3-5 
Final classifier results 
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 Summary and Conclusions 
Bearing Fault Identification with Acoustic Emissions 

This project used airborne acoustic sensors consisting of a single microphone and 
multi-microphone arrays for the detection and classification of faults in electric 
motors and generators. The project investigated the effects of distance and angle 
on acoustic signatures to examine the differences between independent 
“signatures” taken from faulty equipment and baseline data from healthy 
equipment of similar form, fit, and function. Experiments compared the 
detection capabilities of a small, 3-element, triangular array to larger linear 
acoustic arrays. Linear arrays (both uniformly spaced and incorporating 
subarrays) are easier to model and scale their design for different machinery 
layouts. The project also examined the theoretical and practical limits of linear 
arrays to localize acoustic signals to specific points of origination and developed 
recommendations on array geometry and the number of arrays or subarrays 
required based on machinery layout. 

Earlier phases of the project demonstrated the use of spectral analysis to detect 
and identify motor faults from acoustic signatures, based on knowledge of 
vibrational frequencies associated with the faults. The frequencies which were 
used to identify these differences in spectral activity had physical ties to the faults, 
further validating that the differences between the collected acoustic emissions 
were due to changes in the bearing states. The earlier results demonstrated 
success at identifying mechanical faults and limited success at identifying 
electrical faults: rectifier faults at the output of a generator and load imbalance 
were detectable, but internal turn-to-turn shorts in the stator or rotor were not. 

The also project demonstrated improvements in fault detection and localization 
using arrays of microphones and array beamforming to process the signals from 
multiple microphones. Analysis of acoustic data collected from an array of three 
microphones, demonstrated that different bearings, featuring matching seeded 
faults, could be identified from a bearing which had no seeded fault.  

Artificial intelligence and machine learning techniques were developed for array 
processing/source detection and localization, and for the detection and 
classification of mechanical and electrical faults in electric motors. The 
techniques used acoustic power spectra as the inputs to the AI/ML models, but 
did not rely on a priori knowledge of the faults or the frequencies in the spectra 
associated with the different faults.  
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A tree-based learning approach was studied that directly uses the output of 
Fourier analysis as columns in a matrix, which the model then uses as training or 
testing data. This general approach was studied with a wide variety of 
optimizations known as hyperparameter tuning. Different segmentation and 
averaging parameters were used in Welch’s PSD to generate FFT’s with differing 
levels of resolution. Decibel scaling was applied to test the effect of amplifying 
lower energy spectral peaks. Signal-to-noise ratio calculations were applied, to 
scale each spectral value against its surrounding peaks. Both standard decision 
trees and random forests of decision trees were tested. Regularized logistic 
regression (LASSO regression), using the L1 norm penalty factor, was used to 
test the ability to reduce the number of frequencies used as input features to the 
tree models.   

Based on the results of this project, the recommended approach is to use a single 
random forest classifier with inputs based on PSD frequencies selected by a 
LASSO regression model with a default λ parameter of one. This architecture 
can be implemented on data with as few as 2560 points per segment for 
averaging during Welch’s PSD calculations. All of these models were highly 
successful, reporting accuracies greater than 90%, indicating that this approach is 
widely applicable and powerful, and it can further be concluded that tree-based 
learning based upon Welch’s PSD can be highly successful in classifying collected 
acoustic emissions. 

The AI/ML based classifiers were tested using data collected from 33 identical 3-
phase AC motors. The motors tested included healthy motors and motors with 
seeded electrical and mechanical faults. A 3-element microphone array was used 
to collect radiated, airborne acoustic signatures from the motors during testing. 
The acoustic data was used to test the ability of the AI/ML models to detect and 
classify the fault conditions. The AI/ML based classifier correctly identified the 
correct fault condition with 97% accuracy for the faults tested. The AI/ML 
models successfully detected and classified both mechanical and electrical faults, 
indicating that the acoustic spectra contain information from electrical faults that 
may not have been apparent to human subject matter experts looking for single-
frequency fault content. 

Recommendations for Future Work 

This project demonstrated successful detection and classification of common 
mechanical and electrical fault conditions in electrical motors using airborne 
acoustic data recorded with an array of microphones located above the motor. 
While further research is recommended, these results show the potential for 
deploying acoustic arrays to monitor electrical machinery in power plants and 
other industrial settings. The approaches used to process the sound recordings 
are common in the signal processing literature and are widely available in 
commercial software packages or on-line code repositories. The techniques used 
to train, test and implement the AI/ML models for classifying the faults are also 
widely available; however, the key to successful development of AI/ML models is 
the processes used for training and testing the models as described in this report. 
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Although this project demonstrated success in detecting and classifying the faults 
in the tested motors, the testing was conducted under controlled, laboratory 
conditions. Earlier phases of the project demonstrated the use of multiple 
acoustic measurements to steer the sensitivity of the microphone array in 
different spatial directions to increase the sensitivity to sound produced by a 
machine of interest and reduce the sound (noise) from unwanted sources. 
However, the physical limitations of the test setup, discussed in Section 3, did 
not permit testing of this feature. 

Further development and testing are recommended to extend the applicability of 
these results to a wider range of power plant applications and confirm the results 
in a prototypical scenario. This includes real-time implementation of the data 
acquisition and signal processing, optimization of the microphone array 
deployment, and additional testing in power plant environments (on live 
equipment) to study the effects of an uncontrolled noise environment and a wider 
range of fault conditions. Several suggestions for future research and 
development are provided below:  

 Identify which fault categories (mechanical and electrical) generate emissions 
significant enough to be reliably detected using acoustic sensing beyond those 
included in this study. 

 Characterize the sensitivity of acoustic measurements to early-stage faults as 
a function of distance between the source and the acoustic sensors 

 Study how general, across electric motor or generator sizes, are the 
amplitudes of emissions generated by various faults  

 Determine how general, across different equipment types (electrical motor vs 
centrifugal pump vs etc.), are the amplitudes and transmission of bearing 
fault frequencies by acoustic emissions 

 Characterize the performance of the AI/ML fault detection and classification 
models under different operating conditions (load and speed) 

 Identify what other factors (including facility/space details, other active 
equipment in the area, machine specifics) contribute to the maximum 
distance at which machine health can be determined based on acoustic 
emissions 
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Appendix A: Glossary of Terms 
This glossary provides definitions for technical terms used in this report, in the 
acoustics and electromagnetics field, or the wider CBM field. 

Definitions and Nomenclature 

Acoustic Emissions: Sound waves generated by rotating equipment 
(motors/generators for the purposes of this report). 

Electromagnetic Emissions: A magnetic field emitted by rotating equipment 
(motors/generators for the purposes of this report). 

Spectra/Spectral Analysis: The process of studying the frequency content of one 
or more time series signals. Spectral analysis is commonly used to find and 
identify different sources within one or more signals. 

Linear Model: A statistical technique which estimates the effect different 
potential explanatory variables have on a single response variable. 

T-test: A statistical technique for comparing a value estimated from a sample to 
a hypothesized population parameter using students T-distribution where the 
variance between the two standard deviations is unknown. 

Harmonic(s): A peak or set of peaks in a spectrum that are integer-number 
multiples of a “base” fundamental frequency, typically the natural frequency. 
They are often evidence of a repeated step change in the time series which occurs 
at the fundamental frequency 

Ultrasonic: Acoustic emissions/sound waves at a frequency above the standard 
human hearing range. For the purposes of this report, ultrasonic emissions are 
considered those above 10 kHz, which was the cutoff frequency used for the 
standard frequency analysis. 

Phase: The relative difference between two coherent waves at the same 
frequency. Expressed in units of degrees in this report, waves that are in phase 
have a difference of 0°, while waves that are perfectly out of phase have a phase 
difference of 180°. 

Beamforming: A signal processing technique that combines the signals either 
generated or received by elements of an antenna array for the purposes of 
directional signal reception or transmission.  
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Units of Measurement 

Frequency – Hertz (Hz): Cycles per second. Often modified with “kilo”, 
meaning 1000 cycles per second. 

Acoustic Amplitude – Sound Pressure Level (SPL): The deviation from ambient 
atmospheric pressure caused by acoustic emissions. Often measured on a log scale 
and represented by decibels. 

General Amplitude – Decibels (dB): A unit representing the logarithmically 
scaled ratio between two values. Often used to describe units of value above or 
below a standardized value 

Purpose Acronyms 

AC Alternating Current 

AI Artificial Intelligence 

CBM Condition Based Maintenance 

DC Direct Current 

EM Electromagnetic 

ESA Electrical Signal Analysis 

FFT Fast Fourier Transform 

MCSA Motor Current Signature Analysis 

ML Machine Learning 

NPS Number of points per segment 

PSD Power Spectral Density 

VA Vibration Analysis 
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