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 v  

Abstract 

 

Nuclear corrective action programs (CAPs) are a foundational 
block of a nuclear safety culture, providing the implementation 
and execution process for problem identification, resolution, 
and continuous learning for the nuclear industry. But with that 
importance comes a heavy burden in the way of personnel 
resources resulting from the manual review and the screening 
process that is currently employed by most utilities. 

This report provides guidance for a utility in implementing 
automation into its CAP. The report provides an overview of 
CAP processes that can be automated, fundamental techniques 
for automation, and key considerations for adopting an 
automated CAP system. 
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Artificial intelligence 
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Deliverable Number: 3002023821 
Product Type: Technical Report  

Product Title: Automating Corrective Action Programs in the Nuclear Industry 

 
PRIMARY AUDIENCE: Nuclear utility innovation managers, performance improvement managers, corrective 
action program (CAP) managers 
SECONDARY AUDIENCE: Nuclear utility corporate and site senior leaders 

KEY RESEARCH QUESTION 

Can the CAP review process be automated? This question prompts an investigation into whether the burden 
associated with the CAP program can be reduced by automation, what the solution consists of, and the current 
adoption status of such a solution within the nuclear industry. 

RESEARCH OVERVIEW  

This research used experience and knowledge in implementing automation into a CAP at a nuclear power 
plant (NPP) and compiled operating experience from several NPPs in implementation and usage of artificial 
intelligence and machine learning techniques. The research also introduces the field of artificial intelligence 
and machine learning to members of the nuclear industry who may have not had any interaction with those 
technologies. 

KEY FINDINGS  
• The automation process involves engaging artificial intelligence techniques, which is a relatively new 

concept for the nuclear industry; so, a brief introduction is included in the report. 
• Benefits of an automated CAP system (ACAPS) are described and include the following: 

o Reduction in labor hours spent supporting CAP processes 
o Decreased lead time in CAP processes  
o Improved consistency of CAP processes 
o Ability to trend and analyze historical data in ways that were previously cost-prohibitive 

WHY THIS MATTERS 

Nuclear CAPs are a foundational block of a nuclear safety culture, providing the implementation and execution 
process for problem identification, resolution, and continuous learning for the nuclear industry. But with that 
importance comes a heavy burden in the way of personnel resources resulting from the manual review and 
the screening process that is currently employed by most utilities. This report provides guidance for a utility in 
implementing automation into its CAP. 

HOW TO APPLY RESULTS 

After reviewing this report, readers should have the knowledge necessary to organize efforts to adopt CAP 
automation and should be better able to evaluate the potential success of various in-house, vendor, and 
consulting approaches. 
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 ix 

Acronyms and 
Definitions 

Acronyms 

ACAPS automated corrective action program system 

AI artificial intelligence 

API application programming interface 

AUC area under curve 

CAP corrective action program 

CAQ condition adverse to quality 

CR condition report 

CRG condition review group 

DOE U.S. Department of Energy 

EAM enterprise asset management 

ELK Elastic, Logstash, Kibana 

EPRI Electric Power Research Institute 

FLM front line manager 

INPO Institute of Nuclear Power Operations 

IT information technology 

KNN K-nearest neighbor

LDA latent Dirichlet allocation 

ML machine learning 

MRFF Maintenance Rule functional failure 

NLP natural language processing 

NPP nuclear power plant 

NRC Nuclear Regulatory Commission 

SCAQ significant condition adverse to quality 

SVM support vector machine 

WANO World Association of Nuclear Operators 

$ United States dollar 
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Definitions 

CAPs across different NPPs have varying terminology for 
referring to CAP components. To simplify the remainder of 
this report, the following terminology will be used to refer to 
CAP components: 

CAP source system. The computer system that retains records 
of condition reports, corrective actions, and related information. 

Condition adverse to quality (CAQ). A deviation from a 
requirement, a deficiency, or some other condition that could 
adversely impact public or personnel health and safety, waste 
acceptance, the environment, facility operations, or the 
effective implementation of the quality assurance program.1 

Condition report (CR). A submitted report that documents a 
potential condition adverse to quality in or around a nuclear 
power plant. 

Corrective actions. Actions issued to other groups that evaluate, 
correct, or further document the CR. 

CR initiation. The act of writing a CR after becoming aware of 
a potential condition adverse to quality. 

Front line manager (FLM) review. Review of a CR by the 
initiator’s first-level leadership. Usually intended to ensure 
quality, accuracy, and severity. 

Level of effort. Amount of effort and depth of investigation 
expected to be expended to investigate and correct an 
identified condition or its causes. 

Management review group review. Review of CRs conducted 
by a group of mid- to senior-level managers for quality, 
accuracy, and severity, as well as priority and trending. 
Typically performed as a step in the middle or end of the 
condition review process. 

1 Palay, Christian, Preparer; Murray, Robert, Director; U.S. Department of 
Energy Office of Standards and Quality Assurance; Administrative 
Procedure AP-16.1Q Rev 1, Subject: “Corrective Action,” 2011. 
https://www.emcbc.doe.gov/Content/Office/ap_16_1q_rev_1_corrective_acti
on_07_15_11.pdf. 
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Responsible group. Refers to either the owning unit of the 
overall CR responsible for overseeing resolution or the owner 
of a corrective action.  

Screening committee. A group of individuals who review  
CRs for various fields (significance, ownership, and so on)  
and distribute actions to groups for correction. Can be a 
dedicated collective of individuals or a distributed effort 
shared among many. 

Significance. Level of severity of the report capturing the 
impact to a nuclear power plant’s reliability, safety, generation 
potential, or regulatory standing. 

The following are machine learning—or artificial 
intelligence—specific terms defined for consistency between 
practitioners when referencing this report: 

Artificial intelligence (AI). AI is a system or systems that can 
intake a variety of unfiltered information of different modes, 
analyze that information, and produce a variety of decisions 
based on intricate patterns contained within that information. 

Category/class/field type. The name of a differentiating detail 
between otherwise common objects. 

Concept drift. The slow changing in the relationship between 
input data and target variable over time.2 

Decision boundary. The region in feature space where a class 
label decision is ambiguous. May be a point, plane, or 
hyperplane in which target class labels become separable. 

False positive. A prediction made by a predictor that is said to 
be true but is actually false. 

False negative. A prediction made by a predictor that is said 
to be false but is actually true. 

Feature importance. The measurement of how influential a 
single feature is when a model produces a prediction.3 

 

 

2 Gama et al., “A Survey on Concept Drift Adaptation,” 2013, 
http://eprints.bournemouth.ac.uk/22491/1/ACM%20computing%20surveys.pdf. 

3 Casalicchio et al., “Visualizing the Feature Importance for Black Box 
Models,” 2018, https://arxiv.org/pdf/1804.06620.pdf. 
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4 Hoi et al., “Online Learning: A Comprehensive Survey,” 
2018, https://arxiv.org/pdf/1802.02871.pdf. 

Machine learning (ML). The ability of a machine or computer 
program to seemingly learn, or associate inputs to outputs, 
from the outcome of a recorded decision without predefined 
rules or logic. 

Natural language processing (NLP). A subfield of AI focused 
on the interactions of computing and human language, 
specifically programming computers to understand natural 
human language. 

Online learning. The act of learning from training data records 
one-by-one as they are encountered versus batch or offline 
learning in which training records are processed in bulk.4 

Vocabulary. The unique set of terms in a language; the 
simplest repeating element in a language. 
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Legend 

 

This report blends together a corrective action program 
automation how-to guide; relevant operating experience from 
the nuclear industry; technical information from the fields of 
software, data science, and artificial intelligence; identified 
best practices from executed projects; and important points. To 
better identify these areas, the sections have been highlighted 
in the following colors: 

Key Operating Experience 

Key Important Points 

Key Technical Information 

Key Cost/Value Considerations 

Key Identified Best Practices 

Also note that wherever the symbol $ is used, it is indicating 
values in U.S. dollars at the average 2021 value. 
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Section 1: Introduction 
Nuclear corrective action programs (CAPs) are a foundational block of a 
nuclear safety culture, providing the implementation and execution 
process for problem identification, resolution, and continuous learning 
for the nuclear industry. But with that importance comes a heavy burden 
in the way of personnel resources resulting from the manual review and 
screening process that is currently employed by most utilities. 

This report provides guidance for a utility in implementing automation 
into its CAP. The report provides an overview of CAP processes that can 
be automated, fundamental techniques for automation, and key 
considerations for adopting an automated correction action program 
system (ACAPS). 

The automation process involves engaging artificial intelligence (AI) 
techniques, which is a relatively new concept for the nuclear industry;  
so, a brief introduction is included in the report. 

Operating experience from nuclear power plants (NPPs) that have 
already initiated CAP automation projects or other process automation 
projects is also included in the report. Note that NPP/utility names have 
been anonymized; interested readers can contact the Electric Power 
Research Institute (EPRI) project manager for additional information. 

After reviewing this report, readers should have the knowledge necessary 
to organize efforts to adopt CAP automation and should be better able  
to evaluate the potential success of various in-house, vendor, and 
consulting approaches. 

The goals of CAP automation will vary for each NPP, but they primarily 
consist of realizing the benefits of eliminating a portion of manual CAP 
processes by automating repetitive tasks and decisions using an ACAPS. 
These benefits include the following: 

 Reduction in labor hours spent supporting CAP processes 

 Decreased lead time in CAP processes (automated records are 
processed almost instantly) 

 Improved consistency of CAP processes 

 Ability to trend and analyze historical data in ways that were 
previously cost-prohibitive (apply trend codes to historical data) 
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To maximize these benefits, an ACAPS should aim to meet the  
following goals: 

 Automate key decisions and tasks with a high degree of accuracy 

 Be able to differentiate between decisions it can make with high 
confidence that can be automated and those that are less confident 
and should be manually processed 

 Integrate directly with the CAP source system workflow 

As the nuclear industry looks to find more efficient ways of doing 
business while maintaining or improving the level of safety, utilities 
interested in implementing CAP automation will find this report useful 
for relevant operating experience, best practices, and common pitfalls. 
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Section 2: AI Introduction 
Before understanding how an ACAPS functions, it is important to have a 
rudimentary understanding of AI concepts that relate to CAP automation. 

Overview 

Fundamentally, AI is the ability of machines to recognize incoming 
information, make decisions based on that information to achieve a 
desired outcome, and learn from the outcome of those decisions so that 
future decisions are more likely to be desirable. The practice of AI involves 
building machines, systems, and/or computer programs that can achieve 
this pattern of operation. Although AI systems can be simple, most 
commonly AI is a composition of systems able to intake data, use machine 
learning (ML) to associate patterns in these data with desired outputs, and 
produce those outputs when required. 

The enabling piece of these systems, which both analyzes incoming 
information and learns from the outcome of the decision made, is 
implemented through the concept of ML. ML is the ability for a machine 
or program to seemingly learn from the outcome of a recorded decision. 
The types of decisions can be simple, such as selecting Yes or No. Or they 
can be complex, such as selecting the next word in a passage of text from 
the entire English language or determining the steering angle in a self-
driving car. Learning in the context of ML is the cycle of asking the 
program to make a decision based on some set of information, recording 
the outcome of the decision, and providing feedback to the program so 
that the outcome of the current decision is incorporated into the next 
decision. At a very high level of understanding, the process of training a 
machine program to make the expected decision is not unlike teaching a 
dog how to perform a new action: practice cycles and appropriate 
feedback cause positive changes in future actions. 

Modern AI Functions 

There are many branches of AI, including reasoning, problem solving, 
knowledge representation, planning, learning, perception, and general 
intelligence. In modern AI applications, computer algorithms are 
developed and used to demonstrate intelligence with varying degrees of  
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human involvement in the development, configuration, and use of these 
AI algorithms. Of the different branches of AI, ML and probabilistic 
reasoning are the most relevant to CAP automation. 

Machine Learning 

ML is the process of a computer program or algorithm adapting itself to 
produce a desired outcome without input from a human agent. ML is 
how humans teach a computer program to recognize input CAP data, 
such as a condition report (CR) description and author name, and 
associate various patterns in those inputs to the desired output value. 

Types of ML 

Within ML, there are two primary types of models: supervised and 
unsupervised. The primary difference between supervised and 
unsupervised models is that supervised models train on labeled data sets 
and are generally used to predict an output based on a set of inputs. 
Unsupervised models are trained on unlabeled data sets and learn 
patterns and information about the data sets themselves. Unsupervised 
models are often later used to improve supervised models, such as 
contextual embeddings5 being used for natural language processing 
(NLP) classification tasks. Another use of unsupervised models is for 
anomaly detection—that is, detecting when new inputs are very different 
from the inputs in the training data. 

Supervised models can be used to predict a variety of different outputs 
but, in the context of CAP automation, are typically used for classification 
tasks. Classification tasks are problems that can be solved by supervised 
ML models learning to predict one or more labels for a given input. 
Common types of classification tasks include the following: 

 Binary classification. Classification model predicts whether a  
given record belongs to one class. This is the ML equivalent of a  
Yes or No question. 

 Multiclass classification. Classification model predicts which class a 
given record belongs to when there are multiple classes available. 
This is the ML equivalent of a Choose A, B, C, or D question. 

 Multilabel classification. Classification model predicts which labels 
apply to a given record, and anywhere between none and all of the 
labels can apply. This is the ML equivalent of a Select all correct 
answers question. 

 
5 See Understanding Words Using Context section of this report.  
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Probabilistic Reasoning 

Probabilistic reasoning is the ability to quantify uncertainty with an 
associated outcome and incorporate that uncertainty into future  
decision making. In CAP automation, probabilistic reasoning is used to 
determine whether a CR should be processed for automation given an 
automation model output confidence level. References to setting 
thresholds to model output probabilities or confidence levels are 
examples of probabilistic reasoning.  

Teaching AI to Understand Nuclear Language 

Because much of the information available in a CAP is provided by free-
form text fields, one of the fundamental challenges in CAP automation 
involves teaching ML algorithms how to best understand and interpret 
nuclear-specific, natural language input. How does one teach a machine 
that operates in 1s and 0s how to understand nuclear language? Most ML 
techniques convert the base common components of the language (for 
example, a word or phrase) into a number and then teach the computer to 
understand relationships between those numbers. The exact methods for 
accomplishing this are varied and ever-evolving as research becomes 
accepted practice and the computing continues on a downward cost 
trend. The selection of the best methods to use depends on several factors: 
the level of expertise of the practitioner, the amount of language data 
available, the variety of the language, the amount of specialized 
computational resources available, and the desired level of language 
modeling that is actually needed to accomplish the end task. 

Bag of Words and Term Counts 

As a simple example, consider the following sentence: 

On 1/1/2020, the solenoid valve failed stuck open and thus failed 
the stroke closed test. 

A traditional method for converting these data into something that a 
machine can detect patterns in involves counting the number of times 
specific terms appear in the text. In the preceding example, solenoid and 
valve appear once each. Failed appears twice. Based on these counts, a 
machine could likely determine that this sentence could be bucketed  
into an equipment failure CR bucket. This is an example in which  
words are converted into counts (numbers), and counts are used to 
predict the category of the CR (relationships between words are 
discarded) (see Figure 2-1).  
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Figure 2-1 
Example text term frequencies 

Although this approach is relatively easy to use, it removes a lot of 
information contained in the sentence, particularly the order of the words 
themselves. In addition, nothing is learned about the words themselves—
they are simply converted to a bucket for counting. 

Understanding Words Using Context 

A common modern approach uses large neural networks to tie all the 
words together when making a prediction. To understand this approach, 
one must understand how humans are able to use context to infer the 
meaning of a word or even what words make sense to use in a sentence. 
Attempt to predict the {HIDDEN} word in the following sentence: 

On 1/1/2020, the auxiliary feedwater {HIDDEN} was discovered 
to have an oil leak when started for a condensate water transfer 
operation. 

As one attempts to guess the {HIDDEN} word, both the leading and 
trailing contexts are used. Someone familiar with nuclear power would 
likely guess that the following set of words—{pump, seal, bearing}—is 
likely to take the place of {HIDDEN} and would also know that a word 
such as dog or software would be unlikely. Beyond just the neighboring 
words such as auxiliary, oil leak, and condensate being present, one can 
infer a narrow set of words just from the structure of the sentence. 
Humans can do this because many examples of similar sentences or 
phrases have been learned from the relationships between specific words 
and the context in which they are used. 

Many modern ML algorithms are taught by inverting this example. They 
will read millions of sentences in a particular language, artificially censor 
specific words (as in the preceding example), and learn the patterns of 
what words should appear. The algorithm eventually learns that words 
such as pump, seal, and bearing are often used in very similar contexts. 
These words are then assigned numeric values that are very close to one 
another because they are used in the same context. Unrelated terms, such 
as dog or software, are assigned numbers much further away, because they 
are highly unlikely to be used in the same context as pump, seal, or 
bearing6 (see Figure 2-2). 

 
6 This is often done in higher dimensional space where, instead of a single number, one 
can randomly select a vector of numbers to represent the word. 
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Figure 2-2 
Principal component analysis of Word2Vec embeddings in nuclear domains 

If this process is repeated millions of times on tens of thousands of words, 
an ML algorithm can map each term in a vocabulary to a location on a 
number line. This numeric representation captures a lot more than just 
the presence of a term in a sentence; it can actually represent the concept 
or meaning of the term itself. This number can then be directly used by 
ML algorithms and has been shown to provide dramatic improvements 
in accuracy in many different problem domains. 

Full Context 

The absolute state-of-the-art ML algorithms take this process a step 
further. The context around a word can also change the meaning of a 
word. In addition, some words or phrases can be much more important 
for understanding a sentence than others. The latest ML techniques using 
large language models are actually able to learn how to alter the numeric 
representation of terms by evaluating the context of the sentence as well 
as increase or decrease the weight of these words in an ML task based on 
how important they may be. These algorithms are complex and require 
large amounts of data and processing power to train but deliver 
significantly more accurate results for many tasks. 
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Applications to Nuclear 

Although many of these methods are used for building ML models that 
understand the English language, these same methods can be used to 
build models tailored to understand the intricacies of specific domains. 
As it relates to the subject of this report, models can be trained using only 
nuclear-specific data or even CAP-specific data. These models are then 
able to learn how to understand terms as they are used in nuclear or even 
learn terms that only appear in nuclear-specific data. 

A summary of the techniques covered in this section appears in Table 2-1. 
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Table 2-1 
Nuclear language modeling techniques 

Method Description Category Difficulty Pros Cons 

Bag of words Uses the number of appearances of a 
word in a passage to characterize the 
passage.  

Count based Easy • Simple 

• Fast 

• Cheap 

• Limited performance. 

• Information lost in positioning and 
relationship. 

• Creates high dimensional data sets. 

Term frequency–
inverse document 
frequency  

Uses the frequency of word appearances 
in a passage combined with how often a 
word exists in all passages to 
characterize a passage. Used to boost 
the relevancy of rare words in 
numerically describing the passage.  

Count based Easy • Fast 

• Cheap 

• Improved 
recognition and 
impact of rare 
words 

• Limited performance. 

• Lost information in positioning. 

• Creates high dimensional data sets. 

Word embeddings 
(Word2Vec/GloVe) 

A set of numbers (vector) created for 
each word in a language, each adjusted 
to represent a word based on nearby 
occurrences of other words.  

Similarity 
vectors 

Medium • Fast 

• Context aware 

• Greater 
expressivity 

• Lower 
dimensionality  

• Representations do not differ with 
changes in context. 

• Need to precompute prior to utilization. 

Recurrent neural 
networks 

A neural network architecture trained in 
such a way that output is used as input in 
a recursive fashion. Creates a numerical 
representation of a sequence of words.  

Context 
sensitive 

Medium • Context aware 

• Excellent 
expressivity  

• High resource utilization. 

• Slow to develop and very slow to train. 

• Requires large training data sets. 

• Information from the beginning of a 
passage may be forgotten by the end. 

Large-scale 
transformer networks 

Similar to recurrent neural network but 
designed in such a way that all inputs 
can maintain many representations of all 
other inputs.  

Context 
sensitive 

High • Larger contextual 
awareness 

• Best expressivity  

• Large amounts of training data  
and computation resources required  
to train. 

• Success is very dependent on 
architecture and parameters. 
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Key Important Point 
CAP data are mostly natural language; therefore, it is important to use AI 
models that are designed for text. 

A key challenge with CAP data that separates them from common ML solutions in other 
applications is the heavy reliance on free-form text-based fields. Almost every important 
field in CAP data is a free-form text field, and any AI solution using these data will need to 
be good at dealing with CAP data. At a minimum, ML systems working with CAP data will 
need to transform the text data into a useful format (for example, bag of words or 
aggregated Word2Vec) for use in model training. The best performing systems will 
leverage newer state-of-the-art techniques in NLP that use large neural networks to 
capture more nuanced language information and interactions. 

 

Key Important Point 
Rules-based approaches struggle with text data. 

An approach that is commonly proposed in lieu of ML is the development of rules-based 
systems. The proponents of these systems posit that they can create their own conditional 
logic that can route CAP data through to automate decisions. An example of this would be 
a system that looks for keywords x/y/z in a CR title and does some thing as a result. The 
problem is that although the expert may be confident that the rules are foolproof, 
experience shows that these rules consistently break down in practical applications with 
real-world data. A rule that looks for the presence of high-pressure safety injection as 
evidence of a nuclear safety impacting condition will often incorrectly flag many issues 
that have nothing to do with nuclear safety (for example, “Operator was late to the 
continuing training session covering changes to the high-pressure safety injection system 
operability determinations.”). Rules-based systems sometimes attempt to combat these 
issues with ever more complex rules (for example, some keyword is present, but this other 
keyword is not present), but the complexity, inaccuracy, and cost of such systems quickly 
become barriers too large to overcome. Even simple ML systems, such as training a 
boosted decision tree model on text data transformed to bag of words, will outperform 
manually configured rules-based systems on almost all occasions.7, 8, 9 

 

 

 
7 Gerhman et al., “A Comparison of Rule-Based and Deep Learning Models for Patient 
Phenotyping,” https://arxiv.org/ftp/arxiv/papers/1703/1703.08705.pdf. 
8Hurriyetoglu et al., “COVCOR20 at WNUT-2020 Task 2: An Attempt to Combine Deep 
Learning and Expert rules,” 2020, https://arxiv.org/pdf/2009.03191.pdf. 
9Sebastiani, Fabrizio, “Machine Learning in Automated Text Categorization,” 2001, 
https://arxiv.org/pdf/cs/0110053.pdf. 
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Section 3: Automating CAP 
Training AI to automate CAP decisions is a complex multistep process 
that involves a mix of business process engineering, data integration,  
and ML. 

What Is CAP Automation? 

The scope of an ACAPS can vary but generally involves using AI to 
automate decisions within the CAP at an NPP. By automating these 
decisions, NPPs can reduce the manual effort required to meet CAP 
program requirements and improve process efficiency and agility. 

The term CAP automation covers automation of several processes within 
CAP. The most common processes being automated today are described 
in the following sections of this report. 

CR Screening 

CR screening is a process performed on all newly generated CRs and 
involves the assessment of the documented issue or condition, as well as 
the assignment of various resulting tasks. CR screening will typically 
include the determination of whether a CR is a condition adverse to 
quality (CAQ), the group that will own the CR, and the generation of 
initial corrective actions including evaluations and corrective 
maintenance. CR screening is performed in a variety of ways across the 
industry, but common approaches include a central committee of plant 
personnel screening all CRs for an NPP, decentralized CAP coordinators 
independently evaluating the CRs in their respective domains, or a 
combination of these two approaches.  

Maintenance Rule Functional Failure Screening  

Maintenance Rule functional failure (MRFF) screening is a regulatory 
required screening performed by a licensee to determine whether a 
Maintenance Rule–scoped system, structure, or component can perform 
its intended Maintenance Rule function. The implementation of the 
Maintenance Rule program will vary between some licensees. Certain  
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implementations of the Maintenance Rule program include a regular 
review of CRs for potential MRFFs or CRs that can prevent a system, 
structure, or component from performing its defined Maintenance  
Rule function. 

Trend Coding 

Trend coding includes the application of various trend codes to CRs. 
These trend codes are often Institute of Nuclear Power Operations  
(INPO) or World Association of Nuclear Operators (WANO) performance 
objectives and criteria or site-specific trend codes. These codes are 
typically applied to aid in trending and help facilitate straightforward 
analysis of the heavily textual CAP data. Trend codes can be applied 
throughout the CAP process, but most are typically applied during initial 
screening of a CR. 

Reportability Review 

Reportability reviews involve reviewing a CR for potential regulatory 
impacts including potential regulatory reporting requirements. For NPPs 
under Nuclear Regulatory Commission (NRC) regulation, the covered 
reporting requirements may include event notification reports under 
10CFR50.72, licensee event reports under 10CFR50.73, Part 21 reports, 
and other regulations. There is some variation between NPPs on how this 
process is handled, but it typically includes all or a portion of CRs being 
routed to a regulatory review group for additional screening and 
analysis. The entirety of the reportability review is unlikely to be handled 
through CAP automation, but it is possible for CAP automation to 
determine whether a CR should be routed for additional analysis. 

Key Operating Experience 
Development of an automated Maintenance Rule analyzer at Utility G. 

At Utility G, the Maintenance Rule program is implemented by strategic engineers who 
perform a review of every CR with an equipment failure to detect potential MRFFs. Utility 
G determined the most appropriate initial solution to be a recommendation system that 
presented the model results on the existing MRFF review web application.  

The MRFF determination process at Utility G had three potential outcomes: MRFF Yes, 
MRFF Indeterminate, and MRFF No. Based on this understanding of the MRFF process,  
a binary classifier was developed to predict either MRFF Indeterminate or MRFF No. The 
binary classifier model was trained on CR text and categorical features from both the CR 
and plant equipment associated with the CR. This model was developed as a neural 
network with the PyTorch library. Overall performance of this initial model would allow 
approximately 40% automation of MRFF determinations through the binary classification 
system. The output of this model was displayed as an informational label on the existing 
MRFF review web application to engineers to allow for a review and feedback period.  
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Applying AI to CAP Automation 

Setting up an ACAPS is a multistep process that, at its core, involves 
training AI models to automate decisions. Although there are 
integrations, auditing, change management, and other complicating 
factors, the AI part of the system follows a relatively straightforward  
life cycle. 

Gather Historical Data 

The first step in training AI on CAP data is to gather historical data from 
your CAP system. The historical data maintained within your CAP system 
will be the source of all knowledge for the ACAPS. At most NPPs, there 
will be tens of thousands of CRs spanning multiple years, containing all of 
the inputs and outputs for decisions that an ACAPS will attempt to 
automate. Acquiring these data and making them available for training  
AI models is a prerequisite. 

Identify Data Known at Decision Time 

This step is critical to ensuring that an ACAPS functions correctly. The 
historical data gathered in the first step will have data that are entered 
throughout the CAP process, from initiation to screening to evaluation 
and eventually closeout. Although all of these data are available in the 
historical records, only a subset of this information will be available when 
the ACAPS needs to make its decisions. It is important to separate the 
fields that are static and available at decision time and those that are 
entered later because the AI models must be trained with only the fields 
that will be available to it. 

Identify Data Reflecting Decisions 

This step involves identifying which fields reflect the decisions being 
made that the ACAPS will automate. This is relatively straightforward; 
for example, if your ACAPS will automate the decision about whether a 
CR is a CAQ, the field reflecting this decision in historical data needs to 
be identified so that the AI model can train to predict it. In addition, these 
fields should generally not be used as inputs for any other decision in  
the ACAPS. 

Train the ML Models 

This step involves training the ML models that the ACAPS will use. The 
ML models are trained to use the available input fields from the historical 
CAP data to predict the decision outputs. How to train the ML models is 
generally the responsibility of a trained data scientist and is outside the 
scope of this report. 
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Integrate the ACAPS with the CAP System 

This step involves integrating the CAP system into the ACAPS and its AI 
models. As new CRs are initiated, their information is sent to the ACAPS 
and fed through the ML models and the output decisions are sent back to 
the CAP system. 

Inventory of Decisions in CAP 

There are dozens of decisions across CAP that require manual effort and 
can be automated with an ACAPS. Figure 3-1 illustrates the screening 
process, and Table 3-1 presents a list of common decisions in CAP 
processes, the stage in a CAP process they are made, the estimated 
difficulty to automate, and the estimated value delivered by automating. 

 

FLM = front line manager 
MRG = management review group 
OPs = operations department 

Figure 3-1 
Example CAP screening steps 
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Table 3-1 
Typical decision fields encountered in a nuclear CAP 

Decision Description Stage Difficulty Value 

Equipment related Typically a flag denoting whether the 
CR is related to equipment. 

Initiate Easy. Low. Requires little time and 
expertise for manual review. 

Procedure related Typically a flag denoting whether the 
CR is related to procedure. 

Initiate Easy. Low. Requires little time and 
expertise for manual review. 

Operational impact Either a flag or field denoting extent of 
operational impact. 

Initiate/FLM review Medium. High class 
imbalance and plant context 
needed. 

Low. Requires little time and 
expertise for manual review. 

Industrial safety related Typically a flag denoting whether CR is 
industrial safety related. 

Initiate Easy/medium. Large 
number of examples 
available but need to have a 
good text model. 

Low. Requires little time and 
expertise for manual review. 

Condition severity/category Field that indicates the severity of the 
condition and its effect on nuclear 
safety. Lowest level is usually non-
CAP/not related to safety; higher levels 
indicate increasing levels of severity. 

Screening Medium/high. Class 
balance is better (usually 
80/19/1), but determining 
severity requires 
understanding of equipment, 
impact, plant context,  
and many complex 
interrelated factors. 

High. Usually the field requiring 
the most manual effort and 
discussion to determine; 
requires specific expertise to 
make determination. 

Level of effort Indicates the level of effort that the NPP 
plans to use to evaluate, resolve, and 
reduce risk of repeat events. 

Screening/ 
management review 

Medium/high. Level of 
effort is highly correlated 
with severity but sometimes 
differs for difficult-to-predict 
reasons (for example, this is 
a repeat issue and 
management wants to stop it 
from repeating). 

Medium. Usually a 
consequence of the severity, but 
sometimes additional discussion 
goes into the management 
discretion part of determining 
level of effort. 
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Table 3-1 (continued) 
Typical decision fields encountered in a nuclear CAP 

Decision Description Stage Difficulty Value 

Responsible group Which group will be responsible for the 
issue, its evaluating, and resolution. 

Screening Medium/high. Training 
data are often inconsistent, 
and there is high output 
dimensionality. 

Low/medium. Often, little time 
goes into determining the 
responsible group, but it is also 
often wrong. Line organizations 
are used to reassigning 
incorrectly assigned CRs. 

Generated work activities Which evaluations, action items, work 
orders, and so on will be generated to 
evaluate, resolve, and trend the issue. 

Screening High. The number, type, 
priority, and assignment of 
work activities all need to be 
predicted, and training data 
are highly inconsistent. 

Medium/high. Much effort 
goes into generating work 
activities 

MRFF Determination of whether an issue 
resulted or could result in a system, 
structure, or component failing to 
perform its defined Maintenance Rule 
function. In some cases, additional 
justification for this determination can 
be provided. 

Screening Medium/high. Similar to 
condition severity. Extreme 
class imbalance can exist, 
and incorrect results are 
consequential. 

Low/high. Proper determination 
of the MRFF can avoid 
engineering hours reviewing non-
issues, but different plants devote 
different levels of effort to the 
process. 

Regulatory impact Determination of whether an issue will 
have a regulatory impact. 

Screening/OPs 
review 

Medium/high. Similar to 
condition severity. Extreme 
class imbalance can exist, 
and incorrect results are 
consequential. 

Medium. Only higher severity 
CRs must be screened for this. 
High in cases in which plants 
may have a compliance 
resource screen all CRs for 
reporting requirements. 

NRC/regulatory reportable 
event 

Regulations indicate that certain types of 
events must be reported, including event 
notification reports under 10CFR50.72, 
licensee event reports under 
10CFR50.73, and Part 21 reports. 

Screening/OPs 
review 

Low/high. NPPs have very 
few reportable events; 
therefore, training is difficult. 
Models tuned to minimal 
false negative rates have 
high success, however. 

Medium. Only higher severity 
CRs must be screened for this. 
High in cases in which plants 
may have a compliance 
resource screen all CRs for 
reporting requirements. 
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Key Technical Information 
Multilabel data sets are challenging but often needed in CAP automation. 

One of the ML challenges in an ACAPS comes from the presence of multilabel 
classification tasks. 

Multilabel classification tasks are AI problems in which a system must label a given 
example with between zero and many different labels. This is different from multiclass 
tasks in which the AI system chooses one label from a set of many, or binary classification 
tasks that discriminate between a record belonging to a single class or not. Multilabel 
classification tasks are particularly difficult because not only are there multiple possible 
labels for a given record, but a given record can also have more than one of these labels. 

This challenge is often found in CAP automation, especially when applying trend codes to 
CRs. CRs often do not fall into a single bucket for trending and are given multiple trend 
code labels. An example of this is a repeat equipment issue identified during maintenance. 
This would likely have trend codes associated with equipment failures, maintenance, 
repeat issues, and even work management impacts. 

Unfortunately, many ML algorithms struggle to work with multilabel data. Most historical 
research has focused on binary classification and sometimes multiclass classification. 
Fortunately, there are models (such as neural networks) that work very well with multilabel 
data sets and, when combined with newer architectures capable of state-of-the-art NLP 
task performance, can handle the multilabel task common in CAP automation tasks. 

Review of ML Techniques for an ACAPS 

Not all ML models and techniques will work well within an ACAPS, 
especially when considering the unique and challenging aspects of CAP 
automation. ML models that tend to perform well in this space fulfill 
many of the following criteria. 

Criteria for Effective CAP ML Models 

The following are criteria for effective CAP ML models: 

 Work well with text data. CAP data are overwhelmingly text, and  
a model that struggles to handle text data will be unlikely to work 
well enough. 

 Support multiclass or multilabel output. Most decisions in CAP 
automation are multiclass (more than one potential outcome) or 
multilabel (between zero and many different outcomes). Using 
models that do not natively support multiclass and multilabel outputs 
will result in many additional challenges in training, deployment,  
and auditing. 

 Produce confidence/probability of outputs. Many of the auxiliary 
considerations for an ACAPS outside the core AI rely on having an 
interpretable confidence on the output decisions. Not all ML models 
do this well and instead produce only the most likely outcome. These 
will struggle to work well within the ACAPS. 
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 Work well with cap data set sizes. CAP data sets typically range 
from tens of thousands to hundreds of thousands of records. Some 
ML models may struggle with this amount of data, because it is either 
too large for them to deal with or too small. 

 Train in reasonable time and compute power. CAP automation can 
result in substantial savings, anywhere from tens of thousands to 
hundreds of thousands of dollars (or more) every year. However, 
many partial implementations of CAP automation not tackling 
screening automation will be on the lower end of this range. As a 
result, models that would be very expensive to train or require large 
amounts of specialized hardware may not be optimal. 

 Inference time does not need to be optimized. Unlike many use 
cases in AI, CAP automation models do not need to run in real time. 
There is often a significant delay between initiation, screening, and 
other downstream activities. Models that take seconds or even 
minutes to process a CR are acceptable, and there is little need for 
subsecond inference times. 

 Achieve high level of accuracy on cap automation tasks. Even if all 
of the other criteria are met, an ML model that does not produce a 
high level of accuracy on CAP automation tasks will not be effective. 

Assessment of ML Models 

Table 3-2 provides an inventory of different ML models and anecdotal 
experience about how well these models meet the preceding criteria.  
This is provided as a useful starting point for developing or assessing 
CAP AI models. 
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Table 3-2 
ML modeling approaches for nuclear CAP tasks 

Modeling Approach Fit to Preceding Criteria Rationale 

Decision tree Poor Decision trees struggle with multiclass and multilabel output and generally have lower accuracy. 

Random forest Poor Although generally more accurate than decision trees, random forest models require transforming 
text data into either bag of words or a vector representation. Bag-of-words models struggle  
with accuracy, and although vector representation adds accuracy, the models still struggle  
with interpretable probability/confidence outputs and are not as effective on multiclass and 
multilabel problems. 

K-nearest neighbor (KNN) Poor to acceptable KNN algorithms have very poor performance when dealing with text data because performance 
decreases exponentially as input dimensionality increases, and most text transformations for use in 
ML models result in very highly dimensional inputs. However, if custom similarity algorithms are 
developed (for example, weighted Jaccard cosine similarity), performance can be adequate,  
and multiclass and multilabel problems work well in KNN. 

Boosted tree Acceptable Boosted tree algorithms such as XGBoost and CatBoost, perform reasonably well with mixed textual 
and nontextual inputs, multilabel problems, and small- to medium-sized data sets. Deep neural 
networks can often perform better if they are built correctly, but boosted trees can deliver acceptable 
results without as much modeling effort in many cases. 

Naive Bayes Poor to acceptable Naive Bayes models make very strong assumptions about input data, mainly that all input data are 
assumed to be completely independent. This can reduce model performance and, importantly for 
automation, results in confidence predictions that are challenging to interpret. That said, Naive 
Bayes can perform adequately on certain text classification tasks, especially if the input data are 
prepared properly. In addition, Naive Bayes models work well on small- to medium-sized data sets 
and are not computationally intensive to train. 

Support vector machines 
(SVMs) 

Poor Although SVMs can perform well when there is high dimensionality in the inputs, SVMs struggle with 
other aspects common in CAP automation tasks. SVMs can take a very long time to train when using 
tens of thousands of records or more as typical with CAP data. SVMs do not natively support 
multiclass or multilabel problems, and a model needs to be trained for each label. In addition, SVMs 
struggle when the data are not clearly separable (for example, there is no noise in the target labels). 
CAP data often have many inaccuracies and inconsistencies, especially near decision boundaries, 
that SVMs struggle to deal with. 
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Table 3-2 (continued) 
ML modeling approaches for nuclear CAP tasks 

Modeling Approach Fit to Preceding Criteria Rationale 

Logistic regression Poor Although logistic regression meets some of the criteria for CAP automation, it struggles in many 
areas. Logistic regression often performs poorly with high-dimensionality inputs (for example, text) 
and does not natively support multilabel and multiclass problems. Critically, logistic regression 
usually delivers the worst accuracy compared to any of the other models covered here. 

Deep neural network Poor to best Deep neural networks are the current state of the art for NLP classification tasks and can handle 
multilabel data seamlessly. However, deep neural networks often require specific expertise to train 
and deploy correctly and take significantly more computational power—and often specialized 
hardware—to train. Although they will deliver the best results when done correctly, it is quite possible 
to end up spending much effort with poor results. 
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Key Operating Experience 
Ensemble modeling in Utility A’s implementation of CAP automation. 

For the development of its MRFF review and CAP screening automations, Utility A used a 
technique called ensemble modeling to achieve its results. Ensemble modeling is a 
technique in which multiple ML models are built and their outputs are combined into a 
single predictive pipeline. Utility A’s use of this technique involved including the outputs of 
a Bayesian text confidence model and an artificial neural network in an ensemble multi-
metric classification model (see Figure 3-2). 

 

Figure 3-2 
Applied ensemble modeling technique10 

 

Key Cost/Value Considerations 
Estimated costs of acquiring or developing task-specific models 

A typical ACAPS will involve five-plus individual ML models for the different decisions, 
which results in a minimum estimated cost of $300,000–$450,000 for the ML models 
themselves over the first five years.11 

 
  

 
10 NRC AI/ML Workshop, https://www.nrc.gov/docs/ML2127/ML21277A139.pdf. 
11 https://www.phdata.io/blog/what-is-the-cost-to-deploy-and-maintain-a-machine-
learning-model/. 
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Table 3-3 breaks down the cost of training a binary classifier for use in 
Maintenance Rule classification as performed by an experienced data 
scientist or ML engineer. Hour values are based on anecdotal experience. 

Table 3-3 
Estimated MRFF binary classification model costs 

Steps Hours 
Line Item Cost @ 

$125/hour 

Requirements gathering 20 $2,500 

Data gathering and research 80 $10,000 

Initial model development 100 $12,500 

Test different modeling methods 120 $15,000 

Model selection and refinement 50 $6,250 

Total 370 $46,250 
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Section 4: Additional Considerations for an 
Effective ACAPS 

In addition to developing reasonably accurate AI capabilities, there are 
several other key considerations to be made when designing and 
implementing an ACAPS. Although these considerations do not directly 
involve improving the raw performance of the ACAPS AI, they make a 
significant impact on the success of an ACAPS. 

Business Impacts of Inaccuracy 

An ACAPS delivers value by automating manual steps within the CAP 
process. The system has two types of additional costs beyond the cost of 
the system itself. Those costs are inaccurately automating a decision (false 
positive), which could cause an automation to occur incorrectly, and not 
automating a correctly predicted decision (false negative), which would 
cause the process to be performed manually. 

False positives result in a cost to the business in the form of having 
portions of the CAP automated incorrectly. This cost is often difficult to 
calculate but is generally an estimate of the incremental increase in the 
cost of the factors listed next, as the result of a single CR being inaccurate. 
There are multiple components of this cost, including the following: 

 Cost to reclassify later in process (if identified) 

 Cost of spending more effort than needed to evaluate and resolve issues 

 Costs from not spending appropriate effort to evaluate and resolve an 
issue (repeat events, equipment degradation/failure, latent human 
performance issues) 

Some of these costs compound when the number of false positives 
increases and, in extreme cases, can include the following: 

 Reduction in an organization’s trust of the CAP and ACAPS 

 Increased risk of INPO area for improvement 

 Reduction in regulatory margin 
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In virtually all cases, ACAPS should be tuned to produce a low enough 
false positive rate that these extreme compounded costs are not 
introduced. As such, the initial direct cost of a false positive (for example, 
reclassification costs and incorrect resource allocation) is usually used for 
estimating the costs of an ACAPS. 

False negatives, on the other hand, are not actually an additional cost 
themselves. False negatives result in a lost opportunity cost by not 
capturing the value of a true positive (a correctly automated CR). The 
opportunity cost of a false negative is the cost to manually process the 
decision. If a CR is manually processed and could have been automated, 
that is a cost that would have been avoided if the CR were automated.  
On top of this direct opportunity cost, the expected value of the cost of 
inaccuracy within the manual process should also be included. A CR that 
could have been automated correctly has the potential to be processed 
incorrectly in the manual process, and there is a cost to this risk of 
incorrect processing. 

When evaluating costs, it is critical to recognize that these costs also exist 
when a record is not automated and existed before the automation system 
was put in place. The manual human processes used before CAP 
automation occasionally screened and processed CRs incorrectly. 

Key Identified Best Practices 
Compare ACAPS performance to a human level benchmark. 

When adopting an ACAPS, stakeholders are often tempted to evaluate the accuracy of 
the system in a vacuum. When doing so, it is common to hear statements such as “we 
cannot automate any CRs if there is any risk of getting a single CR incorrect.” These are 
unrealistic expectations and, unless tempered, will prevent any automation system from 
being used. That is why it is critical to not evaluate the ACAPS accuracy in a vacuum but 
rather to compare it to the current manual human-makes-the-decisions system. Based on 
anecdotal experience, the manually performed processes are 95–99% accurate on most 
decisions. This is the benchmark to which an ACAPS should be compared. If it is as 
accurate as the manual process, even if it is sometimes inaccurate, it can be comparable 
to current process quality. 

Confidence and the Accuracy/Automation Trade-Off 

In general, increasing the proportion of records automated will result in a 
decrease in the accuracy of those records, and decreasing the proportion 
of records automated will result in an increase in the accuracy (assuming 
that the automation model performance remains constant). This is 
because an ACAPS will first automate the most confident records that 
have the highest accuracy. Because only some records will be highly 
confident, to increase the proportion of automated records, less confident 
records will need to be included in the automation. These less confident 
records are less likely to be correct and drag down total system accuracy. 
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The curve adjacent in Figure 4-1 is typical of a classifier used in an ACAPS. 
As the green line moves to the right and all records are accounted for, the 
accuracy and confidence of the prediction determination declines. In this 
case, about 40% of the records would be automated with high confidence, 
60% with at least medium confidence, and 40% with low confidence or  
not at all.12 

 
Figure 4-1 
Example precision versus recall curve 

From a pure cost optimization economics perspective, the optimal cost 
savings delivered through CAP automation would be at the point at which 
the marginal decrease in true positive value (additional value delivered 
through automation) associated with a decrease in confidence and 
accuracy matches the increase in false positive cost (cost of inaccuracy). 

If the confidence probabilities of the system are calibrated appropriately, 
this point occurs at a confidence probability of the following (see 
Equation 4-1): 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

 Eq. 4-1 

  

 
12 Czakon, Jakob, “F1 Score vs ROC AUC vs Accuracy vs PR AUC: Which Evaluation 
Metric Should You Choose?”, https://neptune.ai/blog/f1-score-accuracy-roc-auc-pr-auc. 
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As an example, it can be assumed that the value of automating a CR 
(value of true positive) is $100 and the cost of an incorrect automation 
(cost of false positive) is $2400. In this case, the cost-optimal confidence 
threshold would be 96% (see Equation 4-2). 

2400
2400+100

= 96% Eq. 4-2 

If 100 additional CRs were automated by changing the threshold from a 
higher value—for example, 96.1% to 96.0%—and the accuracy of those 
automations was 96%, there would be 96 automations and four 
inaccuracies, resulting in a value of $9600 (see Equation 4-3) and a cost of 
$9600 (see Equation 4-4).  

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = $100 ∗ 96 = $9600 Eq. 4-3 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = $2400 ∗ 4 = $9600 Eq. 4-4 

This would be the exact point at which the accuracy/automation trade-off 
crosses. Any threshold above 96% leaves money on the table, and any 
threshold below 96% costs more in inaccuracies than in the automation 
value delivered. For example, if the threshold were moved from 96% to 
95%, and as a result automated 100 more CRs, the incremental value 
would be $9500 (see Equation 4-5), but the incremental cost would be 
$12,000 (see Equation 4-6). 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = $100 ∗ 95 = $9500 Eq. 4-5 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = $2400 ∗ 5 = $12,000 Eq. 4-6 

This change would then have a net cost of $2500 (see Equation 4-7) and 
would reduce the overall value of the ACAPS. 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  ∆𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 −  ∆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = $9500 − $12,000 =  −$2500 
  Eq. 4-7 

Key Important Point 
The more decisions, the higher the likelihood of at least one error. 

A challenge in CAP automation is that as more decisions are added to the processing of a 
single CR, the proportion of CRs that have at least one incorrect decision increases. 

For example, imagine an ACAPS in which each decision can be automated with 95% 
accuracy. If the system automatically fills out three fields, the percentage of CRs with no 
errors is ~86% (95% ^ 3). However, if that system automatically fills out 10 fields, the 
percentage of CRs with no errors decreases all the way to approximately 60%. The 
number of correct predictions to obtain seemingly high levels of accuracy increases 
dramatically as additional fields are automated. This is especially true of fields that are 
hierarchical in nature, such as when predicting corrective actions, where there may be 
many corrective actions required—each of which can contain several additional fields 
with hundreds of independent choices. 
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Conservative Bias and Error Mitigation 

Although the previous section outlines the cost optimal automation 
threshold, it would not be recommended to start an ACAPS using this 
automation threshold for several reasons. First, the previous optimization 
assumes that the confidence probability thresholds are perfectly accurate. 
Unfortunately, confidence probabilities are almost always miscalibrated 
because of differences between model training and real-world application. 
Second, a high-visibility inaccurate automation—even if truly offset by the 
delivered value—can be disastrous for stakeholder confidence and trust in 
the automation system and even cause additional regulatory scrutiny. 

As a result, when adopting an ACAPS, it is generally advisable to 
maintain a conservative bias. Initial automations should start small in 
quantity by establishing very high confidence thresholds. As data are 
gathered and confidence is gained, automation levels should be slowly 
increased and manual sampling levels decreased. This helps mitigate the 
risk of errors and will still allow an NPP to reach near-cost-optimal levels, 
albeit on a slightly longer time period. 

Key Technical Information 
Watch out for model overfitting affecting classification probabilities. 

In an automation system with confidence thresholds, it is critical that the ML models used 
produce useful and meaningful confidence values. Although many things can affect the 
produced confidence levels in a model, one of the key mistakes that can be made is 
overfitting. Put simply, overfitting occurs when a model memorizes its training data and 
therefore fails to predict unseen future examples accurately.13 It is important to note that 
overfitting is usually used in the context of key model performance metrics such as 
accuracy or area under receiver operator characteristic curve, but in this context the 
reference is to the confidence values themselves—which is a more challenging metric  
to calculate. 

It has been observed that if a model is parameterized to maximize the accuracy it will still 
overfit on predicted confidence, or de-calibrate.14 In practice, this means that confidence 
values for predictions are pushed toward 100% or 0%. This push toward confident 
discrimination among target classes, although often improving overall accuracy, will 
increase the population of highly confident but incorrect predictions. Because an ACAPS 
relies on this type of error being minimized, overfitting predicted confidence can have 
significant consequences when automation systems are enabled. Therefore, it is important 
to reduce confidence overfitting by under-parameterizing models, under-training models 
that use batch learning, or directly measuring model performance against a customized 
automation loss function. 

 

 
13 https://en.wikipedia.org/wiki/Overfitting. 
14 https://en.wikipedia.org/wiki/Calibration_(statistics). 
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Section 5: Software Systems Integration 
Although the discussion to this point has focused on the AI capabilities 
required for an ACAPS, the majority of the value of such a system can be 
achieved only through robust integration with the CAP management system. 

Key Capabilities of an ACAPS Integration 

A successful system integration between the CAP source system and 
ACAPS is critical. At minimum, it should include the following components: 

 Training data export/integration. Allows the ACAPS to pull training 
data from the source system of record so that automation models can 
be retrained on a predefined interval or trigger. 

 Real-time or batch integration. Allows the source system of record to 
pull automation predictions from the ACAPS or for the ACAPS to 
push new automation predictions to the source system of record. 

If real-time integration is used, the following steps in the CAP workflow 
will need to trigger an action with the ACAPS: 

 CR initiation. Enterprise asset management (EAM) system should 
push training data to the ACAPS and pull a prediction back into the 
CAP workflow if the FLM review is skipped. 

 Post-FLM review/pre-screening committee review. Perform the same 
action as CR initiation if not already performed. 

 Post-screening committee review. For records routed to a manual 
screening, push the human-applied values back to the ACAPS. 

 CR closeout. Push any changes in applied values back to the ACAPS 
or provide a flag to the ACAPS indicating that target data have  
been updated.  

Tracking of automations. Automation records and decisions should be 
tracked in a CAP source system, automation system, or both. 

Feedback from EAM system. Feedback into automation system for 
auditing and additional training data. 

  

0



 

 5-2  

Key Operating Experience 
Integrating CAP automation with source systems at Utility G. 

Although it is possible to adopt an ACAPS without integration into the CAP source system, 
many of the benefits are greatly reduced. When initially developing and adopting its 
performance objective and criteria labeling automation, Utility G did not start with an 
integration into the CAP source system. Instead, as the individuals performing trend coding 
were processing CRs, they would open a separate web application tied into the 
performance objective and criteria labeling AI models, input their CR info, get the 
predicted performance objective and criteria codes, and apply them manually in the  
CAP source system. Although this had the benefit of lower upfront costs and provided 
substantial flexibility, much of the efficiency savings from automation was negated by 
retaining the need to manually enter the predictions into the CAP source system. In 
addition, not all trend coders were as persistent about using the tool, and some decided  
to continue coding manually. 

Integrated System Components 

Enabling the key capabilities of an ACAPS integration will require 
interfacing with various existing IT systems. Integrations with EAM 
systems containing CAP data—such as Maximo, SAP, or Passport—will 
be a must. In addition to these back-end systems, NPPs may need to 
interface with other systems creating or interacting with CAP data. These 
can include web applications or mobile applications for capturing CR 
data or third-party vendor CAP applications. 

Systems Architecture and Design 

Ideally, an ACAPS should aim to enable as many key integration 
capabilities with the minimal degree of integration cost and complexity. 
In general, the more systems that are integrated and the more complex 
those integrations are, the higher the cost and risk of issues. When 
feasible, the ACAPS should aim to integrate directly with the CAP source 
system and avoid additional integrations. This limits the integration 
complexity and helps ensure data integrity (see Figure 5-1). 
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Figure 5-1 
Reference CAP systems architecture diagram 

In some cases, additional integrations beyond the CAP source system  
will be required—for example, a separate web application is used for  
CR screening, the automation confidence is needed to be displayed  
but the CAP source system does not support the addition of an 
automation confidence field. In this case, the CR screening web 
application would need to integrate with the ACAPS in some way to 
retrieve automation confidence. 

Key Operating Experience 
Using database procedures to integrate ACAPS at Utility G. 

Utility G integrated its in-house ACAPS in two phases. The first phase exposed ACAPS 
recommendations to human screeners through a CR web application. The second phase 
integrated the ACAPS web application programming interfaces (APIs) directly with the 
EAM system. During recommendation, Utility G desired to fully expose the ACAPS outputs 
to the human screeners for review. The human screeners used a simple web application 
developed in .NET to review, screen, and update CR data. Utility G modified this 
application to include calling the ACAPS web APIs to retrieve automated CR output and 
added graphics to represent the output. When Utility G was ready to use ACAPS in a fully 
automated state, it desired that ACAPS be triggered as soon as a CR was entered into its 
EAM database. The Utility G’s EAM is a custom system developed with Oracle Database. 
The ACAPS integration was added directly into the EAM database through database 
procedures and triggers executed at specific steps in the CR workflows. These procedures 
call the ACAPS through ACAPS web APIs, retrieve the information, and store it in the 
EAM. The CR workflow was modified to skip certain human steps that are now 
accomplished through ACAPS. The end result was that when a CR is entered, if it meets 
ACAPS criteria, it is automatically screened and advanced to the management review 
step with screening data applied. 
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Key Operating Experience 
Integrating an IBM Watson–based ACAPS with site reporting at Utility D. 

Utility D has developed its ACAPS in partnership with IBM Watson. Utility D has 
integrated ACAPS with its Asset Suite EAM and exposed the ACAPS results on the 
condition review group (CRG) report. Watson’s APIs are called with CR data, and results 
delivered from Watson are inserted in a breakout section on the CR disposition report. The 
fields delivered are severity, priority, and owner group along with an explanation of when 
each field was selected. 

Automation Error Handling 

A critical part of an ACAPS is the ability to track and detect automation 
errors as a CR continues through the CAP process. An in-depth 
discussion of how error tracking is used from an auditing and monitoring 
perspective is covered later, but an important prerequisite for that 
auditing is that the errors are tracked and reported back as part of the 
system integration. 

Errors in automated records from an ACAPS will almost always be 
reflected by a change to the automated CR. This can happen on any of the 
automated fields for a variety of reasons. Often, these are minor or 
inconsequential errors, such as the responsible group for a CR being 
changed because of available resources, a corrective maintenance work 
order being canceled because it is a duplicate of another, or the safety 
significance of a CR being changed after an evaluation reveals more 
information about the condition. Sometimes, however, these errors can be 
highly consequential, such as an audit finding that a CAQ was classified 
incorrectly and not evaluated. 

These errors need to be considered and handled as part of the ACAPS 
integration. One approach for tracking these errors is to have an explicit 
step in the CAP workflow for changing consequential fields. Some CAP 
systems may already have this in place, such as sending a CR back to a 
screening step when safety significance needs to be changed. Although 
this approach is good at flagging high-consequence errors—and these 
errors can be tracked and sent back to the ACAPS through integration— 
it does miss smaller errors that may not have explicit steps in the CAP 
system. Another approach is to snapshot the CR at the time it is 
automated, either in the CAP system or in the ACAPs, and compare the 
final CR to this snapshot. This is an effective way to catch all errors in 
automation but may lack the ability to track the significance of the error 
or when the error was detected. 

Front line organization tolerance for errors should be considered when 
designing the automation error workflow. Many organizations can self-
reconcile minor errors such as incorrect responsible group assignment, 
especially if the group’s responsibilities are similar or they are managed  
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under the same department. For these cases, some tolerance for errors is 
permissible and needs to be judged organization by organization; it may 
not even need to be explicitly tracked in the ACAPS integration. 

ML Model Deployment Tools and Techniques 

Deploying the ML models is a critical component of an ACAPS. An 
ACAPS must aim to meet the following requirements for it to be suitable 
for CAP automation:15 

 Deployment of ML models in a robust server environment with API 
accessibility 

 Ability to service up to a request per second during peak loads 

 Ability to hot deploy ML models so that new models can be deployed 
with no downtime 

 Ability to Alpha/Beta (A/B) test multiple ML models 

ML model deployment software is still in its infancy, and the availability, 
applicability, and cost of various tools will likely change significantly over 
the coming years. Vendor systems that implement CAP automation are 
likely to provide their own embedded capabilities. Tools such as Seldon, 
Domino Data Lab, HPE Ezmeral ML Ops, and MLFlow are examples of 
software that may be useful for deploying ML models in an ACAPS. 

Key Identified Best Practices 
Few systems know how to deal with probability or uncertainty; care must 
be taken to handle this appropriately. 

The CAP software systems that an ACAPS must integrate with do not inherently support the 
notion of confidence and uncertainty in the data they store. A CR is either a CAQ or not a 
CAQ or is an equipment reliability issue or not. An ML-based automation system, on the 
other hand, will rarely deal in absolutes. It is perfectly normal for an automation system to 
predict that “this CR has a 70% probability of being an equipment reliability Issue.” This 
discrepancy can cause challenges in later processes, including potential human error 
traps as a result of misunderstanding the certainty of a field. At a minimum, records 
produced through the automation system should be flagged in the CAP source system. 
Storage and visual display of confidence for values provided by the automation system is 
an even better solution, albeit a more expensive option. 

 

  

 
15 Breck et al., “The ML Test Score: A Rubric for ML Production Readiness and Technical 
Debt Reduction,” 2017, https://storage.googleapis.com/pub-tools-public-publication-
data/pdf/aad9f93b86b7addfea4c419b9100c6cdd26cacea.pdf. 
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Key Cost/Value Considerations 
Estimated costs of software systems integration, implementation, and 
maintenance. 

The expected implementation cost for an ACAPS integration is between $5000 and 
$40,000, with anticipated annual maintenance costs in the range of 15–25% of 
implementation costs. CAP automation system integrations are generally cheaper than full 
application-to-application integrations because ACAPSs deal with one subset of data 
(CAP) and usually only have a couple of APIs that are called from specific parts of the 
workflow. It is impossible to provide a narrow estimate of the costs for a software systems 
integration because the integration costs will depend heavily on the system that it is being 
integrated with, the integration software being used, resource expertise, the ACAPS, and 
other intangible items.16, 17, 18 

 

 
16 https://www.starfishetl.com/blog/how-much-does-data-integration-cost. 
17 https://tray.io/blog/what-is-an-api-integration-for-non-technical-people. 
18 https://blog.dreamfactory.com/api-calculator-understanding-the-costs-behind-building-
an-api-based-application/. 
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Section 6: Change Management 
The change management for an ACAPS shares many similarities with any 
software project. An effective change management plan should aim to 
ensure that key stakeholders are aware of the upcoming changes, drive the 
desire to adopt the change, increase the knowledge of impacted parties 
concerning the affected processes, increase the workforce’s skills with the 
new changes, and generally reinforce all aspects required to ensure that 
the changes are successful. However, change management for an ACAPS 
must deal with additional complexities related to automation and AI that 
are challenging to handle. It is recommended to use an incremental 
adoption framework in addition to other change management techniques 
to ensure the best chances of a successful ACAPS implementation. 

Incremental Adoption Framework 

An effective method for building confidence in an automation system is 
to use an incremental adoption framework. Using an incremental 
adoption framework allows owners of an ACAPS to clearly understand 
where they are in the maturity of their system and avoid costly missteps 
in adoption by moving too fast or missing key steps. 

Although NPPs can adopt their own incremental adoption frameworks,  
it is suggested that they adopt the following framework consisting of five 
sequential steps: data, decisions, direction; assess; recommend; semi-
automation; and automation: 

1. Data, decisions, direction represents the initial stages of an 
automation system. This is the stage at which no system has been 
developed but stakeholders and subject matter experts have the 
opportunity to provide input on the automation system. As the name 
suggests, at this stage it is critical to ensure alignment across 
stakeholders on the following: 

a) Data that will be used to train the automation system and monitor 
its performance 

b) Decisions that will be automated through the automation system 
as well as any downstream impacts of those decisions 

c) Direction for the automation system and alignment on intended 
goals and appetite for accuracy/automation trade-offs 
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2. Assess represents the next stage of an automation and involves 
testing the automation system and ML models in a highly iterative, 
incremental, offline manner. Models are built, results are assessed, 
and adjustments are made. This is an important stage in automation 
system development because it is easy to catch many potential issues 
before they have made a negative impact and while they are cheap 
and easy to fix. This phase is also a good opportunity for educating 
stakeholders about how the automation system works and recognize 
its strengths and weaknesses. 

3. Recommend represents the next stage of automation and entails 
bringing the automation system online but not automating any records 
or making significant changes to processes. There are several different 
approaches to this phase, but in general they involve recommending or 
defaulting to-be-automated fields and decisions in the source system 
using the automation system but continuing to perform the manual 
process. This is highly beneficial for several reasons. First, it provides 
an easy, robust way to assess the accuracy of the resulting automation 
system by recording which fields or decisions are changed during the 
manual review process. Second, this stage allows another opportunity 
to catch potential errors in the automation system and get feedback 
from key subject matter experts. Lastly, this phase helps produce a 
high level of confidence in the automation system because 
stakeholders gain further familiarity with how the system will work 
when they are no longer performing the manual processes. 

4. Semi-automation represents the next step in automation and involves 
bypassing the manual processes for a subset of records matching 
certain criteria. These criteria vary and can include a mix of model 
confidence, keyword or other field blacklists and randomly selected 
samples of records. Semi-automation is important because it allows 
the organization to take small steps with the automation system and 
avoid over-automating and moving too far down the 
automation/accuracy trade-off curve too quickly. Like the recommend 
phase, this phase is valuable for building stakeholder confidence. 

The semi-automation phase typically includes the introduction of 
changes to underlying CAP procedures. At this point, the process and 
workflow have fundamentally changed; where there used to be a review 
of every CAP item, there are now automated bypasses and new 
processes for auditing and monitoring automation quality. It is critical 
that the underlying CAP procedures be updated to reflect these changes. 

Automation represents the final step in an automation system and 
involves the implementation of the automation system to its full 
potential. Sometimes, as is often the case with trend-coding automation 
systems where inaccuracies have a low cost, this involves automating 
100% of records and no longer having a manual process. For other 
systems, such as condition screening automation, there is still some 
manual review for low-confidence predictions and audit purposes. 
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Key Operating Experience 
Utility G CAP automation. 

When Utility G deployed its CAP screening automation, it followed a very similar 
incremental adoption framework. First, the in-house data science team made an inventory 
of the available data elements—the decisions made by the Utility G screening committee—
and decided on the direction for target accuracy levels and modeling techniques. Next, 
the team built prototype automation models, scored historical CAP data, and shared with 
key stakeholders. With stakeholder buy-in, it then deployed the automation system in a 
recommendation mode. When CRs were sent to the screening committee for review, they 
would be fed through the automation system and pre-populated with the fields needed to 
perform a review. After about one year in recommendation mode, the system was finally 
put into partial automation mode, with an initial ~10% of CRs bypassing the screening 
committee altogether. 

 

Key Identified Best Practices 
Allow for manual rules to bypass automation. 

It can be advantageous during adoption of an ACAPS to include custom automation 
bypass rules above and beyond the automation system confidence. These rules are meant 
to catch certain types of CRs that an NPP is reluctant to process automatically, such as  
CRs referencing safety culture or CRs authored by audit organizations. It is generally trivial 
to write these manual bypass rules as part of the ACAPS or as an add-on to the 
integration process. 

Other Change Management Practices 

Parallel to the ideas covered within the incremental adoption framework, 
it is recommended that additional common change management practices 
be used to increase the chances of a successful ACAPS implementation. 
Some of the more impactful practices include establishment of risk 
tolerance, engagement with end users, and iterative development cycles. 

Establishment of risk tolerance represents a common understanding of 
the acceptable levels of risk to the impacted organization. This is a natural 
part of the incremental adoption framework and is expected to change as 
adoption matures. This should be a well-established and intentional 
discussion at each step in the framework so that proper goals can be set at 
each level. 

Engagement with end users represents the continuous involvement of 
the impacted individuals and teams through the implementation life 
cycle. Engagement with end users helps increase adoption of the change 
and can increase the cumulative impact of an implementation by 
leveraging the ideas and experiences of these users. This will also ensure 
future ownership of the system and long-term front line support for the 
changes brought on by an ACAPS. 
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Iterative development cycles represents introducing reasonably small 
changes to the existing CAP processes. These development cycles will 
ensure the independent success of individual ACAPS components, which 
will drive the success of the full implementation. The incremental 
framework stage of these components should be considered prior to 
embarking on a change to introduce a new component. 

Establishing Ownership of the ACAPS 

A key part of effective change management is establishing ownership and 
responsibility over new functions required after implementation of a 
project. This is even more critical when performing change management 
for an ACAPS because there are many new functions that do not exist in 
the existing CAP processes. 

An ACAPS will have many of the same stakeholders of a traditional  
CAP system. These include the initiators, the CAP or organizational 
effectiveness groups, condition screeners, and a few additional groups 
including the IT organization and a data science, data engineering, a 
systems development group—if the automation system was developed in 
house—or the CAP automation system vendor. Close collaboration 
between the owners will be critical to the long-term success of the system. 

There are many areas of an ACAPS that require the designation of clear 
ownership, including the following: 

 Defining overall requirements of an ACAPS 

 Defining threshold and accuracy requirements for process  
automation portions 

 Defining software technical requirements such as architecture, 
deployment, and monitoring 

 Requesting updates or making updates to the system as needed to 
align with user requirements or changing plant environments—how 
these changes and updates get installed into the system 

 Approval of new automation components, such as ML models, or 
automation rules entering a production environment 

An effective tool for ensuring that clear ownership is established is the 
use of a responsibility assignment matrix, or RACI. A RACI matrix 
describes the participation by various roles in completing tasks or 
deliverables for a project or business process. RACI is an acronym 
derived from the four key responsibilities most typically used: 
responsible, accountable, consulted, and informed. Although RACI 
matrices will look different for different NPPs, an example RACI is 
provided in Table 6-1 as a potential starting point. 
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Table 6-1 
Example responsibility assignment matrix (RACI format) 

Tasks Plant Users Human Screeners CAP Team  IT Implementers ACAPS Developers 

Automated decision 
modification 

Inform Consult Accountable Responsible Responsible 

Identify changes to 
incoming data streams 

- Consult Responsible Consult Accountable 

Automation threshold 
modification 

- Consult Responsible Inform Consult 

Automation 

model retraining 

- Consult Accountable Inform Responsible 

ACAPS start-stop  Inform Consult Accountable Responsible Consult 

Automation step phase 
change 

Inform Consult Accountable Responsible Consult 

ACAPS update Inform Inform Consult Responsible Accountable 
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Section 7: Operating, Monitoring,  
and Auditing 

An ACAPS is not complete without the implementation of the 
appropriate monitoring and auditing capabilities. CAP is a regulated 
process and automating portions of CAP requires that monitoring and 
auditing are in place to ensure performance and verify compliance. 

Operation of an installed ACAPS will be similar to the current CAP 
screening process but with less manual time and effort required (see  
Figure 7-1). Exact operational details will depend on the current state of the 
implementation and the site requirements. ACAPS in a recommendation 
phase will be almost identical to the manual screening process, with few 
additional steps required. 

 

Figure 7-1 
ACAPS basic operational flow 
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CRs will still need to be manually processed for a variety of reasons, as 
follows, to support an ACAPS in an automation or partial automation phase: 

 Not automated due to ACAPS performance. In a partial automation 
phase, the ACAPS may not be confident enough to automatically 
process all CRs. Manual processing still needs to occur for these CRs. 

 Not automated due to data drift. As an ACAPS continues to operate, 
it is likely that CRs will be produced that do not have any matching 
relevant historical data indicating how to process them. These will 
still need to be manually processed. More information about the 
impacts of data drift can be found in the Detecting Data Distribution 
Changes section. 

 Highly critical CRs. NPPs will likely still want to manually process 
highly critical CRs, such as significant conditions adverse to quality 
(SCAQs). The CRs are typically complex and high impact, have 
significant regulatory and operational impacts, and are unlikely to 
have representative historical data. These CRs are so important that 
some NPPs will elect not to reduce total manual effort involved in 
CAP processes but instead reallocate saved time from ACAPS 
adoption toward discussing and evaluating these issues. 

 Later reviews and audit findings. Various downstream processes, 
such as management review group reviews, CR evaluations, or even 
audits, may identify incorrect and controversial automated decisions. 
These records should be distinctly identified in the CAP source system 
so that they can be manually evaluated further. Reconciliation of these 
decisions helps collect future ground truth19 information for additional 
ACAPS model training. This process is specific to the ACAPS 
implementation but can consist of later data ingestion through query, 
spreadsheet upload, manual flagging within ACAPS, or similar. This 
should occur only after all human review steps are completed and may 
or may not be accomplished in an automated fashion. 

Although ACAPS can reduce the human effort required to support  
CAP processes, NPPs must be ready to support some level of continued 
manual operations. CAP processes, supporting software, and employees 
with the required skill sets to review CRs will need to be maintained, 
albeit in a diminished capacity. 

Regulatory Impacts and Current Trends 

When the first ACAPSs were put in between 2017 and 2019, there was 
minimal regulatory scrutiny. At the time, this technology was brand-new 
to the industry, and, even for those within the regulatory agencies familiar 
with the technology, there was little movement to monitor and regulate. 

 
19 Ground truth references the true value of an item as determined by a human expert. 
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Within the past year (2021), this has changed. The NRC is becoming 
increasingly aware of, and involved in, the use of AI and ML in the 
nuclear industry. In general, the NRC has been welcoming of the 
technology, acknowledging its value to the industry and its importance in 
improving safety and reducing costs. However, the NRC has indicated 
that it plans to draft a regulatory framework concerning the use of ML 
and AI within the industry in the coming years. Initial indications are that 
it will be focused on operations and direct plant-impacting technologies 
instead of administrative processes such as CAP. However, it will be 
important for utilities adopting CAP automation solutions to stay abreast 
of these developments and adopt best practices now to avoid potential 
regulatory compliance challenges in the future. 
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Section 8: ACAPS Quality Assurance 
ACAPS Key Performance Indicators 

There are several key performance indicators that are useful for tracking 
the performance of an ACAPS (see Table 8-1). Ensuring that these metrics 
are tracked and reported is critical to monitoring the health of the system. 

Table 8-1 
ACAPS key performance indicators 

Key Performance 
Indicators 

Description 

Count of CRs automated Tracks the number of CRs that are automated through  
the ACAPS. 

Count of CRs manually 
sampled 

Tracks the number of CRs that could have been 
automated but were fed through manual processes for 
quality control purposes. 

Manual sample rate #𝐶𝐶𝐶𝐶𝐶𝐶 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
#𝐶𝐶𝐶𝐶𝐶𝐶 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + #𝐶𝐶𝐶𝐶𝐶𝐶 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

 

Tracks overall sample rate. A high manual sample rate 
provides high levels of quality control and confidence in 
automation accuracy numbers but at the cost of not 
automating large numbers of CRs. Manual sample rate 
should be higher for young systems or systems that just 
went through a large change and should be decreased 
as system performance proves itself. 

Automation efficiency  #𝐶𝐶𝐶𝐶𝐶𝐶 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
#𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐶𝐶𝐶𝐶𝐶𝐶

 

This metric provides a useful gauge of how much work 
the automation system is automating.  

Automation accuracy  #𝑄𝑄𝑄𝑄 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐶𝐶𝐶𝐶𝐶𝐶 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
#𝑄𝑄𝑄𝑄 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐶𝐶𝐶𝐶𝐶𝐶

 

This metric helps determine the accuracy of the 
automation system. It is typical for an automation system 
to aim to achieve the maximum automation efficiency for 
a minimum automation accuracy. 
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Key Technical Information 
Stochastic AI models and model retraining present challenges with 
traditional software quality assurance. 

Ensuring quality in an ACAPS has unique challenges. Although much of an AI-based 
automation system is built in software and can be tested through traditional software 
quality assurance processes, the key part of the automation system (the AI) cannot be 
tested this way. Testing that the automation system works correctly on several 
predetermined records does not guarantee that it will work on future data. Various 
approaches can help mitigate this risk, such as rigorous train/test/validate data splitting 
during model training and validation as well as simulating automations by holding out the 
latest time period of CRs—but these are still weak assurances of future performance. 

As a result, it is recommended to add quality control–based testing post-implementation 
that randomly samples a portion of records that would have been automated and feeding 
them through a traditional manual process. The results of the manual process can then be 
compared to the predicted results, and the efficacy of the automation system can be 
tracked and monitored well after it is initially developed. 

Audit Information to Track 

It is critical that the automation system keep an accurate record of the 
threshold rules, active models, and overall automation configuration over 
time. To be able to support auditing, training record weighting, automation 
accuracy, and so on, the system must be able to reconstruct what the 
automation system configuration was at the point a CR was fed through 
the automation system. A well-designed implementation of an ACAPS 
would serve as the single source of truth for its configuration, including 
thresholds and automation rules, at any given time that an automated 
screening was performed. Recording of these details allows the ACAPS to 
serve as its own source of documentation and historical record at any time. 
If a system does not have the capability to record this type of information, 
the changes to thresholds and other key decision points should be included 
in a change document. The change document can differ based on NPP but 
should otherwise capture what threshold or other element is being 
changed, why it is being changed, and what the resulting effect is going to 
be. In the worst case, the minimum standard that should be enforced is a 
record of the control logic changes through system source code 
management. This allows historical information to be reconstructed, albeit 
at a high level of effort and time. A summary of points to be recorded each 
time a CR is automated is as follows: 

 Decision threshold value. The probability/confidence level above or 
below which a model determines a specific classification. 

 ML model snapshot. A reference to a model artifact that would allow 
exact recreation of the ML model that determined a decision. 

 Class labels. The set of categories possible to be applied.  
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 System configuration. Reference to a summary record that 
documents the ML model versions in use at a given time. This record 
ties all other records together under a common reference so that the 
exact state of the system when an automated decision was made can 
be recreated. 

 Feature data record. A copy or a reference to the feature data that  
were used.  

Key Important Point 
Every record automated is now a record the ACAPS does not learn from. 

Although sampling of automated records is important for quality control and model 
performance, there is another key reason for sampling: gathering new training data. After 
a subset of CRs become automated and decisions are no longer manually made, no new 
training data are being generated. Automated records must be excluded from future 
model training because they would cause a positive feedback loop in which the models 
become incorrectly more confident in the predictions by being shown training examples 
that are actually just regurgitating information the model already knows. 

It is important to manually sample some automated predictions to check model 
performance and continue to generate new training data. The amount of manually 
sampled data should be user configurable. Sampled records should be evaluated through 
the standard screening process in a single-blind format so that the reviewer does not know 
that he or she is reviewing a record marked for quality sampling. 

By sampling some portion of the automated records, even if not needed for quality control 
purposes, training data continue to be generated for all subsets of CAP data (although at 
a lower rate for the automated subsets). Because the underlying processes and decisions 
driving CAP automation are effectively guaranteed to change over a long enough time 
period, these training data are crucial. Eventually, model performance will degrade, 
resulting in the CAP automation models needing to be retrained. At that time, it will be 
critical to have at least some new data to train the models. 
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Section 9: AI System Monitoring 
Model Performance Measurement and Tracking 

Model Key Performance Indicators 

Key performance indicators that should be used to measure performance 
for automation-based models will differ from many other applications of 
ML. Because the key metrics being optimized are automation efficiency 
and automation accuracy, it is important to select and monitor metrics 
that track these results. Measures such as raw accuracy are unusable here. 
Between class imbalances and partially confident predictions, it is easy to 
have a highly accurate model that is a poor model for automation. 

Although far from an exhaustive list, the following metrics should 
provide sufficient information for evaluating the performance of ML 
models for CAP automation: 

 True positive. A correct prediction of the positive class.  

 True negative. A correct prediction of the absence of the positive class. 

 Precision. Precision is perhaps the most important metric for evaluating 
model performance. Precision is defined as shown in Equation 9-1: 

#𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
#𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇+ #𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

 Eq. 9-1 

In the context of an ACAPS, this metric will be an estimate of the 
accuracy of the model for records that are automated if the same 
confidence threshold is used for the decision boundary. 

 Recall @ minimum precision. Recall is the percentage of all positive 
records that are true positives (see Equation 9-2): 

#𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
#𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇+ #𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

 Eq. 9-2 

Recall has an inverse relationship with precision; so, it is useful in the 
context of ACAPS to evaluate the recall metric at the minimum 
precision (minimum precision being the minimum acceptable 
automation accuracy). This metric provides an estimate of the 
percentage of records that will be automated as well as the efficiency 
gains on the system. Figure 9-1 highlights how a selected precision 
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value (labeled classification threshold) affects the recall potential of the 
system. As the threshold moves left, more green records are identified 
by the model at the cost of additional red records. Setting the 
classification threshold to a minimum precision value allows a user to 
balance the amount of automation versus the accuracy of the ACAPS. 

 

Figure 9-1 
Selected precision value on a number line20 

 F1 score. The F1 score is useful for evaluating model performance for 
models in which the importance of true negatives is minimal and is 
calculated as shown in Equation 9-3: 

#𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
#𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 1 2� (#𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + #𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)

 Eq. 9-3 

CR trend coding is a common example of this because there are 
sometimes hundreds of codes not applied for each code that is 
applied—and metrics taking credit for true negatives vastly 
overestimate model performance. 

 Area under curve (AUC). A common measure of a model’s ability to 
deliver accuracy as well as separate high-confidence predictions from 
lower confidence predictions. The AUC calculation is complex 
because it involves ordering records by their output confidence, 
calculating the running precision across all records, and then 
calculating the area under the running precision curve. AUC is not 
directly interpretable, but it is a great metric for comparing different 
candidate models. Models with higher AUCs on test data will almost 
always perform better in an ACAPS. 

Quality Control of Automated Records 

For an ACAPS that requires the ability to monitor accuracy or 
performance, the recommended approach is to implement quality control 
measures that involve random sampling of automated records. This 
involves feeding data through the automation system, determining 
whether a record will be automated, and—of the records that will be 

 
20 Classification: Precision and Recall, https://developers.google.com/machine-
learning/crash-course/classification/precision-and-recall. 
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automated—choosing a random sample of these records to still be fed 
through the manual process. After they go through the manual process, 
the results can be compared to what the automation system would have 
done—and conclusions can be drawn about the accuracy of the 
automation system. 

The strength of using this approach is that methods from statistical 
process control21 and best practices can be applied. The full scope of 
quality control sampling plans is outside the scope of this report, but the 
implementation of any common sampling plan will allow the 
organization to set a minimum acceptable quality level for a given 
number of records—and a sampling rate can be provided to ensure that 
that level is met. 

A weakness of the random manual sampling approach is that 
organizations often believe that its manual process is deterministic and 
that there are never errors in the manual process. In the majority of cases, 
this is demonstrably false because different individuals can and do make 
different disposition determinations for an identical CR. This can be the 
result of unclear decision boundaries, changing contexts, variations in 
training and experiences among individuals, or even mis-keying entries 
in the system. Anecdotal experience indicates that in CAP systems, the 
error rate can vary from 1% to 2% for highly important fields and all the 
way up to 25+% for trend codes. As a result, if the acceptable quality level 
is near or lower than the error rate of the manual process, one will 
struggle to achieve that level because it will be challenging to attribute 
errors to the manual process or the automated process.22, 23, 24 

  

 
21 https://en.wikipedia.org/wiki/Statistical_process_control. 
22Ginart et al., “MLDemon: Deployment Monitoring for Machine Learning Systems,” 2021, 
https://arxiv.org/pdf/2104.13621.pdf. 
23 Re et al., “Overton: A Data System for Monitoring and Improving Machine-Learned 
Products,” 2019, https://arxiv.org/pdf/1909.05372.pdf. 
24Klaise et al., “Monitoring and Explainability of Models in Production,” 2020, 
https://arxiv.org/pdf/2007.06299.pdf. 
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Key Identified Best Practices 
Choose a manual sample rate and precision threshold to bound the worst-
case model degradation. 

After systems have been designed to incorporate manual sampling and 
precision/confidence/probability thresholds, selection of these values in a conservative 
fashion will bound downside risk of an inaccurate model. A manual quality sample rate of 
100% of automated records effectively puts the system in a recommendation-only model 
in which all records retain manual review. A manual quality sample rate of 0% automates 
all records and captures no information about model performance. Values in between will 
allow the ACAPS to balance monitoring of model performance with exploiting the 
automation efficiencies. A recommended long-term point would be somewhere between 
5% and 10%.25 

Detecting Data Distribution Changes 

What Is Data Drift? 

Data drift represents a change to the data and patterns for an ML model. 
Data drift is particularly dangerous in automation systems because the 
ML models are trained to detect specific patterns in data. If the data and 
patterns change in any meaningful way, automation accuracies are likely 
to suffer. 

Data drift can happen in several different ways. Examples of common 
data drift patterns are as follows: 

 Concept drift. The relationship between the input data and the 
output has changed. An example of this would be a change in the 
CAP procedures to now classify certain CRs as CAQs when 
historically these CRs did not used to be classified as CAQs. 

 Prediction drift. The patterns in inputs and outputs remain the same, 
but the frequencies have changed. An example of this would be a large 
increase in CAQs related to primary systems within containment 
during an outage. 

 Feature drift. Significant changes to input data are seen. An example 
of this might be seeing shorter condition descriptions after the 
adoption of a new mobile app for creating CRs. 

  

 
25 Rate selection may be chosen on a batch basis from acceptable quality limit charts in 
American National Standards Institute Z1.4 or through continuous statistical process 
control measures in which the mean incorrectness (defect) rate is tracked. Sampling rate 
schedules may also be determined. See sources:  
Dodge, H. F., “A Sampling Plan for Continuous Production,” 1943. 
Bebbington et al., “Continuous Sampling Plans for Markov-Dependent Production 
Processes under Limited Inspection Capacity,” 2013. 
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Data drift often occurs as a result of typical business activities, but errors 
in system integrations and changes to source systems can cause significant 
unplanned data drift. An example of this would be a change to the CR 
entry form logic that puts the condition summary into a new field and the 
interface with the ACAPS is not updated to reference the new field. 

The danger of data drift is that the incoming CRs and their relationship to 
CAP decisions now look different from the data the AI models were 
trained on and, as a result, the patterns learned may no longer be correct. 
That can result in incorrect predictions and confidence levels being 
produced by the models. Even small changes in one input feature can 
have significant consequences as ML models track complex patterns of 
interdependencies between inputs. This is often referred to as the CACE 
principle: changing anything changes everything.26 

Monitoring for Data Drift 

Monitoring for data drift inside the ACAPS is an important capability for 
mitigating risk. Automated monitoring for data drift usually entails the 
use of statistical tests or additional ML models to detect changes in input 
data distribution. 

Key Identified Best Practices 
Mitigate data drift by identifying impacts at the source and preparing the 
models and system for change. 

After an ACAPS is deployed, it is critical that the ACAPS owners be part of any 
configuration and change management for the CAP source system and CAP processes. 
This section outlines many strategies for monitoring for data drift, but many of these 
strategies require time and preparation and are significantly less effective when used 
reactively. An ACAPS with engaged owners staying abreast of changes to underlying 
systems and proactively controlling for data drift will have higher automation accuracies 
and fewer negative impacts. 

Statistical tests for data drift involve tracking input data and performing 
statistical tests over various time periods to identify whether any 
statistically significant changes have occurred to the input data 
distribution. Generally, the statistics should compare new data with the 
data sets used for training the ACAPS models. A full inspection of data 
drift statistical tests is outside the scope of this report, but commonly 
used tests include ADWIN, Population Stability Index, Kullback-Leibler, 
Jenson-Shannon, and Kolmogorov-Smirnov. These statistical tests are 
fairly robust but track only significant changes across the entirety of data 
coming in. As a result, models will typically need to be retrained to 
resolve the data drift impacts. 

 
26 Sculley et al., “Hidden Technical Debt in Machine Learning Systems,” 
https://wiki.esipfed.org/w/images/5/5f/NIPS-5656-hidden-technical-debt-in-machine-
learning-systems.pdf. 
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ML techniques involve the use of anomaly detection algorithms and 
autoencoders and are generally applied on each incoming record. 
Autoencoders, KNNs, and other approaches are commonly used. 
Although the addition of more ML models to the ACAPS can increase 
complexity, the advantage of this approach is that data drift can be 
caught on a record-by-record basis. As a result, only the records outside 
the original training data distribution need to be manually screened, and 
the ACAPS can continue a slightly lower automation efficiency. 

Key Identified Best Practices 
Use anomaly detection to determine whether similar data have been  
seen before. 

In general, ML systems struggle to perform well on data that are highly dissimilar to the 
data on which they were trained. Most ML algorithms are unable to indicate whether they 
have seen similar data before and may erroneously produce highly confident but incorrect 
predictions on these examples. Therefore, it is advisable to include an anomaly detection 
algorithm in the system that can prevent novel records from being automated. 

Application System Monitoring  

Automated monitoring of the ACAPS is recommended as the reliance 
upon the system increases. The application should be integrated with 
existing monitoring tools within the organization to provide automated 
alerting and performance issue resolution. 

Non-AI-Related Key Performance Indicators  

Monitoring of the systems enabling the ACAPS focuses on ensuring that 
the AI system remains available. Monitoring of these services may take 
on similar characteristics of monitoring other critical system services a 
utility may have enabled such as an EAM system or grid management 
system. Another example would be a critical web service that exists on 
the commercial market such as flight booking or commercial financial 
applications. These metrics are not aimed at AI performance or accuracy 
metrics but rather focused on the systems that enable the AI to function. 
Monitoring metrics for these systems can include things such as those 
shown in Table 9-1. 
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Table 9-1 
ACAPS operational key performance indicators 

Key Performance 
Indicator 

Description 

Throughput  Throughput measures the amount of traffic that is flowing 
through the automated AI system. Attention should be paid  
to times of increased demand such as a refueling outage or 
audit period. 

Response time/latency Response time measures how long the CR screening 
application takes to respond to requests. Lower response time 
is better, and the application should be optimized to the point 
that upstream or downstream systems do not time-out or are 
adversely affected.  

Error rate The amount of error responses delivered by the AI application 
back to the upstream system. Errors can occur due to 
malformed requests, data that are not formatted properly,  
or other reasons. These errors should be logged, quantified, 
and addressed.  

 

Key Identified Best Practices 
Build in emergency stops that can be activated in case of emergency or 
catastrophic failure of the ACAPS. 

When deploying an ACAPS, it is advisable to implement an emergency stop. The  
intent of this emergency stop button is similar to one on an assembly line: immediately  
stop the automation of CAP processes to minimize impacts of an issue within the 
automation system.  

Although unlikely, there are circumstances that could entail the use of the emergency  
stop functionality. A non-exhaustive list includes a retrained ML model noted as having 
worse/unexpected performance, changes to a field in the source system resulting in 
sudden degradation of automation accuracy in new records, or an error in automation 
logic causing certain records to be automated that should not be. 
In each of these cases, an emergency stop that can be quickly activated allows an  
NPP to minimize the impact of one of these situations while a solution is developed. 

System Availability Requirements 

In the beginning stages of ACAPS adoption, system availability 
requirements are generally not stringent because the vast majority of  
CRs are still manually processed. In the event of an ACAPS outage, it is 
expected that CRs will simply default to the manual process. 

However, after the ACAPS processes a higher percentage of records, the 
impact of an outage becomes significant—especially if it is an extended 
outage. For intermittent system availability impacts (for example, outages 
less than a day for maintenance), it is expected that CRs that would go 
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through the ACAPS would need to be queued up and reprocessed 
through the automation system when it is available. This assumes that 
queueing is acceptable, which is easy to imagine when comparing to 
today’s as-is processes but can have a significant impact as more 
downstream processes rely on the real-time automation of CAP program 
tasks. As a result, it is important to develop an ACAPS that can support 
high availability requirements even if not leveraged initially. An example 
of this would be building a system that can be run on redundant servers 
in a high availability setup and a disaster recovery plan but potentially 
starting with only a single server to reduce costs. 

Implementation Technologies for Monitoring and Logging 

Monitoring and logging technologies may feed an existing enterprise 
alerting or notification system. For monitoring ML systems, the 
monitoring and logging technology should contain a live updating 
dashboard that contains displays of the relevant metrics for real-time or 
near-real-time monitoring and a feed into the existing alerting system.27 A 
monitoring and logging technology stack could be broken down into the 
following three categories: 

 Developed in-house. Tools implementing solutions for each of the 
detection mechanisms previously covered. This may be common to 
implement specific monitoring techniques that may not yet exist in open 
source or commercial ML monitoring solutions. These solutions would 
be deployed on their own or by a serving mechanism such as Kubernetes 
or Native or on a cloud system. A serverless style of deployment allows 
these to remain active and efficient.28 Logs and metrics of these systems 
could be exposed through a tool such as Prometheus29 and visualized 
with a dashboarding tool such as Grafana.30 

 Traditional software application monitoring tools. These are the 
well-known, traditional services used to monitor enterprise 
applications that could also be used for ML monitoring. Examples of 
these are Elastic, Logstash, Kibana (ELK) stack, which can be used to 
collect and visualize created logs or commercial offerings from 
companies such as Datadog, Traceview, or AppDynamics. 

 
27 Breck et al., “The ML Test Score: A Rubric for ML Production Readiness and Technical 
Debt Reduction,” https://storage.googleapis.com/pub-tools-public-publication-
data/pdf/aad9f93b86b7addfea4c419b9100c6cdd26cacea.pdf. 
28 Klaise et al., “Monitoring and Explainability of Models in Production,” 2020, 
https://arxiv.org/pdf/2007.06299.pdf. 
29 Prometheus is a an open-source monitoring system with a dimensional data model, 
flexible query language, efficient time series database, and modern alerting approach, 
https://prometheus.io. 
30 Grafana is the open source analytics and monitoring solution for every database, 
https://grafana.com. 
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 Tools with an ML focus. Tools developed specifically to monitor ML 
workloads. The following are projects or vendors with a specific offering:  

- Tensorboard visualizes model training and logging during  
development. 

- Seldon.io combines model metric logging and visualizations into 
a purpose-driven tool. 

- Weights and Biases allows model monitoring and experiment tracking. 

- Arize provides a model troubleshooting tool with various ways to 
visually slice model performance data for monitoring and 
troubleshooting model performance issues. 

Estimated Costs of Monitoring and Logging  
 

Key Cost/Value Considerations 
Saving on monitoring and logging costs. 

Although monitoring and logging are important, ACAPS project costs can be reduced by 
omitting any production monitoring and logging or by integrating with an existing 
enterprise monitoring and logging system. Choosing not to perform ACAPS monitoring 
and logging will result in increased risks to the project, but if properly mitigated they are 
not excessive. Risks can be mitigated by placing automated triggers that fall back to the 
human system or putting conservative modeling thresholds in place. 

Monitoring and logging costs will heavily depend on the option that is 
selected. Existing application monitoring and alerting are highly likely to 
exist at an enterprise level and will not be covered. Standing up and 
maintaining an ELK stack specifically for monitoring an ACAPS will cost 
around $8500 per year after computer and human resource costs. Tools 
focused specifically on ML will trade general monitoring abilities for 
curated, specific model metric and performance monitoring and may cost 
significantly more. For example, Seldon.io costs about $18,700 per year for 
five monitored models. A fully managed solution such as Fiddler or Arize 
will have costs comparable to Seldon.io. Cost estimates for an open source 
and customized solution are provided in Table 9-2. 
Table 9-2 
Monitoring solutions costs 

Monitoring Solution 
Software Licenses 

per Year 
Compute per 

Year 
Labor  

ELK31 $0 $2388 $6360 

Seldon.io32 $15,600 for five models $3179 $0 
 

31 https://calculator.aws/#/createCalculator/OpenSearchService Using c4 large instances 
without ultrawarm. 
32 https://aws.amazon.com/marketplace/pp/prodview-tnyp2h3acabm6?sr=0-
1&ref_=beagle&applicationId=AWSMPContessa. 
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Section 10: Maintenance and Sustainability 
After an ACAPS is established, efforts are needed to ensure that the 
application continues to function and remains a sustainable ongoing effort. 

ACAPS Oversight and Governance 

ACAPS Ownership After Implementation 

A potential challenge after the deployment of an ACAPS is determining 
which groups in the enterprise take ownership.33 Although project 
management and change management efforts will often identify 
ownership during initial implementation and go-live, ACAPS ownership 
requires clear ownership for long-term sustainability. Although an 
ACAPS has characteristics of traditional software, there are unique 
aspects of long-term maintenance that require special care and oversight. 

With traditional software, the organizational unit (for example, CAP 
group, Org Effectiveness, and so on) will provide significant input into 
the initial requirements and testing of the software. After deployment, 
however, there is typically limited involvement from the organizational 
units at the NPP. Most software does not typically require constant 
monitoring, nor does it tend to require updates. Most changes to business 
processes that are supported by software are typically managed with 
minimal change to the software systems. These changes are performed 
with some change management, communication, and training but 
generally only for those parts of the organization directly affected. 
Critically, in the context of CAP automation, the business logic for 
determining effort levels, safety significance, and responsible groups 
exists completely outside the software and can be altered by process 
document changes. 

With an ACAPS, logic and rules that used to be part of the business 
process and executed by humans are now part of the automation system. 
Processes to set and maintain this logic—such as thresholds, logical 
decisions, and rules—need to be determined, owned, and controlled by  

  

 
33 In this case, ownership means responsibility for the function of. 
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the organizational unit responsible for the CAP process. Clear ownership 
and responsibility for this process becomes more critical than ever, and 
most business process changes can no longer be made without 
corresponding changes and impacts to the ACAPS. 

Although, typically, the ownership of software systems belongs within 
IT, the ownership of and the results produced by an ACAPS should be 
the sole responsibility of the CAP organizational unit. A well-designed 
ACAPS implementation will expose these software controls and enable 
the CAP program owners to make CAP process changes as needed 
without the involvement of an IT or data science group. Presuming that 
the ACAPS implementation provides proper insight into the effects of 
application changes on the overall process, allowing a CAP organization 
to maintain these controls most closely resembles the governance and 
control schemes of current human-driven processes. 

Key Important Point 
If you want to change how decisions are made, you no longer train 
people, you train the model. 

It is important to understand that when the majority of your CAP process is automated, 
making changes to the CAP process must now be performed by changing both the people 
process and the automation process. The sustainability of the CAP program will depend 
on both changes working in sync. Changing how your CAP process works is no longer 
performed by changing your procedures and training individuals but rather by generating 
new training data and updating your ACAPS. Specific strategies for updating the ACAPS 
for CAP process changes are addressed later, but understanding this point is critical 
toward understanding how to maintain and sustain your ACAPS. 

The remainder of the responsibilities required for implementing the 
ACAPS should be defined and assigned according to Table 6-1, Example 
responsibility assignment matrix (RACI format). 

System Maintenance and Updates 

Updating the ACAPS Models 

An ACAPS will need to retrain or update periodically for a variety of 
reasons, including updating to handle data drift and increasing automation 
accuracy by learning from new data. A variety of strategies exists for 
updating AI models in production. The correct strategy will depend on the 
specifics of your ACAPS and NPP. The strategies are as follows: 

 Online training. Models using online training continuously train as 
they see new records. This is commonly what people believe AI systems 
do, but, in practice, online training is infrequently used. The benefits of 
online training are relatively minor in the context of an ACAPS and can 
potentially result in minor increases in accuracy. The potential risks and 
additional complexity, however, are immense. Online training means  
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that your system is constantly evolving and assessing, and 
troubleshooting becomes significantly more challenging. In addition, 
many ML techniques do not support online training; so, even 
implementing it in the first place is a significant challenge. 

 Periodic training. A commonly used method for retraining is to 
retrain on a periodic basis such as quarterly or annually. This 
approach is fairly robust and has a good blend of maintaining system 
performance without introducing undue complexity. This will 
guarantee that models are never too far behind any changes to 
underlying data distributions and decision processes. The risk with 
this approach is retraining too often and introducing unnecessary 
changes to the automation system or not retraining frequently enough 
to learn new changes. 

 Metric-based retraining. Metric-based retraining involves setting 
various thresholds on system performance metrics and retraining 
when those thresholds are met. These thresholds could be accuracy 
based, record count based, data-drift based, or based on any number 
of other measurements. This approach depends heavily on the metrics 
and thresholds chosen. When done correctly, this can result in near-
optimal system performance but if done incorrectly can result in 
training far too often or not nearly often enough. Some risk from this 
approach can be mitigated by combining with bounds on periodic 
training—for example, not training more often than once every two 
weeks and never going more than a year between retrainings. 

Key Identified Best Practices 
Exclude automated data from future training data to avoid positive 
feedback loops. 

A positive feedback loop occurs when an ACAPS model is trained on records it had 
previously automated that are now considered ground truth. Training repeatedly on 
previously learned decisions can potentially reinforce incorrect decisions and reduce the 
diversity of previously learned decisions. Automated records should be notated so that 
future persons developing or working on the ACAPS understand that these records were 
generated using an automated process and therefore should be ignored or reviewed prior 
to being used in training a new model. 

Positive feedback loops are considered technical debt in any ML system and should be 
avoided to prevent the current system state negatively influencing future behavior. 
Isolation of automated records from the ML training system serves as a method to 
eliminate negative effects on future model performance.34 

  

 
34 Sculley et al., “Hidden Technical Debt in Machine Learning Systems,” 
https://wiki.esipfed.org/w/images/5/5f/NIPS-5656-hidden-technical-debt-in-machine-
learning-systems.pdf. 
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Key Technical Information 
Weight training data post-automation to calibrate model probabilities. 

When retraining models that include periods in which the ACAPS was in effect, it is 
important to understand and control for the effects of automation and manual sampling 
(see Figure 10-1). Because records that were automated from the new training data must 
be excluded, the distribution of the training data is altered and the effect of this must be 
controlled. It is critical to control for this effect by weighting the training data, 
oversampling manually sampled records, or undersampling non-automated records. 

 

Figure 10-1 
CR prediction confidence distribution changes due to automation deploying  
updated models 

After a new model has been trained, there are a variety of strategies for 
deploying it. Deploying a new model presents an opportunity to improve 
the performance of the ACAPS and at the same time presents a risk that 
things will not go according to plan. The following deployment strategies 
attempt to maximize the value and minimize the risk of deploying an 
updated model into production: 

 Cutover. Cutover describes the disabling of an existing model in 
production and a new model being immediately activated to replace 
it. Increased monitoring and a temporary increase in quality control 
sample rate are recommended to use a pure cutover transition. 

 A/B test. An A/B test will run a new model and an old model in 
unison. The newer model is run using a smaller percentage of records, 
results are gathered, and, if the new model performs well, the 
percentage of records fed to the new model is increased and vice versa. 

 Reinforcement learning. A more elegant version of A/B testing, a 
reinforcement-based approach allows you to introduce multiple 
models at the same time. A reinforcement learning system will 
explore how new models work by feeding some records through  
and tracking how well they do. As more evidence is collected, the 
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performance of specific models can be inferred. Models that perform 
well are used more often, eventually near 100% of the time. Models 
that perform very close to one another are chosen at random. 
Although more flexible and potentially more performant, a 
reinforcement-based system is much more complicated. If only one or 
two models are in consideration, it is likely easier to do regular A/B 
testing or even straight cutover with monitoring. 

Key Operating Experience 
Utility G and the multi-armed bandit. 

During the deployment of an automated trend coding solution, Utility G needed to select a 
strategy for determining how many trend codes should be automatically applied to a CR. 
Using a simplified reinforcement learning method called the multi-armed bandit,35 it was 
determined how many trend codes output by a single model would be used by the 
automated trend coding framework. The model began by selecting randomly from one of 
five result selection strategies and over a period of two weeks determined that the user’s 
preference was a simple Top N selection strategy where N is the number of applied codes. 

Adverse Change Mitigation Strategies 

Adverse change mitigation strategies to prevent performance degradation 
or outright failure of the ACAPS need to be in place before operating in a 
highly semi-automated or fully automated mode. Upstream changes that 
can affect the performance of the ACAPS need to be identified as early as 
possible and communicated to the ACAPS maintainers. 

Changes to the Decision Inputs 

When the input data for decisions are changed, there are different 
approaches depending on the type of change. Common types of decision 
input changes are listed in this section, as well as recommended strategies 
for mitigating, as follows: 

 New values added to input. An example of this would be the 
addition of new equipment IDs or a new organization. There is 
nothing in the historical data that matches the new data, and any 
attempt to use these data to automate should be considered suspect. 
In this case, the ACAPS should either automatically (through input 
anomaly detection) or manually (through rules) refrain from 
automating records using these values until enough training data 
have been generated and the models can be retrained. 

 Values changed in input. An example of this would be a new 
equipment naming convention or an updating of organizational 
names. In this case, there are historical data that match these data,  
but without additional intervention the ACAPS will be unaware of 
this. These changes can be handled the same as new values added to 

 
35 https://en.wikipedia.org/wiki/Multi-armed_bandit. 
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input without issue, but the opportunity cost of missed automations 
may be large depending on the percentage of records with changed 
values. Another option would be to map the new values to old values 
during ingestion into the ACAPS and make decisions based on the 
old values. This would keep the ACAPS running near full efficiency 
at the cost of some changes on the input integration. 

 Input fields removed. In some cases, certain input fields will cease to 
exist or be filled out. This can happen as a result of a change to the 
CAP source system or as a procedural change to no longer require 
certain information. In these cases, it is very important to retrain the 
ACAPS models on these historical data with the missing input fields 
removed. Not doing this and instead feeding empty values for new 
CRs can result in unexpected model performance and has a high 
chance of a negative impact to ACAPS accuracy. 

Changes to the Rules/Processes for Making the Decision 

In this case, the relationship between the input data and the decisions is 
being fundamentally changed. Examples of this could be a management 
decision to increase the evaluation level of effort for all significant injuries 
or a reclassification of which systems are safety-related. When this 
happens, it is usually the case that most of the historical data are still 
useful, but records representing the new rules need to be gathered or 
generated to train the ML models on. The following techniques can be 
leveraged in this instance: 

 Increase manual sample rate and confidence thresholds for a short 
period to not automate as many records, and retrain the AI models 
with the new examples to learn from. 

 Go back to historical CRs, and re-review some of them with the new 
rules; then, train the models to learn with these updated historical data. 

 If the changes are to a subset of records that can be determined with a 
simple rule (for example, any CR with equipment from certain 
systems, CRs containing the word injury), update the CAP automation 
system to bypass automation for all records matching this criterion 
until enough training data are gathered. 

Changes to the Decision Labels 

If the decision labels are changed, the CAP automation models will no 
longer be predicting the correct labels. If the new labels have a one-to-one 
relationship with the old labels, you can use a process to translate the old 
predictions into the new labels. In most cases, however, there are major 
differences between the labels that do not follow such a simple mapping.  
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Strategies for the different types of mappings are listed here. If the new 
labels include a mixture of the following rules (for example, the change 
from the 2013 INPO performance objective and criteria codes to the 2019 
WANO codes), multiple strategies can be combined: 

 One-to-one. Recode historical data or translate the output of the model. 

 Multiple-to-one. Multiple labels in the old system have been 
combined to one label. The strategy is the same as the one-to-one. 

 One-to-zero. The label has been removed from the new system. For 
multilabel problems, simply remove the label. For multiclass 
problems, the historical data must either be removed or recoded to 
match one of the new labels as closely as possible. 

 One-to-multiple. One label from the old system matches multiple 
new labels. This usually happens when more specificity is added in 
the labeling. For multilabel problems, the historical examples can be 
re-translated to add all the matching labels; then, new data will be 
gathered through manual sampling. If this is inappropriate or if the 
problem is multiclass, either some amount of the historical data must 
be recoded or new data must be collected with manual processing. 

 Zero-to-multiple. A new label exists that did not exist at all in the old 
system. This is the most challenging case to handle. The strategies for 
the one-to-multiple situation are still applicable, but all records need 
to be evaluated for re-labeling or manual processing because there are 
no historical data to limit which records need the data. 
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Section 11: Long-Term Impacts to Other  
Plant Activities 

Transitioning to a semi-automated or a fully automated CAP screening 
process has long-lasting impacts to other interfacing processes at an NPP. 
The transition to, and operation of, such a system must be managed 
carefully to ensure that impacts to other plant activities remain unchanged, 
benefit positively, or are otherwise weighed and managed against the 
positive outcome of automating CAP screening. Similarly, changes made to 
other process interfacing with the ACAPS must be managed so that ACAPS 
is not inadvertently negatively impacted. The following sections cover 
details of various plant process interfaces to an ACAPS. 

Plant Process Interface 

The CAP screening process at many NPPs can be visualized as a 
consumer-producer model in which certain business inputs are consumed 
and product is produced for downstream consumption for other business 
purposes. Figure 11-1 shows examples of business data producers that 
feed an ACAPS and business consumers that intake data from the ACAPS. 

 

Figure 11-1 
CAP screening inputs and outputs as a producer and consumer model 
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ACAPS implementers should be aware that these processes, both 
consuming and producing data, may not be immediately obvious. 
Changes made to a producer process that seem simple to a human can 
have adverse effects to an ACAPS. More apparent examples of these 
changes may be items such as an alteration of the software that employees 
use to fill out CRs, a change in the way regulatory audit results are 
documented, how NRC Part 21 Reports are handled, and potential 
changes in the way issues are routed to control rooms for review. 

From the consumer’s perspective, CAP automation is less impactful. Most 
systems will not be directly affected because first iterations of ACAPS will 
simply replace portions of the CAP screening data feeds in a like-for-like 
fashion. Downstream consumers that must intake data from the ACAPS 
process will be affected by the quality of the data produced by the ACAPS. 
In implementations without model confidence considerations, ACAPS will 
not be as accurate on subsets of the results as humans. Downstream 
consumers will need to account for this difference by adapting processes 
to account for the change in output. For example, an ACAPS producing 
corrective actions with an owner group may fail to differentiate between 
very closely related owners (for example, Mechanical Maintenance Team 
A versus Team B). In another example, a downstream CRG or 
management review committee may see more CRs with incorrect fields 
and may find that they need to manually send more CRs back for a second 
screening. Processes for handling these errors need to be developed and 
accounted for so that the rate of error and cost of error handling do not 
exceed the gains in efficiency ACAPS brings elsewhere. 

More subtle changes can be induced by seemingly unrelated procedure 
changes, procedural process changes, and human resource or 
organizational system changes, among others. 

Procedure Change Considerations and Guidance 

After an ACAPS is in place, the process for changing procedures is no 
longer as straightforward as it used to be. When making changes to 
procedures that alter the data inputs, outputs, or decisions in the CAP 
process, it now becomes critical to be aware of downstream or upstream 
impacts to the ACAPS. Previously, without an ACAPS in place, 
procedure changes needed to be communicated only to screening 
personnel and they could adapt to the change relatively quickly. Under 
an ACAPS, changes to the expected process cannot be adapted as quickly 
and must be known further in advance. In addition, unknown changes 
made can cause an outright failure of the ACAPS or subtle performance 
degradations that affect the quality of output. 
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To mitigate the impact of procedure changes to CAP processes, personnel 
need to be aware that they are making a change that could affect the 
ACAPS. Awareness can be developed in the following ways:  

 Communication that an ACAPS is in use and the limitations of such 
a system. Everyone interacting with the ACAPS—even CR 
initiators—should be aware of the existence of the system and its 
potential impact. 

 Use of impact forms for procedure change. Impact forms should be 
generated by the procedure change initiator, and the ACAPS owners 
should be included in the impact communication. This ensures that 
performance impacts can be identified and mitigated. 

 ACAPS maintainers or business process owners should identify 
plant procedures or guidelines that govern upstream processes. 
These procedures should be reviewed for steps or sections that 
govern, interact with, or could impact the ACAPS. A notation in the 
document should be made to indicate that changes made to that 
section could adversely impact the ACAPS. The process of doing this 
review and notation addition should become ingrained into the 
ACAPS change process so that, as elements of the ACAPS are 
enhanced or changed, new impacts or dependencies are documented. 

Key Operating Experience 
Procedural Impacts at Utility G. 

During implementation of the ACAPS (and other automation projects) at Utility G, the 
potential impact of upstream procedural changes to newly automated systems was 
recognized and mitigated. The information technology (IT) department’s change process 
was revised to add a step requiring the automation owner to review and revise plant 
procedures that may use or govern the automation. Notations were added in the plant 
procedure basis documentation so that an employee performing a procedure revision with 
no prior knowledge of the automation will always become aware of the impact to the 
automation system and issue a change impact form to the correct automation owner. 

Data Changes Outside CAP 

Changes to data outside the CAP process, but that are used by the 
ACAPS, can have an adverse effect on the ACAPS. There are many ways 
this can happen, including changes to plant equipment designations, 
naming conventions, and so on. Perhaps the most common example is 
changes to organizational structure. 

Organizational changes—specifically changes in organizational unit 
identifying field (unit or department name, org unit id, and so on)—can 
adversely affect the performance of an ACAPS. For example, a simple 
change such as changing the org unit Mechanical Maintenance B to Valve 
Maintenance One could result in a shift in input data causing incorrect  
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predictions. This type of occurrence is especially challenging because it is 
pervasive, occurs somewhat frequently as organizations change, and, 
depending on the specific ML technique underpinning the ACAPS, may 
not be easily, quickly, or automatically relearned. 

This type of change would more generally be described in ML practice as 
concept drift but in this case occurs instantaneously as the organizational 
update is made. Other examples of this type of change would include 
employee legal name changes, equipment noun name changes, or the 
change in a downstream work product type. Mitigation strategies for 
concept drift exist, and discussion can be found previously in this report. 
In general, an ACAPS operator should be aware that any sudden change 
in a reference to any piece of used information can cause adverse 
consequences to the ACAPS, and best effort should be made to become 
aware before such change is made live. 

As covered, sudden changes made to plant references, taking again the 
case of an organizational unit rename, will cause varying effects through 
the ACAPS. The magnitude of this effect on the following specific 
components of the ACAPS will vary, depending on the specifics of the 
component implementation: 

 Data. High impact; field names or fields themselves change or may 
cease to exist in the source system. 

 Data pipelines/extract transform load. High impact; potentially a 
breaking change. ACAPS or intermediary systems that transform the 
source data into different forms are usually written to expect the 
existence of a field in a data set and may completely fail to operate 
when a field or fields no longer exist. Changes made to field values are 
lower impact because a well-designed pipeline or extraction code will 
be able to handle a missing or new field value within a certain field. 

 ML model. Mild impact; performance degradations would be expected, 
the severity of which depends on the feature importance of the changed 
field or field value. Though ML models will expect to see the same 
fields, many/most different types of ML models will be able to handle 
missing, new, or altered field values without outright failure. Missing 
fields will have a very high likelihood of being caught in necessary data 
pipeline operations prior to the ML model step, and, therefore, the ML 
model step is less exposed to that type of change and the errors it may 
cause. Depending on the implementation architecture, the ML model 
can even self-recover from immediate concept drift. This would be the 
case in an online learning implementation. 

 ACAPS performance metrics. Low impact; some metrics associated 
with missing fields may fail to update and appear frozen in time. 
Some metrics for new or changed fields may experience previously 
unseen volatility until a sufficient number of records with the new 
data have been processed and incorporated into the calculation. 

0



 

 11-5  

Impact to Plant Metrics 

NPPs adopting an ACAPS are making substantial changes to the way 
their CAP data are generated; one of the key considerations is the 
potential impact on downstream process metrics. Besides recognizing the 
impact on some of these process metrics, it is important to recognize what 
the metrics were originally intended to measure and assess whether the 
ACAPS is actually having a positive or negative impact on these items. 

Although this is not an exhaustive list, the following are examples of 
metrics that could be affected by an ACAPS: 

 Screening committee throughput per person-hour. After adoption of 
an ACAPS, it would be expected that screening throughput per 
person-hour may actually decrease. In this case, it is important to 
recognize that raw effectiveness has not actually been affected but 
rather that the easier CRs have been automated and the average time 
per CR screening will be higher on the more challenging CRs still 
being manually screened. 

 Work order cancellation rate. One side effect of an ACAPS that 
generates work orders can be an increase in work order cancellation 
rate. ACAPSs generating potential corrective actions sometimes elect 
to over-generate potential actions and rely on CR assignees to remove 
the less valuable actions. This is done because it is often easier to 
remove an unnecessary record than create a new one from scratch.  
In cases in which the ACAPS functions this way, it is critical to 
communicate and ensure that stakeholders understand the impact to 
cancellation rates. 
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Section 12: State of the Industry Survey 
The following sections represent survey data as collected from utilities 
known to have ACAPS in production, in development, or in 
conceptualization phases—and from participating national laboratories 
and other nuclear industry organizations. Survey data were collected 
through an e-mail questionnaire, if responses were returned, and 
otherwise through compilation of publicly presented material. All survey 
material is aggregated into Approach, Current Status, Improvement 
Opportunities, and Plans for the Future sections. 
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Utility A 

Utility A has approached CAP automation with projects in two areas: 
automated CAP screening and automated MRFF. The stated goal of the 
automated CAP screening project is to achieve an 80% reduction in the 
effort required to screen CRs, executed in two phases. The first phase is a 
CAP classifier in which the severity and priority fields are determined and 
corrective actions automatically generated. The second phase expands the 
first phase into more discrete targets, where severity and priority are 
further classified into categories and generated corrective actions are 
assigned specific fields related to the corrective action (see Figure 12-1). 

 
SOC = screening oversight committee 

Figure 12-1 
Utility A screening automation implementation flowchart36 

Approach 

As covered, the approach taken in the project was in phases, first 
completing more broad portions of the ML project portion and then  
later moving into fine-grained classification. From early in the project, 
Utility A held a focus around explainability of the models—that is, there 
should be some available reason as to why one output was selected. It 
also identified key areas of the automation process that are required to 
achieve the stated automation goals, which become the target variables 
for prediction by the ML models. The target variables are SCAQs, 
identification of critical component failures, nondiscretionary clock resets 
(human performance issues), and rework. 

 
36 NRC AI/ML Workshop, https:/www.nrc.gov/docs/ML2132/ML21326A192.pdf. 
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For the technical aspects of the work, Utility A’s innovation group 
partnered with Vendor A and National Lab A for both automated 
screening and automated MRFF. The technical approach to each modeling 
problem was similar because the data sets and contextual information 
around each decision are similar. Utility A’s historical data related to 
making these decisions displayed significant class imbalance. The CRs 
deemed significant—a Severity 1, 2, or 3 label—made up less than 1% of 
the approximate 410,000 CRs documented from 2017 to present. The 
training data have several fields, of which seven are free-form text. The 
remainder are categorical or numerical fields, typical of most NPPs. 
Atypical is the number of initial screening questions available in the initial 
data after the CR has been generated by the initiator (see Figure 12-2). 

  

Figure 12-2 
Utility A available fields in historical data37 

For automated screening, the ML techniques involved a mix of Naive 
Bayes models and artificial neural networks. CAP data for four years from 
several different stations were used to train the models (roughly 600,000 
records). The textual fields were first split into one, two, and trigrams 
processed by a Naive Bayes classifier for each target label and recombined 
with the categorical values, all of which was then input into a simple feed-
forward neural network. The output of this network was used to 
determine the category of the final target label. Confusion matrices were 
constructed for each of the target labels to measure system success. 

 
37 NRC AI/ML Workshops, https://www.nrc.gov/docs/ML2127/ML21277A139.pdf. 
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Utility A has also partnered with National Lab A on automated trending. 
This material is covered in the National Lab A portion of this section. 

Current Status  

The MRFF automation portion of the project is in production and 
operational as of late 2019. Monitoring of the system is in place, and 
retraining of the system has been occurring to add new data and increase 
performance. 

The CAP screening automation portion of the project is still being 
developed and will begin a pilot in the first quarter of 2022. 

Improvement Opportunities 

No improvement opportunities were highlighted although raw accuracy 
as a measure was called out to be inadequate as a metric when 
determining the success or failure of a CAP automation model. 

Plans for Future 

Utility A plans to continue the CAP automation pilot into 2022, 
expanding to between two and four different stations until an undefined 
level of enterprise confidence in the system is obtained. It plans to explore 
alternative uses for the project around NRC inspections and to eventually 
deploy open-source tools for broader industry use. In addition, Utility A 
is developing a NewCap 2.0 system, part of which is adding a user 
interface into its ACAPS. 

The MRFF automation project will be expanded with a user interface/ 
results page. 
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Utility B 

No response was received from Utility B, and no material was made 
publicly available. 
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Utility C 

No response was received from Utility C, and no material was made 
publicly available. 
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Utility D 

A nuclear plant at Utility D generates approximately 9000 CRs each year 
with a screening cost of $1.01 million per year, equating to roughly $112 
per CR. 

The plant screens CRs for the following fields: 

 Priority (CAQ and SCAQ, or non-CAQ) 

 Severity (risk significance) 

 Owning department/resolving process 

The screening process is performed by a CRG of five or six people four 
times per week with input from 20 to 30 external people. A management 
review team meets three times per week to review results issued by the 
CRG. The plant developed an ACAPS in mid-2020 to provide 
recommendations to the condition screening group. 

Approach 

The plant partnered with IBM to use its IBM Watson Cloud AI product to 
begin automating CAP screening at a cost of $250,000 initially and 
$125,000 per year thereafter, reducing the total cost to screen a CR to 
approximately $13.00. CR data are preprocessed before being processed 
by Watson to identify certain specific features in the data, such as limiting 
conditions of operation or operability concerns. Part of training on 
Watson involved indicating exactly which keywords or phrases in the 
 CR description were associated with certain classification targets; 750 
CRs were annotated with these keywords and phrases by the team over a 
two-month period in early 2020. 

The system was initially trained on 750 historical CRs. Pilot accuracies 
were 82.8% for priority (CAQ/not CAQ), 75.9% for severity (multiclass 
field), and 62.1% for both fields. After additional training and feedback, 
accuracies were 96.9% for priority, 83.1% for severity, and 80.0% for both 
fields. The automation recommendations are added to the screening 
review report where they are reviewed during the routine review 
processes. Human added fields are also included, and Watson’s applied 
fields are included for comparison. 

Current Status 

The plant’s ACAPS is currently in production, providing 
recommendations directly to the CRG. Inception of the system occurred 
in November 2019, and development and refinement proceeded until 
August 2020. In August 2020, the plant’s CRG began using outputs of the  
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system to grade by exception. The plant used the solution to eliminate  
CR pre-screening, CRG pre-screening, the CRG meeting, and post-screen 
processing tasks. 

Improvement Opportunities 

Improvements in accuracy rate for the Owners Group field were noted as 
lower than the rest and are currently being researched for improvement. 
Improvements can include alteration of business processes to better work 
within Watson’s capabilities. 

Plans for Future 

The plant hopes to realize an 85% reduction in total cost of CAP screening 
processes. Trend coding of each CR is a current area of research because, 
when the CRG disbands, initial trend codes will need to be applied to  
the CRs. 
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Utility E 

Utility E developed a pilot ACAPS in mid-2020. The pilot project 
expectation was partial automation of the CAP priority field. Utility E 
desired to build in-house expertise and knowledge and therefore decided 
not to use any vendor support in this effort. All development was 
performed by in-house staff. The project was funded as part of an 
innovation activity under operations and maintenance expenses with  
the objective of increasing screening efficiency. 

Approach 

Utility E established a small internal team of data scientists to develop a 
pilot CAP automation system in 2020. The team used techniques from 
traditional NLP for processing natural language from the CR into 
consumable features. These techniques were text cleaning and spelling 
correction, Levenshtien distance, and stemming of words. Naive Bayes, 
logistic regression, and random forests were used for classification 
modeling, and a rules-based model was applied on top of these results. 
The data available to train the model had high class imbalance. 

Current Status  

The pilot was completed in 2020, and results were mixed. Although some 
ground was made, the accuracy levels were not sufficient to automate. 
Test data accuracy was ~79%. The best model discovered was to apply  
an initial rules-based approach and then layer on an ML-based technique. 

Improvement Opportunities 

Improvement opportunities included exploring the trade-offs between 
over- and undersampling records to correct for class imbalance or using 
various synthetic data generation techniques to generate additional 
training data. Additional plans may include alterations of the business 
process to allow for more structured data. This would include efforts 
such as altering the CR input form to allow the user to select more 
discrete choices. 

Plans for Future 

No further plans were noted. 
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Utility F 

No response was received from Utility F, and no material was made 
publicly available.  
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Utility G  

Utility G established a dedicated data science team in 2017 and used 
internal resources and open source tools to develop its CAP automation 
system. Utility G began with an automated trend coding system, then 
CAP screening automation, and finally MRFF screening. Utility G 
processes about 20,000 CRs per year. 

Approach 

Automated Trend Coding 

Utility G applies trend codes exclusively using INPO/WANO 
performance objective and criteria codes, with minor exceptions for 
specific human performance error codes and clock resets. The team’s 
approach was to treat trend coding as a multiclass classification problem, 
using textual and categorical features related to the CR. For automated 
trend coding, textual features were processed using traditional NLP 
techniques, and words were one-hot encoded and combined with 
categorical features. This input was fed into a simple feed-forward neural 
network model, and the applicability of the performance objective and 
criteria codes was ranked by model probability. A multi-armed bandit 
approach was used to further choose the selection category for the 
applicable codes, depending on user preference. Several options were 
tested, and a Top-5 strategy was selected. In later iterations of this model, 
textual feature modeling was refined using large-scale word embeddings 
and more advanced sequence-based neural network models, and target 
selection was further modeled with approaches similar to sequence-to-
sequence modeling to allow a variable number of targets to be selected. 

Automated Condition Screening  

Utility G’s approach to automated screening was to individually model 
each of the required target fields needed to advance a CR through the 
human process. Utility G requires the significance, responsible group, and 
any corrective actions to be applied prior to leaving the CR screening step. 
The team paid additional attention to the accuracy of the Significance field 
because a fully automated false-negative result (an adverse condition 
being declared not adverse) would be extremely detrimental to the project. 

The team modeled each of these fields independently and with separate 
models. Available historical CR data consisted of primarily textual data, 
with some categorical data describing equipment and personnel. The 
modeling work consisted of development of various NLP-focused neural 
network architectures implemented in Python using both the 
Keras/Tensorflow and PyTorch libraries and with gradient boosting 
methods as needed. For the severity level target, the team treated the 
target as a binary outcome. The historical data available were severely 
unbalanced with the majority class being the condition not adverse to 
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quality. For the responsible group target, the team treated it as a 
multiclass outcome and selected the highest probability result. Selection 
was made from approximately 325 different classes. For the corrective 
actions, the team tried two approaches. The first approach independently 
modeled each of the fields required on an individual corrective action 
independently. The first set of fields among all independent models was 
selected as a corrective action, the second set as the second, and so on. 
The second approach considered corrective actions as a chain of 
conditionally dependent events and modeled as such. 

Each of these models was prepared behind a serving API, and a common 
API was used to wrap the models into a common product. The common 
API was served in a highly available Kubernetes cluster, and integration 
hooks were inserted into the station’s main database so that predictions 
could be made on demand when a new CR was generated. 

MRFF 

At Utility G, the Maintenance Rule program is implemented by strategic 
engineers who perform a review of every CR with an equipment failure 
to detect potential MRFFs. This review was performed through an 
existing web application that presented daily CRs organized by plant 
system. Utility G determined the most appropriate initial solution to be a 
recommendation system that presented the model results on the existing 
MRFF screening web application. 

The MRFF determination process at Utility G had three potential outcomes: 
MRFF Yes, MRFF Indeterminate, and MRFF No. In the case of MRFF No, 
an additional subset of potential justification categories was provided. 
Based on this understanding of the MRFF process, a binary classifier was 
developed to predict either MRFF Indeterminate or MRFF No. 

The binary classifier model was trained on CR text and categorical 
features from both the CR and plant equipment associated with the CR. 
One of the early challenges with this system was understanding what 
historical data were available to plant personnel at the time the MRFF 
decision was being made because the human-based MRFF determination 
timeline is not consistent within the data set. In the case of this system, 
particular care was required in the historical data gathering stage so that 
the appropriate data were truncated prior to ingestion into a model 
training loop. 

This model was developed as a neural network with the PyTorch library. 
The interface with the model was delivered with two web-based APIs: 
one to look up all required CR inference data given a CR number and one 
to perform the model inference given the required CR data. This system 
allowed front-end consumers to query the model using CR details. 
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Full automation of a subset of CRs for the MRFF determination step would 
require an additional prediction by the model. As previously indicated, 
MRFF No conditions at Utility G require a level of additional justification. 
This justification most often comes in the form of text-based categorical 
justifications such as Minor Deficiencies, Related to Administrative 
Controls, and Other. Therefore, to automate the MRFF No case, the model 
must also predict the categorical MRFF No label that includes the 
appropriate justification. At this step in the model iteration, the decision 
needed to be made to change the model from a binary classification model 
to a multiclass classification model or a more layered approach in which 
the initial binary classification still occurs with a multiclass classification 
inference in the case of MRFF No. In this application, it was decided to 
make the justification a secondary prediction because the accuracy 
required of the justification was not as high as the required accuracy for 
the MRFF No versus MRFF Indeterminate prediction. 

Current Status  

In the case of automated trend coding, the application of codes has been 
100% automated since mid-2019. 

In the case of automated condition screening, the system was run from 
fall 2019 to summer 2021 in a recommendation mode, after which the first 
of the full automation functions was switched on with conservative 
guidelines. About 20% of the total CR population is being fully 
automated while maintaining 100% accuracy on the severity level field. 
CAP program owners report that they are satisfied with the results and 
desire to allow a higher percentage to be fully automated. 

In the case of MRFF, overall performance of this initial model would 
allow approximately 40% total automation of MRFF determinations 
through the binary classification system with virtually no expectation of 
an error. The output of this model was displayed as an informational 
label on the existing MRFF review web application to engineers to allow a 
review and feedback period before moving into a full automation state. 
MRFF review automation has been in place since late 2020. 

Improvement Opportunities 

Utility G desires to improve visibility and configurability of the CAP 
screening automation system and develop updates to AI models to 
leverage recent external innovations. 

Plans for Future 

Utility G plans to change the thresholds to increase the proportion of CRs 
being processed by the automated CAP screening system.  
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Utility H 

Utility H is creating a cohesive CAP product that it believes will 
transform plant operations. The primary goals are to more accurately 
classify CAP issues with analytics, more quickly resolve corrective 
actions, and improve plant performance through created insights. It plans 
on integrating an ACAPS with various user inputs such as mobile apps 
and field devices and providing results back to plant staff through tools 
such as CAP Intelligence Advisor, which will provide a comprehensive 
view into the CAP data. 

Approach 

Utility H is currently developing its ACAPS in an agile fashion and plans 
to deliver features and functionality as soon as reasonably possible. 
Utility H has a combination of a small team of in-house developers 
supplemented by a larger team of outsourced developers. Utility H has 
been collaborating with National Lab A for analytics support. 

Current Status  

Utility H is currently in the planning phases of an ACAPS that will create 
recommendations for required CR screening fields and assign required 
corrective actions. Utility H plans to have a minimum viable product for 
an automated CAP developed and delivered in 2022. 

Improvement Opportunities 

No improvement opportunities have been identified at this time. 

Plans for Future 

The plans for the future of automated screening at Utility H include tight 
integration with the remainder of its CAP technology products. Upstream 
and downstream integrations include products such as CAP Intelligence 
Advisor, which is a custom interface to update and review CR 
information and linked actions, a notification engine for CR information 
changes, advanced CAP search capabilities, and reporting and trend 
analytics. Utility H expects a full minimum viable product of the CAP 
suite of products by the end of Q1 2022, beginning phase two of the 
project at the same time. 
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National Lab A 

National Lab A is part of the U.S. Department of Energy’s (DOE’s) 
complex of national laboratories. The laboratory performs work in each  
of the strategic goal areas of DOE: energy, national security, science, and 
environment. National Lab A is one of the nation’s laboratories for 
nuclear energy research and development. 

Approach 

National Lab A conducted research with CAP data from the U.S. nuclear 
power industry to determine the scalability, transferability, and 
deployability of AI models for use in CAP automation efforts. National 
Lab A used a combination of unsupervised and supervised ML methods 
coupled with NLP techniques to assign keywords/topics to CRs and 
enable automated trending for identification of topics. In addition, it 
integrated a live data link from a utility to pilot a data portal to facilitate 
data sharing between organizations interested in CAP data. 

As part of the ML model development, National Lab A has developed a 
tool called Machine Intelligence for Review and Analysis of Condition Logs and 
Entries (MIRACLE). This tool performs document topic extraction 
through latent Dirichlet allocation (LDA), which is a statistical method to 
discover a fixed number of previously unknown links between sets of 
independent documents. The output of this tool is a common set of topics 
that appear to be common across a large number of common nuclear data 
(see Figure 12-3). 

 

Figure 12-3 
Example LDA topics as determined by the MIRACLE program38 

 
38 NRC AI/ML Workshops, https://www.nrc.gov/docs/ML2127/ML21277A139.pdf. 
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Current Status  

The initial pilot is complete, and initial results indicate that the AI models 
developed can indeed be scaled across multiple sites and achieve better 
performance. The developed models can successfully identify themes and 
topics for CAP data. 

Improvement Opportunities 

Model transferability approaches were researched, including an easy-to-
deploy approach improving on single utility models. 

Plans for Future 

National Lab A plans to conduct additional requirements analysis and 
customize the generated trends to meet the assessment and inspection 
requirements as well as automated data-driven decision making. 
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Section 13: Commonalities in Success  
and Failure 

Across the various operating experience gathered from utilities that have 
implemented CAP automation projects, there are some commonalities 
among successes and failures. Although correlation does not necessarily 
mean causation, it is worthwhile to highlight these commonalities. 

Successes 

High Level of Engagement with CAP Stakeholders 

Utilities are spending between six months and two years proving that 
systems will perform as expected to build organizational confidence and 
increase adoption. 

Use an Agile Approach 

An agile approach is an incremental, iterative approach to piloting the 
project in the organization. A fast iterative approach allows rapid cycles 
of project work and stakeholder feedback. 

Modeling Work Starts Broadly and Becomes More Specific 

Project modeling work begins by predicting very broad targets and 
becomes more specific as the project progresses. This approach allows 
external resources to become acquainted with the tasks at hand. 

Use of Advanced Modeling Techniques 

Leverage more advanced modeling techniques and tools to drive 
increased accuracies, specific to the data being processed, including 
specific NLP techniques and ensemble modeling. 

Use of Varied Sources of Data  

Use as much varied data as possible because even nonutility-specific data 
appears to improve model performance. 
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Use of Model Probability Values and Set Thresholds 

Bucketing prediction results into different probability/confidence buckets 
allows different actions to be performed by the ACAPS depending on 
model confidence. ACAPS projects can proceed without perfect modeling 
accuracy if model confidence levels are accounted for. 

Failures 

Although there were no specific commonalities across all failures, there 
were notable aspects that had mixed results. 

Use of Only an In-House Team  

CAP automation AI system development solely with an internal team has 
led to mixed results. 

Reliance on Rule-Based Systems 

Use of rule-based subsystems within the ACAPS. 

Ignoring Unbalanced Data 

Not developing specific techniques for coping with highly unbalanced data 
sets will lead to failure. The CR severity fields being modeled are in the 
range of 98% negative class to 2% positive class, depending on the NPP. 

Use of Incorrect Success Metrics 

Using the wrong metric to measure modeling accuracy. Seemingly 
sufficient raw accuracy numbers will mask other issues and lead to poor 
project outcomes. 

Not Reviewing Carefully for Information Forward-Leak 

Forward-leak of information in a training data set that is highly indicative 
of a target outcome will boost success metrics of an ACAPS in development 
and cause failure when run in a deployed system. 

Missing 

The following components of a project as covered in this report appeared to 
be missing from existing implementations and/or are not on project plans. 

ACAPS Monitoring  

Monitoring of the ACAPS is missing from all implementations. No 
utilities are monitoring the ACAPS as a core piece of enterprise software. 
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Specific Quality Control Methods  

These are not apparent in any of the implementations. In most projects, 
quality control and review of predicted outcomes are reliant on human-
in-the-loop systems in which almost all of the automated outputs of the 
ACAPS are being reviewed by human experts as a step in the existing 
CAP screening process. 

Tooling 

There appear to be few consistent themes for tooling across the surveyed 
NPPs. Although some utilities focused on open source tooling such as 
Python and R, others have leveraged vendor software and methodologies 
with success. There appears to be almost no commonality among 
deployment technologies across utilities. 
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Section 14: Recommendations and Advice 
Based on the industry survey and anecdotal experience, the following 
recommendations are provided for utilities interested in adopting an 
ACAPS. Following these recommendations will guide an NPP toward a 
successful CAP automation implementation. 

Recommendations 

1. Use an incremental adoption framework approach to roll out a system 
automation, allowing the organization to build confidence in and 
adapt to business changes that are required for a successful CAP 
automation project. 

2. Automate different components of a CAP in the following order. This 
order minimizes the operational and regulatory risk associated with 
an automation failure and generally prioritizes lower complexity, 
higher value use cases first: 

 Trend code automation 

 MRFF review automation 

 Reportability review automation 

 CAP screening automation 

- Safety significance/CAQ 

- Level of effort  

- Responsible group 

- Corrective actions/work item generation 

3. Build strong cross-functional buy-in from IT, CAP management, the 
data science practice, and upper management. This is generally good 
advice for any project, but this is especially important for adoption of 
an ACAPS. The combination of business operational impacts, IT 
systems integration, automation complexity, regulatory risk, and 
efficiency opportunities is unparalleled outside major IT system 
replacement projects. 

4. Consider partnering with experienced contractors or a vendor for 
development of an ACAPS. Although some solely internal teams have 
had success, ACAPS is more complicated than most data science and 
IT projects, and inexperienced teams will struggle to produce the 
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required automation accuracy and develop a robust enough system. 
In addition, the cost of developing the entire system from scratch will 
take a large amount of the potential return on investment. 

5. Leverage modern ML and AI techniques. A key component of 
successful CAP automation is achieving a high level of accuracy.  
The type of heavily textual data prevalent in CAP benefits immensely 
from newer ML algorithms and techniques, disproportionately so 
when compared to other common data science use cases in the  
utility industry. 

6. Ensure that the ACAPS has sufficient auditing and monitoring 
capabilities. An ACAPS without these capabilities has a high risk of 
failure, either from overall degrading performance or the inability to 
analyze a high-profile automation error. Appropriate auditing and 
monitoring capabilities are critical for withstanding regulatory 
scrutiny and internal stakeholder concerns as well as ensuring overall 
system performance. 

Common Mistakes 

CAP automation is complicated, and many mistakes and pitfalls need to be 
avoided during the development, implementation, and maintenance of an 
ACAPS. This section describes common mistakes that are likely to occur 
during ACAPS adoption. Many of these mistakes are significant, and much 
care should be taken to be aware of and mitigate their potential impact. 

Using the Wrong Metric for Accuracy 

Perhaps the most common mistake in ACAPS development is using the 
wrong metrics for measuring the accuracy of the ML models. There have 
been several occasions in the industry in which much interest was 
attributed to a pilot ACAPS, only to discover that a 90% accuracy number 
being discussed was basically meaningless for a data set that is a specific 
outcome 88% of the time. 

Not Comparing to Human-Level Performance 

When evaluating the effectiveness of an ACAPS, it is critical to compare 
to human-level performance numbers instead of evaluating the system 
performance in a vacuum. It is common to meet many stakeholders who 
are unwilling to adopt an ACAPS if there are ever any errors in the 
system’s output. It is critical in these cases to reference hard statistics 
about human-level performance and accuracy obtained through audit or 
oversight processes. Often, the error rates in the manual process are 
higher than people like to think. 
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Not Using ML Techniques for Text 

Training ML models on text data is generally more complicated and 
challenging than on nontext data, but it is essential for an ACAPS. The 
vast majority of useful information in CAP data are inside the text and 
ignoring or underleveraging those data will result in significant decreases 
in accuracy levels. Even worse than this would be electing not to use ML 
at all and attempting to make a rules-based automation system work. 

Including Automated Records in Training Data 

Including automated records in training data can have disastrous results. 
Preventing the use of previously automated records can be difficult to 
enforce, especially if the ground truth data sources used to train the 
model also house production data. However, if training data are acquired 
through another transformation layer, such as a data warehouse or 
feature store, enforcement could be carried out in source to target data 
extraction or transformations. In addition, enforcement in source code 
could be used. Encapsulate data extraction logic so that flags and 
exception records are respected by default. Most importantly, strong 
documentation of the exception field or flag and communication to new 
developers not to use flagged records are needed. In a procured system, 
one should validate that automated records are excluded from training by 
means of system design. In addition, when automated records are 
correctly excluded, it is important to ensure that the remaining manual 
sample records are weighted correctly for training. 

Neglecting to Monitor or Evaluate ACAPS Performance 

Even after the CAP process is automated, it is important to systematically 
measure and monitor ACAPS accuracy. Unfortunately, there are many 
ways ACAPS performance can degrade over time, and without 
monitoring it is challenging or impossible to catch degradation and 
mitigate it before more serious impacts to the CAP process are realized. 
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Section 15: Conclusions 
Overall Opinion of Feasibility Given the Current Technology 

CAP automation provides an excellent opportunity for NPPs to reduce 
administrative overhead and improve the consistency and efficiency of 
their CAP processes. However, this opportunity is not a simple endeavor 
and comes with some risks. NPPs will first have to tackle challenging AI 
problems to automate key decisions in their CAP. After solving these 
challenges, NPPs will then need to work through software integration, 
monitoring, auditing, ACAPS maintenance, and other change management 
and regulatory challenges. NPPs interested in taking advantage of this 
opportunity will need to have strong internal teams with data science and 
software engineering experience or will need to partner with experienced 
vendors offering services and software for CAP automation. 

Overall, CAP automation is feasible with current technology and 
techniques and within the current regulatory and operating environment 
for domestic NPPs. Within the United States, several utilities have 
implemented ACAPS with varying degrees of scope, automation, and 
savings—and the consensus appears to be that CAP automation remains 
a value-added initiative. 

Approximate Cumulative Cost of Implementation 

Components of Cost 

Based on research, the operating experience gathered for this report, and 
anecdotal experience, the estimated costs of developing an ACAPS fall 
into the ranges shown in Table 15-1. 
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Table 15-1 
Components of cost 

Component 
Initial Cost 

Low/Med/High 
Annual Maintenance 

Low–High 

Project initiation and requirements 
gathering (per solution) 

$1k/$10k/$50k N/A 

AI model training and testing  
(per model) 

$10k/$35k/$125k  5–10% 

ACAPS component development 
and testing (per solution) 

$3k/$10k/$50k 10–25% 

Integration development and testing 
(per solution) 

$5k/$40k/$120k 10–25% 

Deployment and monitoring 
infrastructure (per NPP) 

$0/$9k/$25k 10–90%39 

Implementation and change 
management (per solution) 

$15k/$26k/$52k 10–25% 

Maintenance Rule Functional Failures  

Based on operating experience, an example implementation of this 
automation assumes a new project, with two AI models of medium to 
high complexity, and an integration into a web view (see Table 15-2). 

Table 15-2 
MRFF 

Component  Estimated Cost 

Project initiation and requirements gathering  $10k 

AI model training and testing $45k 

ACAPS component development and testing  $5k 

Integration development and testing  $15k 

Deployment and monitoring infrastructure (amortized) $3k 

Implementation and change management $15k 

Initial total cost $98k 

Annual maintenance $12k 

  

 
39 Many deployment and monitoring software packages are licensed annually. 

0



 

 15-3  

Reportability Review 

Based on operating experience, an example implementation of this 
automation assumes a new project, with two AI models of medium to 
high complexity, and an integration into a web view (see Table 15-3). 

Table 15-3 
Reportability review 

Component  Estimated Cost 

Project initiation and requirements gathering $10k 

AI model training and testing $45k 

ACAPS component development and testing  $5k 

Integration development and testing  $15k 

Deployment and monitoring infrastructure (amortized) $3k 

Implementation and change management $15k 

Initial total cost $98k 

Annual maintenance $12k 

Trend Coding 

Based on operating experience, an example implementation of this 
automation assumes a new project, with one medium- to high-complexity 
AI model, and integration into a source and web view (see Table 15-4).  

Table 15-4 
Trend coding 

Component  Estimated Cost 

Project initiation and requirements gathering $5k 

AI model training and testing $60k 

ACAPS component development and testing  $10k 

Integration development and testing  $15k 

Deployment and monitoring infrastructure (amortized) $3k 

Implementation and change management $25k 

Initial total cost $118k 

Annual maintenance $16k 

   

0



 

 15-4  

Automated CAP Screening 

Based on operating experience, an example implementation of this 
automation assumes a new high-complexity project, with four models  
of medium complexity and one model of high complexity, with 
integrations into a source EAM system and a web view or reporting 
system (see Table 15-5).  

Table 15-5 
Automated CAP screening 

Component  Estimated Cost 

Project initiation and requirements gathering $50k 

AI model training and testing $265k 

ACAPS component development and testing $50k 

Integration development and testing  $100k 

Deployment and monitoring infrastructure (amortized) $5k 

Implementation and change management $50k 

Initial total cost $520k 

Annual maintenance $50k 

Estimated Savings Calculations 

The estimated savings are highly site/utility dependent; it is 
recommended that member sites/utilities use the EPRI Business Case 
Analysis Model (3002019454) to determine estimated cost savings. 
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