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Clustering to reduce the number of samples, or observations, from 
12,717 to 369. SVM was used for analytical modeling. In another 
study [Xu 2013], NOx emissions and boiler efficiency were modeled 
simultaneously on a 600 MW tangential fired pulverized boiler that 
utilized a back-propagation neural network and genetic algorithms. 
The purpose of employing the genetic algorithm was to identify 
optimized minimum and maximum operating points for both NOx 
emissions and boiler efficiency, respectively. In this effort, one varia-
tion of a machine learning algorithm has been developed and tested 
for ranking and identifying features or predictors that affect one 
dependent variable.

Random Forest Background
Within the large umbrella encompassed by Artificial Intelligence, 
Random Forests (RF) are classified as Ensemble Machine Learning-
Supervised algorithms that can be applied to solve classification or 
regression type problems. RFs are relatively fast to train and require 
little tuning. In addition, RFs are useful for analyzing datasets with 
large number of features, also called predictors. RFs utilize decision 

Introduction
Overview
Several industries are working to harness the power of Artificial 
Intelligence (AI) to improve safety, quality control, increase pro-
ductivity, performance, efficiency, and customer satisfaction. AI is 
transforming businesses in a similar way to how electricity trans-
formed industries over 100 years ago. AI is used when traditional 
programming is not applicable to model high-volume data sources 
and complex processes that require constant human interaction. 
The technology works by employing computer science, data science, 
and engineering knowledge to create an intelligent machine or an 
expert system framework that helps with decision making or simply 
for knowledge archiving. In summary, AI works to augment human 
expertise and capture knowledge about events, incidents, and faults 
in a system or an industrial process.

Past Applications in the power industry

As AI applications continue to expand in the power industry, 
some implementations were used to predict gaseous emissions 
from electrical generating units, such as NOx, SOx, and mercury. 
Methods for globally enhanced general regression neural networks 
(GE-GRNN), as presented in [Song 2017], were applied. The input 
space to carry out that testing included five parameters (features 
or predictors) such as boiler generating load, burner tilt angles, 
secondary air flows, over fire air damper positions and boiler exit 
oxygen concentration. Their effort focused on modeling the boiler 
output NOx emissions and fuel burning efficiency. AI models such 
as Principal Component Analysis (PCA), K-Means clustering, 
Artificial Neural Networks (ANNs), and Support Vector Machines 
(SVMs) have been applied to model Ammonium Bisulfate (ABS) 
formation temperature on air heaters as a byproduct of the Selective 
Catalytic Reduction reactor operation in [Nie 2017]. Forty-nine 
features in a dataset set comprised of 14,230 observations (samples) 
were employed to develop the predictive models. In addition, a PCA 
algorithm was used to reduce the number of model inputs (fea-
tures) and K-Means Clustering was applied to reduce their sample 
space. The latter study involved using an Ammonium Bisulfate 
(ABS) fouling probe that operates by recording the temperature at 
which its thermally controlled probe tip detects condensation – this 
temperature point is recorded as the ABS formation temperature. 
Their best model included the use of sensitivity analysis to reduce 
the number of process features (inputs) from 25 to 4, K-Means 
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trees which are simplified algorithms where significant research has 
been abundantly conducted in terms of measuring variable impor-
tance.

Decision Trees and Random Forests

Decision trees possess advantages over other machine learning 
algorithms when it comes to modeling complex, multi-dimensional 
interactions. The decision tree algorithms possess lower sensitivity 
and robustness to outliers as opposed to other deterministic models. 
On the other hand, decision trees tend to be inaccurate compared 
to other algorithms such as deep learning convolution and recurrent 
neural networks. Although decision trees, when used alone, may 
have inaccuracies, they are the foundation of the RF algorithms. In 
a RF, the trees are grown from an independent bootstrap sample 
of the data set and the best split point is determined based on a 
random number of predictors or feature variables subset m of p, 
where p is the total number of predictors (features) in the model. 
The individual trees are grown to their terminal node without prun-
ing thereby creating high-bias models of the ensemble. The basic 
idea behind the ensemble is to grow multiple trees which are then 
combined to yield a single prediction through a bagging technique. 
Statistics suggest that averaging several observations yields a reduc-
tion of variance. For example, consider n observations, each with a 
variance of σ2 and a variance of the mean represented by σ2/n. In 
the case where the model is constrained to a small original dataset, 
independent bootstrap samples are drawn to conserve the concept 
behind using the RF algorithm. In the case of a regression fit, bag-
ging involves training the model on different bootstrap samples, 
constructing many trees, and averaging their output to obtain a 
single bagged prediction. The pseudo-code to construct a regres-
sion decision tree is depicted in Algorithm 1. One of the primary 
advantages of RFs over parametric models is that learned rules are 
intuitive which leads to simple rules for determining feature impor-
tance. Researchers have performed analysis of bias techniques for 
assessing variable importance measures in RFs [Strobl 2007]. In this 
study, the maximum reduction in variance and the input perturba-
tion for variable importance methods, as explained by [Estes 2016] 
and [Stobl 2007], were explored to determine feature importance. 
Testing the accuracy of the model is accomplished through split-
ting the original database into training and testing datasets, this is 
referred to as cross-validation. The split ratio of test vs. training data 
is a tunable parameter that is pre-determined by the user to prevent 
the scenarios of overfitting and underfitting. Overfitting data gener-
ates a model with high variance, whereas underfitting generates 

a model with high bias. The split ratio is arbitrary and subject to 
investigation, a typical split ratio is 80% training and 20% testing. 
A RF process diagram is illustrated in Figure 1 and a simple RF 
pseudocode is presented in Algorithm 2. Since the random forest 
pulls a bootstrap sample from the original dataset, it is important 
to highlight the inner workings of this methodology. Considering 
that the original dataset contains N observations and p features, the 
bootstrapping is the probability of selecting a single observation 
which is 1/N.

Algorithm 1: Pseudo-code for the construction of a regression 
decision tree

Performing n selections with replacement for a large dataset (allow-
ing for duplicates) yields, on average, in 36.8% of the observations 
not selected. The latter indicates that a bootstrap sample contains 
approximately 63% of the total number of observations.

Model:
Given p predictors (features) and N observations (samples) 
assuming a continuous dependent variable

While “Stopping Criteria” is not met
Search for the best split amongst all predictor variables per 
the variance reduction formula in equation 1
Split the node into a left and right descendant nodes per the 
best split value

End While

Prediction:
To make a prediction based on an array of predictors values x, 
pass x down the tree until K terminal nodes are reached
Record the values observed at all K terminal nodes
Average out the response values according to the formula 
below

0
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Forest of Forests

The novel Forests of Forests (FOF) model consists of aggregating a 
pre-specified number of RFs with the goal of finding an optimum 
balance between the bias and variance of the predictions. This mod-
eling technique was first implemented for analysis of an air quality 
control system [Bazzi 2018]. The concept of this approach is ‘divide 
and conquer’, that is, the dataset is shuffled randomly and divided 
into mini batches. The total number of mini batches governs the 
number of random forests that are utilized. The feature importance 
algorithms, such as mean decrease in impurity or the input pertur-
bation, can be applied to each forest and then aggregated across the 
total number of random forests. The simple pseudo-code for the 
FOF is explained in Algorithm 3. Aggregating multiple random for-
ests produces a robust model that optimizes the bias versus variance 
tradeoff when making predictions. Combining multiple machine 
learning algorithms reduces the likelihood of over-fitting thereby 
preventing the user from utilizing additional algorithms for regular-
ization purposes to produce a low variance and a low bias model.

Model:
For h=1…..J trees

Given p predictors and N bootstrap from the original dataset
Fit a tree using the bootstrap sample
While “Stopping Criteria” is not met

Search for the best split amongst random m predictor 
variables per the variance reduction formula in equation 1
Split the node into a left and right descendant nodes per 
the best split value

End While
Next h

Prediction:
To make a prediction based on a new data point x, where     
represents a single tree prediction.

Model:
Shuffle data randomly
Divide the training set into B mini batches
While (b is less or equal to max(B))

For h=1…..J trees
Given p predictors and N bootstrap from the original 
dataset
Fit a tree using the bootstrap sample
While “Stopping Criteria” is not met

Search for the best split amongst random m predictor 
variables per the variance reduction formula in 
equation 1
Split the node into a left and right descendant nodes 
per the best split value

End While
Next h

End While

Prediction:
To make a prediction based on a new data point x, where     
represents a single tree prediction.

Figure 1. Flow chart depicting the standard 
Random Forest Model

Algorithm 2: Pseudo-code for the construction of a random forest

Algorithm 3: Pseudo-code for the construction of an FOF model
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process. Rather, the limitations are dependent on the data quality, 
availability over a periodic timeline, and the inclusion of a depen-
dent variable of interest.

Application Case Studies
Case I: Electrostatic Precipitator Opacity Excursions
The FoREMaL Explorer prototype was utilized to analyze a known 
performance issue of the particulate matter control system at a 640 
MWg coal-fired electrical generating unit (EGU.) Although the RF 
analysis was conducted after a solution was identified and imple-
mented in the field, the data set provides a good opportunity for a 
validation test case on the application of the RF approach. FoRE-
MaL Explorer was utilized to troubleshoot continuous opacity ex-
cursions. These opacity excursions required that the EGU limit their 
generating capacity during those time periods in order to maintain 
environmental compliance.

The EGU furnace design is opposed-wall burner configuration with 
balanced-draft control. Various blends of bituminous and subbi-
tuminous coals fueled this plant. Under full-load operation, coal is 
supplied to the furnace by six pulverizers through 48 burners. The 
flue gas particulate control system is an electrostatic precipitator 
(ESP) with four chambers. Each ESP chamber contains six collec-
tor electrical fields in the flue gas flow direction. The gas passages 
within the chambers are spaced 18” apart and their respective height 
is 41 feet. The ESP total specific collector area (SCA) is 669 ft2/
kacfm of flue gas which is properly sized for the particulate loading 
to maintain opacity within the required limits. The ESP electrical 
fields incorporate 48 transformer-rectifier (TR) sets that are man-
aged by a Forry control system. The TR-set system design secondary 
voltage and output current are 50 kV and 2500 mA, respectively. 
Four induced draft fans (IDF) are located downstream of each ESP 
chamber and pulled flue gas through a common cross-balancing 
duct before release via a stack into the atmosphere. Louver dampers 
at each IDF inlet are modulated to control flue gas flow. The equip-
ment layout is presented as a top view schematic in Figure 3.

The EGU’s operating data was retrieved from an OSIsoft process 
historian. FoREMaL Explorer was utilized to troubleshoot opacity 
excursions observed over a 10-day period. During this timeframe, 
the opacity baseline shift increased from an average of 1% to 8.5%. 
The EGU opacity is targeted for less than 20%. The periods when 
the opacity exceedances occurred are shown in Figure 4.

Application Description
The current analytical capability of the regression RF and FoF 
algorithms has been integrated into a desktop application called 
Forest Ensemble Machine Learning (ForEMaL) Explorer. The 
Windows-based prototype software incorporates data preprocessing, 
feature and observation filtering, model parameter adjustment, code 
execution and postprocessing of results. The software analyzes data 
from a “.csv” file obtained directly from a DCS system. Upon load-
ing, the software performs data validation and cleanup. Additional 
filtering for specific user-selected ranges can then be performed. For 
initial model development, the creation of an RF model utilizing 
the software requires the contributions of a data science engineer 
and a process subject matter expert. In the latest version, the user 
can adjust model hyperparameters to optimize the model. Figure 2 
illustrates a high-level workflow for the application.

The FoREMaL Explorer prototype has been tested with various case 
studies within the realm of power plant process and environmen-
tal controls. The software applicability is not limited to a specific 

Figure 2. Overview of FoREMaL Explorer 
Workflow
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Approach

To construct the RF model, 300 process DCS tags (features) were 
selected and included: Unit gross load, TR-Set voltages, TR-set 
currents, spark rates, firing angles, IDF motor current, IDF control 
vane positions and opacity. To incorporate time periods with and 
without opacity excursions, 10-min rolling averages were extracted 
from the historian to construct an input CSV file. The timeline 
interval included over 13,000 observations. Once the CSV file was 
loaded into the software, hyperparameters for the RF model were 
entered via the GUI. The target dependent variable of interest was 
the opacity measurement at the stack. The analytical modeling stage 
is divided into three phases: Data pre-processing, model develop-

ment, and post-processing. In the pre-processing phase, the features 
were filtered based on their relative standard deviation. Other 
filtering options were available to further reduce large datasets to 
one or more specific criteria at the discretion of the user, this is the 
equivalent of a single or multi-variable row filter. Additional RF 
parameter settings can be entered by the user to test and validate 
the model. These include RF or FOF approach, use of specific 
random number generator seed, number of trees, leaves, and several 
other RF hyperparameters [MS 2021]. Model development phase 
involved testing the outcome for differences on the rankings and on 
the obtained root mean squared error for each model. The calcula-
tion time for each single run was less than one minute. After several 
iterations, the predicted model accuracy was 0.86.

Post-Processing Model Analysis and Results

The results from the RF analysis are presented as ranked features 
in order of correlation agreement with opacity according to R2 
coefficient. In addition, scatter plots for opacity as a function of 
each ranked variable and a combined histogram and sensitivity 
plot are also generated. Based on these plots, a list of action items 
and respective feature thresholds to either minimize or maximize 
the dependent variable are produced. The user can then display an 
‘optimized’ data trend that meets the list of action items thresholds. 
The following sections describe each of these workflow steps.

Top Rankings

Upon completion of the RF analysis, the user-specified top 15 
features were ranked in descending order of importance. The feature 
ranking is displayed in Figure 5. Many features ranked by the 
analysis were located on the Chamber C west electrical sections. In 

Figure 3. Flue gas pathway from air heaters, through ESP chambers and 
out the stack

Figure 4. Opacity % (blue line) and generating load in MW (brown line) 
trends over time showing reduced generation load during times when 
opacity spikes occurred.
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Figure 5. Bar chart describing the top 15 relevant features in the machine 
learning model with respect to opacity
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addition, all four IDF damper controls were also ranked within the 
top 15 features although their order of importance differed signifi-
cantly. For instance, IDF damper #4 was ranked 4th whereas the 
other dampers were ranked much lower. Two electrical sections were 
also identified on Chamber B within the top 15.

In consultation with the process engineer, these trends indicate that, 
granted the known ESP conditions, some chambers were working 
harder than others and that some IDFs were pulling more gas flow 
than typical at the same respective load. Unfortunately, gas flow 
meters were not available at these locations. A sketch of the sections 
identified by the RF analysis is depicted in Figure 6.

Scat ter Plots, Sensit ivity Analysis and Action Lists

Scatter plot trends associated to each of the ranked features were 
generated by the software and are displayed in Figure 7. The scatter 
plots provide the user with an indication of the relationship between 
each feature and the dependent variable ‘Stack opacity’. Also shown 
in Figure 8 are corresponding combination charts for each fea-
ture and these are displayed on the right side of the window. Each 
combo chart shows two data trends for each ranked feature: 1.) a 
histogram across the data range (gray bars) and a sensitivity trend 
(black line). The histogram frequency scale resides on the right axes 
whereas the average sensitivity difference is displayed on the left 
axes. The sensitivity line is calculated by propagating that specific 
feature input data through the RF model using a constant value, 
in a stepwise format, from its minimum to maximum range while 
predicting the model average opacity at each step. The calculated 
opacity value is then compared to the average opacity from the 
actual data set and the difference between these averages is plotted 
as the line. This process is repeated for each feature to generate each 

Figure 6. Sketch identifying the locations of top ranked features (!) for 
case study

Figure 7. Dataset scatter plots of opacity vs. top 15 features identified by 
FoREMaL Explorer

Figure 8. Sensitivity analysis trend lines and data histograms for the 
respective top 15 features
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respective sensitivity line. The sensitivity line provides the prediction 
of the model based on the analyzed data set and indicates if that 
feature exhibits a noticeable step change with respect to dependent 
variable of interest – which in this case is opacity.

Interpretation

As an example, the leftmost plot for feature C5W-SC-(mA) refers 
to TR-Set secondary current for Chamber C Field 5 West. The 
calculated sensitivity line trend indicates that at a value of ~740mA, 
a significant step change decline in average opacity difference was 
observed and the opacity remains minimized at values greater than 
740mA. On the same feature, the histogram bar plots show where 
the actual data set lies with respect to the sensitivity line. From these 
two information pieces, the analyst can observe that most of the 
actual data resides in an area with low average opacity. The second 
rank feature was also associated with that electrical field. Similar 
analyses can be conducted to establish the trends. In this case, the 
information may prompt a subject matter expert to take a closer 
look at the conditions of this TR-Set, of that C5 field or of Cham-
ber C. As a rule of thumb, for most ESPs in good working condi-
tion, the expected current and voltage operating trends conform to 
lower current densities and higher secondary voltages at the inlet. 
As the dust laden flue gas enters the downstream collection fields, 
the dust concentration is gradually reduced, less particulate mass is 
collected on the downstream collector plates and the current density 
should increase while the secondary voltage should decrease. Devia-
tion from this trend may indicate some operational, mechanical, 
or electrical anomaly. Other features identified by the RF analysis 
were the IDF damper process variables with identification #4, #3, 
#2, and #1. These were ranked 6th, 9th, 12th, and 13th, respec-
tively. The histogram data distribution trends look similar for the 
four IDFs, as one may expect, but the sensitivity line trends showed 
some differences. For instance, IDF #4 vane position shows a greater 
sensitivity to opacity increase than the other IDF process variables 
when the vanes are > 57% open. This may prompt an examination 
of the flue gas path into the respective IDFs and the equalizing 
cross-over duct that connects all four ESP chambers. Although two 
features associated with the Chamber B inlet fields were ranked 8th 
and 15th, the respective trend lines indicated lower sensitivities to 
opacity than other ranked features.

Development of an Action List

It is evident from these results that the interpretation of the model 
output, at this stage, requires the input from a data science engineer 

and from an ESP subject matter expert. The goal of the project is 
to develop a tool that captures this level of expertise during model 
development for that specific process and allows deployment of a 
case-specific solution for quicker interpretation by field personnel 
such as engineers and operators. At the current time, FoREMaL 
Explorer provides a strategy to either minimize or maximize the 
dependent variable. For this example, the objective was to minimize 
the effect on opacity. FoREMaL prepares an Action List for the top 
15 features which, in an ideal case, should be maintained to mini-
mize the opacity. These results are displayed in an advisory screen 
within ForEMaL Explorer. Table 1 shows the proposed Action List 
of threshold values for each flagged parameters and Figure 9 displays 
graphical trends for opacity. The blue line displays the actual ‘raw 
data’ opacity trend for the modeling period while the brown trend 
demonstrates the ‘optimized’ predicted opacity if all the predictor 
variables are maintained at the respective Action List values. Note 
that at this time FoREMaL Explorer does not discern between 
control variables or adjustable variables. This prompts the need for 
subject matter expertise with result interpretation.

Process Parameter Threshold Value

C5W-SC-(mA) > 1206

C5W-FIRING-ANGLE-(DEG) > 98.6

C4W-SV-(kV) > 42.1

A2E-SC-(mA) > 1219

C4W-FIRING-ANGLE-(DEG) > 105.2

4-IDF-Inlt-Dmpr-Cntrl (%) < 56.7

A2E-FIRING-ANGLE-(DEG) < 0

B6W-SV-(kV) > 25.5

3-IDF-Inlt-Dmpr-Cntrl (%) < 58.6

BLR-Unit-2-Gross-MW-(MW) > 579.4

B1W-FIRING-ANGLE-(DEG) < 90.3

2-IDF-Inlt-Dmpr-Cntrl (%) < 58.6

1-IDF-Inlt-Dmpr-Cntrl (%) < 58.6

B1E-FIRING-ANGLE-(DEG) < 52

C6W-FIRING-ANGLE-(DEG) < 9.7

The model parameter settings and respective results can be saved 
and repurposed for analysis of other time periods. During this initial 
stage, arriving at these results required the input from a data science 
engineer and a process (ESP) subject matter expert. Upon investiga-

Table 1. Advisory action list to minimize opacity for case study
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tion by plant engineers, it was found that ID fan #2 drive shaft was 
decoupled from the inlet louvers which introduced a flow imbalance 
to the ESP multi-chamber gas flow system. The model predic-
tions did not explicitly provide this exact information. Instead, the 
predictions indicated traceability to abnormal vane positions on the 
ID fans and indication that Chamber C was strongly correlated with 
the opacity along with Chamber B. The model, when applied, could 
save the plant operations and engineers troubleshooting time which, 
in turn, may reduce the risk of unexpected derates on the unit. This 
is beneficial from the standpoint of increasing the operating margins 
and reducing the generating unit random outage factor while main-
taining unit reliability and minimizing unwanted pollutant emission 
excursions.

Case II: Correlating Wet FGD Process Variables
Another proof-of-concept application of the RF analysis pro-
gram involved the analysis of process variables from a wet flue gas 
desulfurization unit. The objective of this analysis was to identify 
which of the process variables correlated with real-time gaseous Hg 
emissions measured downstream of the FGD system, at the stack. 
The data derives from a case study that used another nonlinear 
modeling technique, called Least Squares Support Vector Machines, 
to develop a process model from its variables. In this instance, 
the RF software was utilized to identify the process variables that 
correlate strongly with gaseous mercury (Hg) emissions from a 
coal-fired unit. Hg found in coal is volatilized during combustion 
in the form of elemental mercury (Hg0) which is difficult to remove 
from the flue gas and is insoluble in water. Hg0 can be converted 

to an oxidized form Hg2+ in upstream air pollution control devices 
such as the Selective Catalytic Reduction (SCR) reactor. Hg2+ is 
highly soluble in water can be efficiently removed in a wet FGD 
system. However, the WFGD chemistry is affected by many process 
variables which sometimes interfere with efficient Hg2+ removal by 
reversing the speciation to elemental form Hg0. This change often 
results in mercury re-emission which is not desirable. Therefore, 
coal-fired units that operate with WFGD must optimize and moni-
tor their processes to reduce the chance of Hg re-emissions. Process 
variables that have been correlated with mercury in WFGD include 
absorber liquor pH, and oxidation-reduction potential (ORP).

Approach

Three individual EGUs feed two WFGD absorbers towers for flue 
gas clean up. The flue gas, which is mostly free from solid particu-
late fly ash, is conveyed by induced draft fans into the WFGD 
absorber towers. There the gas is quenched with a limestone slurry 
via five levels of spray nozzles, each fed by a dedicated slurry pump. 
The sulfur species in the flue gas react with the limestone to form 
solid calcium sulfite particles which are later oxidized in the reaction 
tank to calcium sulfate. The pH of the liquor can be controlled 
by modulating the input of limestone slurry into the system. The 
cleaned flue gas exits the top of the tower towards the stack and the 
atmosphere while the slurry liquor, which now contains captured 
SO2 and Hg, is recirculated and processed for phase separation. For 
instance, the solid by-product, which is mostly gypsum, is periodi-
cally removed from the slurry by dewatering. Most of the oxidized 
mercury is removed with the liquor and sent to a wastewater treat-
ment plant. Monitored process variables in the wet FGD system are 
flue gas flow, flue gas inlet and outlet temperatures, inlet and outlet 
SO2 concentrations, pH and ORP. Control variables are generally, 
oxidation air flow, limestone slurry flow and recycle pump flows. All 
the information is generally stored in a historian. The units and wet 
FGD system analyzed in this case study are detailed elsewhere [Lv 
2019]. The RF software was applied to a 30-day period data set that 
included full-load constant operation, low-load constant operation 
and transient load periods in between these states.

Results and Post-processing

The dataset contained 20 process variables and 4,400 process data 
records. Incomplete records were excluded from the analysis as were 
load points lower than 750 MWeq. The model was setup to identify 

Figure 9. Original opacity trend (blue) and model predicted opacity 
trend if Action List is maintained (brown)
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and rank the top nine variables correlating to total Hg emissions at 
the stack. Results of the analysis showed strong correlation between 
the absorber flue gas inlet temperatures, followed by load equiva-
lent flue gas flow rate, outlet temperature and absorber inlet SO2. 
Other variables identified, although not as strongly as the first four 
variables, were oxidizing air flow, bleed density, recycle pump 2 flow 
and ORP. Figure 10 summarizes the results along with respective R2 
correlations.

Figure 11 shows the scatter plots for each respective feature. Mostly 
positive correlations are observed for the first five variables from up-
per left to bottom right. Figure 12 shows the equivalent sensitivity 

plots for each variable along with the corresponding data frequency 
histograms.

Action List Findings

The action list is presented in Table 2 and indicates the threshold 
values identified to minimize the Hg emissions. Although the 
program provides advisory information about the process variables, 
it does not discern whether a system operator can adjust or maintain 
the minimization threshold values. That decision will require the in-
put of a process subject matter expert or the careful selection control 
variables for the system during initial case study setup. The pre-
dicted optimized trend, if all the values are maintained over time, is 
shown in Figure 13. The blue line represents the original data trends 
whereas the brown line is the minimized mercury emission trend if 
the action list can be maintained. One feature of the RF software is 
the ability to discern the sensitivity each action list item by varying 
the optimized value and observing its impact on the predicted trend.

Figure 10. Top nine ranked variables that correlate with Hg emissions for 
a WFGD system

Figure 11. Scatter plots for the nine variables identified by the RF 
software

Figure 12. Corresponding sensitivity plots for the nine variables 
identified by the RF software
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Process Parameter Threshold Value

Inlet Temperature < 241.7

Outlet Temp < 111.3

Flue Gas Flow < 1600

Total Load into 
Absorber MWeq

< 880

Inlet SO2 (lb/MMBtu) < 4.08

Oxidizing Air Flow < 20,995

Bleed Density > 19.05

Ab Pump 2 > 191.8

ORP Meter > 184.1

Conclusions
An application that incorporates a random forest and forest of for-
est approach for data curation, filtering, and data analysis has been 
developed and packaged into a prototype Windows desktop applica-
tion called FoREMaL Explorer. The program is able to identify, rank 
and minimize or maximize a user-specified dependent variable. Two 
applications of this analytical tool were presented as examples. The 
first case study involved the analysis of opacity upset events and pro-
cess variables at one coal-fired power plant equipped with an ESP 
and no other downstream environmental control. The second case 
study was applied to process data, at another power plant designed 
with an ESP and a multi-unit fed wet FGD system, to identify 
process variables that correlated with gaseous mercury emissions. In 
both case studies, ForEMaL Explorer provided a ranking, identi-
fied the level of correlation for each ranked variable, conducted a 

Figure 13. Actual (blue) and minimized (brown) mercury emission trend 
based on recommendations from the random forest and sensitivity 
analysis software

Table 2. Action items list to minimize Hg emissions for the wet FGD case 
study

sensitivity analysis, and proposed an action list of threshold values 
to minimize the dependent variable. This list could also be utilized 
by an analyst to maximize the target variable, if so desired. The 
case studies are presented as examples of applications for this newly 
developed random forest tool for regression type analysis. The ap-
plication is well suited for large data sets that involve several features 
or predictors. The ongoing development is focused on enhancing 
the tool to create simple independent robust models that do not re-
quire any additional data input. In addition, future efforts may also 
concentrate on incorporating a predictive capability for use as open-
loop advisory tool. These tools may help operators to understand 
the interactions between complex systems such as those experienced 
by many modern power generation systems.
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