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data-driven, model-free, and self-adaptive approach that can learn 
from past data and decisions, is presented in this whitepaper. It has 
been shown to be simple and easy to implement and, more impor-
tantly, it eliminates the need for complex forecasting models. 

The effectiveness of the algorithm is tested against DER-VET’s 
perfect foresight optimization algorithm which, theoretically, pro-
duces the maximum possible revenue given the modeled conditions 
(energy market price profile). Furthermore, this whitepaper presents 
real time implementation of AI algorithms at an energy storage test 
facility located in Colorado.

AI Applications For Energy Storage Operation  
AI-based approaches are used for a wide range of energy storage 
applications. This chapter presents an overview on both traditional 
approaches and AI-based algorithms for different energy storage 
applications.  

Energy Arbitrage
Large utility-scale energy storage systems can provide multiple value 
services, including energy arbitrage, based on day ahead ISO market 
signals, frequency regulation, spinning and non-spinning reserve, load 
following etc. Energy arbitrage is a major use case for energy storage 
systems. Since it is hard to predict price signal variations, most of the 
traditional approaches rely on sophisticated models to forecast price 
signals minutes to days in advance and control the energy storage ac-
cordingly. There are also few dynamic programming-based algorithms 
that circumvent the need to know the price signal beforehand.2

Given the challenges of price signal forecasting, data-driven model-
free reinforcement learning (RL) approaches have recently emerged 

2 D. R. Jiang and W. B. Powell, “Optimal hour-ahead bidding in the real-time 
electricity market with battery storage using approximate dynamic programming,” 
INFORMS Journal on Computing, vol. 27, no. 3, pp. 525-543, 2015.

Introduction
Recent breakthroughs in Artificial Intelligence (AI) and Machine 
Learning (ML) algorithms have made powerful yet simple solutions 
possible for many challenges ranging from advanced automatic 
self-driving cars to the most basic web browser searches. These algo-
rithms have also been applied to a number of modern-day electric 
power system challenges. This whitepaper focuses on energy storage 
applications in particular. Energy storage is an important distributed 
energy resources (DER) asset with the ability to make renewable 
generation a reliable power source. Further, energy storage can gen-
erate revenue by providing a range of market and ancillary services. 
In the near future, the payback period to own an energy storage 
system will be significantly shorter due to decreases in capital cost, 
increases in state and federal incentives and tax credits, and increase 
in avenues to generate economic value. It is therefore predicted that 
cumulative energy storage installations in the United States could 
grow from the current 25GW to 100GW by 2030.1 With this ex-
pected growth potential , AI applications for this asset are inevitable 
and there are going to be more products in the near future.

AI- and ML-based approaches have been applied for a wide range of 
energy storage applications such as energy storage dispatch opti-
mization, solar plus storage operation, battery health monitoring, 
preventive health maintenance, and battery safety. There are many 
recent research projects and studies on these AI-based solutions 
for energy storage. The next section in this whitepaper presents a 
brief literature survey of some of the recent research articles. There 
are also several commercial products targeted for energy storage 
systems. For example, energy management solutions vendors such as 
BluWave-ai and Heila technologies claim to primarily use artificial 
intelligence-based methods. This whitepaper will serve as a primer 
to utilities that would like some background on how artificial intelli-
gence and machine learning can be applied to energy storage system 
controls. It covers the key metrics and how to assess the operation of 
an AI-based product.  

This whitepaper explores in detail one of the prevalent algorithms 
for the most common energy storage application; buying and selling 
energy in energy markets with prices established through day-ahead 
auctions. One of the major challenges with this application is the 
need for an accurate price forecasting tool and the ability to account 
for volatility in real time energy prices. Reinforcement learning, a 

1 BNEF 2021 Global Energy Storage Outlook  (excludes pumped  hydro).
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as an attractive alternative for this problem. A reinforcement-based3 
algorithm may provide significant performance improvements and 
profit compared with existing traditional methods mentioned above. 
Following chapters will investigate these claims.

Customer Bill Reduction Services
Energy storage is increasingly being deployed by residential or com-
mercial customer location as a behind the meter asset. It is primar-
ily used for demand charge reduction and energy arbitrage func-
tions, with a goal to lower the monthly utility bill for the customer. 
Traditionally, energy storage operations are implemented by either 
rule-based approaches or model predictive controllers. Reinforce-
ment learning-based algorithms are used for customer bill reduction 
services4 and it has been demonstrated that the monthly customer bill 
can be reduced up to 59% compared to a simple rule-based approach. 

Energy Storage Degradation
Capacity degradation of an energy storage system is path depen-
dent  i.e., it depends on the energy storage system’s operation and 
stress factors including temperature, average state-of-charge (SoC), 
charge, and discharge rates. A major challenge in predicting the life 
of energy storage assets is scarcity in availability of operational data. 
1) Unfortunately rich Li-ion life testing data from electric vehicles 
are not generally useful for stationary applications. 2) Li-ion life 
evaluations in a laboratory setting for a 20-year/7,500 full cycle 
stationary application take about two years and are prohibitively 
expensive. Machine learning-based approaches enable rapid and pre-
cise prediction of Li-ion degradation and performance in complex 
and changing stationary use scenarios throughout a battery’s entire 
life5,6,7 Some of these algorithms are designed around predicting a 
cell’s cycle life given data from its first 100 cycles.

3 H. Wang and B. Zhang, “Energy storage arbitrage in real-time markets via 
reinforcement learning,” in 2018 IEEE Power & Energy Society General Meeting 
(PESGM), 2018: IEEE, pp. 1-5.
4 Guan, C., Wang, Y., Lin, X., Nazarian, S., & Pedram, M. (2015, January). 
Reinforcement learning-based control of residential energy storage systems for electric 
bill minimization. In 2015 12th Annual IEEE Consumer Communications and 
Networking Conference (CCNC) (pp. 637-642). IEEE.
5 Chen, B.R., M.R. Kunz, T.R. Tanim, E.J. Dufek, “A machine learning 
framework for early detection of lithium plating combining multiple physics-based 
electrochemical signatures” Cell Reports Physical Science, 2(3), 100352 (2021).
6 Kunz, M.R., E.J. Dufek, Z. Yi, K.L. Gering, M.G. Shirk, K. Smith, B.R. Chen, Q. 
Wang, P. Gasper, R.L. Bewley, T.R. Tanim, “Early battery performance prediction for 
mixed use charging profiles using hierarchal machine learning” Batteries & Supercaps, 
4, 1186-1196 (2021)
7 Severson, K.A., et al, “Data-driven prediction of battery cycle life before capacity 
degradation”, Nature Energy, 4, 383-391 (2019).

Secondary battery utilization strategy requires understanding the 
state of health of retired battery cells. A machine learning-based ap-
proach is used to screen and develop a reuse strategy, which has the 
potential to solve the problem of battery recycling in the future.8

Battery Safety
Temperature is a crucial state for guaranteeing the reliability and 
safety of a battery during operation. The ability to estimate battery 
temperature, especially the internal temperature, is of paramount 
importance to the battery management system for monitoring and 
thermal control purposes. A data-driven approach combining neural 
network (NN) and the extended Kalman filter (EKF) is proposed 
to estimate the internal temperature for lithium-ion battery thermal 
management.9 An advantage of a data-driven approach is that it 
eliminates the need for any battery background knowledge, so the 
developed hybrid approach is applicable for any type of battery, 
irrespective of chemistry, and it is convenient to achieve reasonable 
thermal management. 

Anomaly Detection
A battery’s state-of-power (SoP) refers to the maximum power that 
can be charged or discharged steadily by the battery within a pre-
determined time interval. There is a need to study the effect of SoP 
on battery health and to identify any anomaly ahead of time. This 
is especially important with the increase in fast-charging infrastruc-
ture for electric vehicles. Two issues should be considered: (1) the 
influence of both the ambient temperature and the rise in tempera-
ture caused by high power, and (2) the influence of changes in the 
state of charge (SoC). A model-based extreme learning machine is 
demonstrated to predict future battery voltage, power, and surface 
temperature for any given load current.10

8 Garg, A., Yun, L., Gao, L., & Putungan, D. B. (2020). Development of recycling 
strategy for large stacked systems: Experimental and machine learning approach to 
form reuse battery packs for secondary applications. Journal of Cleaner Production, 
275, 124152.
9 Liu, Kailong, Kang Li, Qiao Peng, Yuanjun Guo, and Li Zhang. “Data-driven 
hybrid internal temperature estimation approach for battery thermal management.” 
Complexity 2018 (2018).
10 Lin, Peng, Peng Jin, Jichao Hong, and Zhenpo Wang. “Battery voltage and state 
of power prediction based on an improved novel polarization voltage model.” Energy 
Reports 6 (2020): 2299-2308.
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Solar PV Power Smoothing
Battery Energy Storage Systems (BESS) coupled with solar genera-
tion can strengthen the renewable power generation source and 
smooth power output, thereby avoiding any fluctuations that 
can appear in voltage and power at the point of interconnection. 
Smoothing filters such as Low Pass Filters (LPFs) are integrated 
along with the BESS for optimal functioning and cost reduction. It 
has been established that the time constant of an LPF directly im-
pacts the degree of solar PV smoothing. The machine learning-based 
method has been demonstrated to intelligently control the LPF time 
constant to efficiently rid the PV profile from fluctuations while 
operating under practical constraints.11

Other Miscellaneous Applications
Energy storage coupled with solar PV has multiple applications. 
Machine learning and reinforcement learning-based algorithms have 
been proposed for energy management and bidding in the capacity 
market.12,13  In addition, there are some algorithms for optimal real-
time operation of the asset.14

Reinforcement Learning-Based Approach for 
Energy Arbitrage
EPRI has developed the DER-VET software as a planning tool to 
estimate the revenue a system can generate by performing various 
services, like energy arbitrage. The optimization-based planning 
tool gives an upper limit on how much revenue the storage system 
can generate under a set of conditions. The tool relies on explicit 
price data as an input for its perfect foresight modeling. Contrarily, 
a properly implemented reinforcement learning control algorithm 
may enable profitable operation of an energy storage system without 
a priori knowledge or forecasts of future prices, but this will obvi-

11 Syed, M. A., & Khalid, M. (2021, January). Machine learning based controlled 
filtering for solar PV variability reduction with BESS. In 2021 International 
Conference on Sustainable Energy and Future Electric Transportation (SEFET). 
(pp. 1-5). IEEE.
12 Huang, B., & Wang, J. (2020). Deep-reinforcement-learning-based capacity 
scheduling for PV-battery storage system. IEEE Transactions on Smart Grid, 12(3), 
2272-2283.
13 Keerthisinghe, Chanaka, Archie C. Chapman, and Gregor Verbič. “Energy 
management of PV-storage systems: Policy approximations using machine learning.” 
IEEE Transactions on Industrial Informatics 15, no. 1 (2018): 257-265.
14 Henri, Gonzague, Ning Lu, and Carlos Carreio. “A machine learning approach for 
real-time battery optimal operation mode prediction and control.” In 2018 IEEE/PES 
Transmission and Distribution Conference and Exposition (T&D), pp. 1-9. IEEE, 2018.

ously underperform relative to DER-VETs perfect foresight model. 
This whitepaper assesses the feasibility of RL-based algorithm for 
energy arbitrage application.  

Reinforcement Learning Algorithm
A reinforcement learning policy behaves similarly to a controller 
in a control system in terms of how it observes the environment 
and generates actions to carry out a task as efficiently as possible. 
Numerous control problems, e.g., robotics and automated driving, 
need sophisticated, nonlinear control structures. These issues can 
be solved using methods like gain scheduling, robust control, and 
nonlinear model predictive control (MPC), but doing so frequently 
necessitates a control engineer with a high level of domain knowl-
edge. The complexity of a nonlinear MPC’s computational require-
ments can make the resulting controllers difficult to implement.

Reinforcement learning uses a general framework where current 
actions depend on the present system states (state space). In this 
implementation, there are only three possible actions possible for 
energy storage – charge or discharge at full power and stay idle. 
For every action, there is a reward generated to receive feedback on 
the activity. The rewards from the past actions are used to update a 
matrix referred to as the Q matrix. All the components are explained 
in detail in the following sections. 

State Space

In reinforcement learning, the energy arbitrage for energy stor-
age is designed as a state space which is a finite number of discrete 
states. To be specific, the system’s state is represented by the current 
price p_t and the ability of the energy storage to further charge or 
discharge, which depends on the energy storage system’s current 
state of charge (SoC). The state space for this problem is represented 
as follows,

S={1,….,M}×{0,1}  ×{0,1}

where {1,…., M} represents M even price intervals from the lowest 
to the highest, and the other two binary states correspond to ‘al-
lowed to charge’ and ‘allowed to discharge.’

Action Space

In practice, there are infinite number of possible energy storage 
operations. In this formulation, the action space is simplified into 
three possibilities by assuming that the energy storage can either 
stay idle or charge/discharge at rated power capacity, as long as 
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value matrix Q, where each entry Q(s,a) is defined for each pair of 
state s and action a. When the energy storage takes a charge/dis-
charge action, the value matrix is updated as follows:

𝐷𝐷𝐷𝐷�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = min {𝐷𝐷𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝐸𝐸𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡 − 𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚} 

�̃�𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = min {𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐸𝐸𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡}.  

𝐴𝐴𝐴𝐴 = {−𝐷𝐷𝐷𝐷�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 0, �̃�𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚} 

𝑎𝑎𝑎𝑎 = −𝐷𝐷𝐷𝐷�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 

 𝑎𝑎𝑎𝑎 = �̃�𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 denote charge at maximum rate 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 or until the storage reaches the minimum 
allowed limit on energy.  

𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 = �
(𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡 − 𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡)�̃�𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚        if charge

        0                if standstill
(𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡 − 𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡)𝐷𝐷𝐷𝐷�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚       if discharge

 

𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡 = (1 − 𝜂𝜂𝜂𝜂)𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡 + 𝜂𝜂𝜂𝜂𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡 

𝑄𝑄𝑄𝑄(𝑠𝑠𝑠𝑠,𝑎𝑎𝑎𝑎)𝑡𝑡𝑡𝑡 = (1 − 𝛼𝛼𝛼𝛼)𝑄𝑄𝑄𝑄(𝑠𝑠𝑠𝑠,𝑎𝑎𝑎𝑎)𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛼𝛼𝛼𝛼 𝛼𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 + 𝛾𝛾𝛾𝛾max
𝑚𝑚𝑚𝑚′

𝑄𝑄𝑄𝑄(𝑠𝑠𝑠𝑠′, 𝑎𝑎𝑎𝑎′)� 

max
𝑚𝑚𝑚𝑚′

𝑄𝑄𝑄𝑄(𝑠𝑠𝑠𝑠′,𝑎𝑎𝑎𝑎′) 

 𝑠𝑠𝑠𝑠′. 

where the parameter 

 α ε (0,1] is the learning rate weighting the past value and new 
reward. 

 γ ε [0,1]  is the discount rate determining the importance of future 
rewards. After taking an action a, the state transits from s to s´, and 
the energy storage updates the value matrix incorporating the in-
stant reward rt and the future value 
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�̃�𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = min {𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐸𝐸𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡}.  
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𝑄𝑄𝑄𝑄(𝑠𝑠𝑠𝑠′, 𝑎𝑎𝑎𝑎′)� 

max
𝑚𝑚𝑚𝑚′

𝑄𝑄𝑄𝑄(𝑠𝑠𝑠𝑠′,𝑎𝑎𝑎𝑎′) 

 𝑠𝑠𝑠𝑠′. 

 in state s´. Over 
time, the energy storage can learn the value each action in all states. 
When Q(s,a) converges to the optimal state-action values, we obtain 
the optimal arbitrage policy. 

The step-by-step Q-learning algorithm for energy arbitrage is 
presented in the above Algorithm. To avoid the learning algorithm 
getting stuck at sub-optimal solutions, ε-greedy approach is used. 
The algorithm not only exploits the best action but also explores 
other actions, which could potentially be better. Specifically, using 
ε-greedy, the algorithm will randomly choose actions with probabil-
ity ε ϵ [0,1] and choose the best action with probability 1-ε.

Energy Arbitrage Revenue Results
To test the algorithm, the total revenue that can be generated from 
historical market data is calculated. NYISO 2021 market price 
signals ($/kWh) (top of Figure 2) were used for this analysis. Energy 

Figure 1 Simple Reinforcement Learning Algorithm Flow Chart

it doesn’t exceed the rated energy capacity. The allowable charge/
discharge rates are 
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𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 = �
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𝑚𝑚𝑚𝑚′

𝑄𝑄𝑄𝑄(𝑠𝑠𝑠𝑠′, 𝑎𝑎𝑎𝑎′)� 

max
𝑚𝑚𝑚𝑚′

𝑄𝑄𝑄𝑄(𝑠𝑠𝑠𝑠′,𝑎𝑎𝑎𝑎′) 

 𝑠𝑠𝑠𝑠′. 
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�̃�𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = min {𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐸𝐸𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡}.  
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Where, 

𝐷𝐷𝐷𝐷�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = min {𝐷𝐷𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝐸𝐸𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡 − 𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚} 

�̃�𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = min {𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐸𝐸𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡}.  

𝐴𝐴𝐴𝐴 = {−𝐷𝐷𝐷𝐷�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 0, �̃�𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚} 

𝑎𝑎𝑎𝑎 = −𝐷𝐷𝐷𝐷�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 
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, denotes discharge either at maximum rate Dmax 
or until the storage hits the minimum limit of allowed stored energy 
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), it will 
get a positive reward, otherwise it will receive a loss. Similarly, the 
reward function encourages the energy storage to discharge at a high 
price.

Q Learning Algorithm

With the state, action, and reward defined, the real-time charge and 
discharge policy is updated based on Q-learning, a popular subclass 
of reinforcement algorithms. A relatively simple Reinforcement 
Learning algorithm (Q-Learning) was utilized as described in the 
paper “Energy Storage Arbitrage in Real-Time Markets via Rein-
forcement Learning.”15 The energy storage maintains a state-action 

15 H. Wang and B. Zhang, “Energy storage arbitrage in real-time markets via 
reinforcement learning” in 2018 IEEE Power & Energy Society General Meeting 
(PESGM), 2018: IEEE, pp. 1-5.

0



White Paper  6 January 2023

storage size of 3kWh and 9.8kWh was used for the analysis. This 
sizing was chosen to match the real battery system with which this 
algorithm would be tested in Colorado. 

The solution performance and reliability in the RL-based inference 
models used for decision-making can be significantly impacted 
by choosing the appropriate hyperparameters i.e., α-learning rate, 
γ-discount rate and ε-exploration probability. Finding the optimal 
settings is a computationally expensive process, called a hyperparam-
eter search. The grid search method is used to find the best hyperpa-
rameters that generate the maximum revenue for the historical price 
signal. 

Figure 2 shows the grid matrix of cumulative revenue for all possible 
combinations of alpha, gamma, and epsilon. Epsilon is the prob-
ability number that determines if the system has to do exploration 
or use the Q matrix value. A high epsilon means ignore the Q values 
and use only the random exploration. It is obvious that the high rev-
enue is possible when epsilon is low. For a fixed epsilon, the varia-
tion in alpha and beta did not have much impact on the cumulative 
revenue i.e., it is between $10.10 and $10.60. 

The best alpha, gamma, and epsilon values are 0.55, 0.88 and 0.35 
respectively. These values will be used for comparison purposes 
throughout this whitepaper. The dispatch results corresponding to 
these hypermeter values are shown in Figure 3. 

The top sub figure in Figure 3 shows the historical NYISO price sig-
nal ($/kWh) that will be used for the yearly simulation. It is 15-min 
resolution data and the actions are calculated for every 15-minute 
interval. The second subfigure shows the action state of the energy 
storage, which is either buy, sell, or stay idle. The third subfigure is 
the state of charge, as a result of the charge and discharge actions 
throughout the year. The SoC is restricted to vary between 20-80% 
only. The fourth subfigure is the instantaneous reward that is gener-
ated according to the defined function, which is based on the aver-
age price. In this implementation, a moving average for two days 
is used. Finally, the last subfigure is the sum of all instantaneous 
rewards over time to calculate the cumulative reward. 

Figure 2 Average revenue (in $) from a sensitivity analysis to discover 
the best alpha, gamma, and epsilon values for this Q-learning instance 
given the price signal.

Figure 3 Results from a simulated one-year run of the Q-learning algorithm using historical NYISO data. Subplot descriptions (top to bottom) a. 
15-minute price signal being fed to the Q-learner, b. The action taken by the Q-learner at each 15-minute interval, c. The SoC of the system, d. 
Instantaneous reward from the reward function given the state and chosen action, e. The cumulative revenue of the Q-learner. 
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Comparison with DER-VET

EPRI has developed DER-VET software, a planning tool to estimate 
the revenue that the energy storage system can generate from energy 
arbitrage and other services. The optimization-based planning tool 
gives an upper estimate on what the energy storage can generate. 
DER-VET is a mixed integer linear programming-based optimization 
tool with a monthly optimization window for this implementation. 

Table 1 shows the comparison of the revenue generated from DER-VET 
and Q-learning for the same modeled energy storage and market price 
signal. As expected, results show the maximum revenue from DER-VET 
is substantially higher than the RL model-based results. This is because 
the perfect foresight-based algorithm has the ability to look ahead and 
plan its dispatches based on perfect knowledge of the price in a monthly 
optimization window. Reinforcement learning dispatches storage using a 
policy that begins with no knowledge and is updated based on each deci-
sion and corresponding reward with no ability to look ahead. 

Figure 4 shows the dispatch results from the reinforcement algo-
rithm (green) compared to DER-VET (blue). It can be observed 
that both the algorithms have similar trends in charging and 
discharging the energy storage. For example, at those instances 
indicated with a red arrow, both algorithms discharge energy storage 
to its fullest. At the same time, instances indicated with a blue arrow 
show that the RL algorithm is conservative, and did not discharge 
the battery to the lowest SoC level. This is because DER-VET 
knows ahead of time that the price is not going up any further and 
it can discharge now at this given price..

DER-VET ($) (15 min) Q-Learning ($) (15 min) 
(All past data)

NY-ISO 14 4.95

Table 1. Comparison of profit for simulation 

Figure 4 Comparing the optimal operation from DER-VET to the 
simulated operation from the Q-learning algorithm. At some points 
the Q-learner performs an action very similar to the optimal strategy 
(red arrows) at other times the Q-learner acts more conservatively and 
chooses not to fully discharge (blue arrows). 

Testing on a Real System
This chapter explores the possibility of implementing a reinforce-
ment learning policy for energy arbitrage on a real energy storage 
system using a Raspberry Pi 4B single-board computer, a small, 
inexpensive computing device. The Raspberry Pi in this project 
enables autonomous system control, remote monitoring, and data 
collection.

The Test Facility
The reinforcement algorithm was tested on a real energy storage 
system located at the Solar Technology Acceleration Center (So-
larTAC), a test facility near Denver, Colorado (Figure 5). SolarTAC 
offers plug and play microgrid testing capabilities with over 2MW 
of local renewable generation capacity. The next section provides 
details of the hardware and software used for testing.  

Hardware
The hardware installed at SolarTAC to make this testing possible 
includes:

• A previously installed 7.6 kW Solar Edge inverter with a 5kW-
9.8kWh LG Chem battery that is set up on one of the SolarTAC test 
pads. For this testing, the Q-learner will only be able to use 3kW of 
the 5kW available and must keep the SoC between 20%-80%.

• Raspberry Pi 4B with 4GB of RAM to facilitate remote and au-
tonomous control and data collection from the Solar Edge system.

• Cradlepoint IBR600C cellular modem to provide remote access 
to the equipment on site.

Figure 5 An image of the Solar Technology Acceleration Center 
(SolarTAC) in Watkins, CO where the battery was located and tested. 
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• Off-site EPRI server running a PostgreSQL database for real-time 
data collection and remote analysis.

Software
The most important software used in this project is the Volttron,  
an open-source, Python-based tool developed by Pacific Northwest 
National Laboratory that provides an environment where “data and 
devices can connect seamlessly and securely to make decisions based 
on a user’s needs and preferences.” It is often used to orchestrate rela-
tively complex controls and optimizations within smart buildings that 
contain many different internet of things (IoT) devices that would 
not otherwise communicate in a desired fashion. It is designed to run 
on low resource Linux machines, like the Raspberry Pi, and easily 
supports custom development to fit specific project needs. 

Volttron is a platform where Volttron agents, each with its own 
dedicated role to perform, communicate with each other over a 
ZeroMQ message bus. These agents can be combined in many ways 
to suit a specific project’s needs. 

For our use case, Volttron, and the underlying agents, are used to 
accomplish the following:

• Platform, device, and actuator agents: Manage modbus com-
munication (read and write) between Volttron agents and the 
Solar Edge energy management system (EMS). 

Figure 6 Diagram showing the hardware and software configuration used for real system testing of the Q-learning algorithm.

• SQL historian agent: Collect data every 10 seconds from the 
inverter, battery, and other Volttron agents. Write these data to 
the remote PostgreSQL database.

• Custom developed agents:

 – Price signal agent: Reads in a price signal from a CSV file and 
iterates through the rows broadcasting a synthetic price signal 
to the other agents. In the future, this could be replaced with 
actual ISO signals.

 – Q-learning agent: Contains the q-learning code and acts on 
new price signals to decide the best course of action given the 
current state (battery SoC and energy price). 

Figure 6 shows the test setup that interfaces with computing facili-
ties from different geographic locations. At SolarTAC in Denver, 
CO, there is a Solar Edge energy storage and inverter system and 
Raspberry Pi 4B. The Raspberry Pi hosts the Volttron platform 
with agents that facilitate remote and autonomous control and data 
acquisition. The Q-Learning Controller code runs as one of the 
Volttron “agents”. The computing facility at Palo Alto, CA, hosts 
the SQL database. It also offers resources for post processing for the 
data visualization, and reporting.  

0
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Results

The Q-learning policy for energy arbitrage was successfully tested at 
the SolarTAC test facility. For comparison, the same one-year price 
signal as used in the modeling phase is also used for real time imple-
mentation. Note that this one-year, 15-minute price profile had to 
be condensed to a 1-minute interval for real system testing because 
there was not enough time to test the system and collect results for 
a full year. Figure 7 shows the comparison of the state of charge and 
cumulative revenue due to the charge and discharge actions on the 
energy storage. As discussed earlier, the DER-VET results set the 
upper limit on the optimal operation of the energy storage asset. 
In this case it is $15 for the 3kW, 9.8kWh energy storage system. 
The simulated Q learner is shown to provide a cumulative revenue 
of $5, while the real-time implementation was slightly less than the 
simulated value – $2.50. Ideally, the revenue from the simulated 
and real implementations should not have been very different. But 
this is likely due to the indeterministic nature of this reinforcement 
learning algorithm. Although separate instances of the Q-learner 
should eventually converge on the same policy, no two runs of the 
algorithm are exactly alike. This is because, especially early on in the 

Figure 7 A comparison showing the differing operation and revenue 
for 3 cases; DER-VET’s perfect foresight model (blue), the simulated 
Q-learning operation (green), and the same Q-learning setup applied to 
the real battery system at SolarTAC. 

run when the algorithm is still exploring, there is an inherent aspect 
of randomness to the decisions. So, it is possible that the simulated 
Q-learner shown here happened to “pick up” on the proper charge/
discharge strategy earlier than the real system Q-learner. 

Conclusion
There are a growing number of applications of AI for energy stor-
age. There are also a number of AI algorithms and policies for every 
application. This whitepaper looked at one of the reinforcement 
learning approaches for energy arbitrage application. The results 
from the algorithm were compared against optimization results with 
perfect foresight on price signals. It is clear that there is still room 
for improvement. Following are some of the avenues that could help 
improve the algorithm’s performance: 

• State space: This implementation considered 10 discrete price 
bins and 2 other binary states based on whether it is possible to 
charge or discharge. Considering additional state spaces such as 
the time of the day, seasons, and other parameters that could add 
more insights into the price variations can help develop a robust 
tool. 

• Reward: This implementation uses average price as a reward pa-
rameter. The reward signal could also be sophisticated to improve 
the performance of the algorithm.

• Reinforcement learning (RL) can use deep neural networks to 
learn an effective control strategy in very complicated environ-
ments. With proper design, this feature offers tremendous 
potential for RL to develop a battery charging/discharging policy 
for energy arbitrage.

On the positive side, this whitepaper has shown the possibility 
of using reinforcement learning without any prior knowledge of 
the market, or complex engineering, to provide energy arbitrage 
functionality. The implementation has shown the algorithm can 
learn from past historical dispatches and adapt to reach an optimal 
dispatch policy. 

Future work should investigate how this control technique com-
pares to contemporary control algorithms to assess if the purported 
benefits of reinforcement learning are justified. 
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