
THE DIFFERENCE BETWEEN THERMAL 
RUNAWAY AND IGNITION OF A LITHIUM 
ION BATTERY 
 

December 2022

0



White Paper  2 December 2022

The Difference Between Thermal Runaway and Ignition of a Lithium ion Battery

the anode surface.  As the temperature in the cell increases, this layer 
breaks down and releases carbon dioxide.  The carbon dioxide acts 
as an ionic and thermal insulator, causing the cell to produce more 
heat as it tries to complete electrochemical reactions.

When the SEI layer breaks down under abuse conditions, the 
electrolyte is exposed to the anode surface. That prompts regenera-
tion of the SEI layer and additional decomposition, which moves 
the thermal runaway process along. Flammable hydrocarbons are 
produced, and the cell continues to generate heat.  Eventually, the 
heat accumulated in the cell leads to increased temperature, which 
causes the polymer film separator to melt, allowing for an internal 
short circuit to occur and more heat production.

As temperatures rise, the cathode starts to break down and release 
oxygen.  The electrolyte solvents react with the oxygen to form 
carbon dioxide, fluoride gases, and other hydrocarbons.  Finally, the 
polymer binder material used to fabricate the electrodes also breaks 
down and releases hydrogen fluoride gas [4, 5].

Thermal runaway is not ignition. In the simplest terms, thermal 
runaway refers to the irreversible failure of a lithium ion battery 
that leads to the production of flammable gases. There are many 
abuse conditions that can trigger thermal runaway, including short 
circuits, mechanical damage, overcharging or over discharging, and 
overheating [1, 2, 3]. Thermal runaway could lead to two conse-
quences:

1. Ignition of the unmixed flammable gases can result in a fire.

2. Ignition of the flammable gases mixed with air, often in a con-
fined environment, can lead to an explosion.

A thermal runaway process occurs when the heat generated by exo-
thermic reactions is greater than the heat dissipated to the environ-
ment [4]. As depicted in Figure 1, for a lithium ion battery this can 
start when the solid-electrolyte interphase (SEI) layer breaks down.  
SEI is a passive, stabilizing layer that forms over the anode surface 
due to electrochemical incompatibility between the anode and elec-
trolyte.  The SEI layer prevents continued electrolyte degradation at 

Figure 1 – Depiction of a common thermal runaway process. Image courtesy of EPRI
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The thermal runaway process causes cell pressure to increase as the 
materials break down and expand.  Hot aerosols and flammable gas-
es are ejected from the battery at high speeds [4].  Figure 2 depicts 
the composition of battery vent gases collected from lithium ion 
batteries with different chemistries.  Carbon monoxide, methane, 
ethylene, ethane, and hydrogen gas were detected across the various 
chemistries and all these gases are flammable [6].  The mixture of 
gases ejected could ignite under the right conditions [7].

Oxygen would be provided by the surrounding environment.  The 
fuel and air mixture needs to be within the lower and upper flam-
mability limits (LFL and UFL) for combustion to occur.  The gas 
composition will determine key flammability properties including 
the LFL and burning velocity [7].

Batteries can undergo thermal runaway without subsequent fire. 
This observation is evident to anyone who has seen a cell phone 
battery pouch expand like a balloon, shown in Figure 4.  Lab-scale 
testing in inert environments has been performed to quantify vent 
gas composition in the absence of flames [8].  The McMicken BESS 
incident in Surprise, AZ also demonstrated thermal runaway with-
out ignition.  A single battery rack had undergone thermal runaway, 
filling the container with flammable gas.  The flammable gas/air 
mixture was initially too rich to burn.  First responders arrived at 
the site and opened the container doors to investigate the failure. By 
doing so, they introduced enough oxygen into the environment and 
the heat inside the container ignited the gases [7]. The uncertainty 

of ignition was later encountered during testing at FM Global, Fig-
ure 5, where abuse testing of identical lithium ion battery modules 
showed that ignition of vented gases can be unpredictable even in a 
controlled laboratory setting [9].

The U.S. has seen rapid adoption of energy storage within the past 
decade with lithium ion technologies accounting for the majority 
of deployed capacity, seen in Figure 6. Lithium ion batteries present 
many favorable factors that contribute to this trend including cost, 
maturity, roundtrip efficiency, and flexibility.  

Figure 2 – Detected components of the produced gases (mol%) [6]. Image is licensed under CC BY 3.0.

Figure 3 – “Fire triangle” by Gustavb is licensed under CC-BY-SA 3.0
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The number of lithium ion battery energy storage failures is 
expected to increase with growing technology adoption.  As of De-
cember 2022, EPRI’s Battery Energy Storage System (BESS) Failure 
Event Database has recorded 56 stationary energy storage failure 
events across the globe since 2011; 49 of those events have occurred 
since 2018.  In the US, there have been five incidents this year, an 
increase compared to the three incidents recorded in 2021 [12].  

The statistics around thermal runaway occurrences vary and data 
collection to produce meaningful information is difficult.  Assuming 
lithium ion battery cells are stored and operated within the recom-
mended limits provided by the manufacturer, the rate of failure 
over the cell’s lifetime has been estimated to be 1 in 10 million per 
a 2006 source or 1 in 40 million per a 2011 source [4, 13].  These 
statistics need to be updated, especially given that the actual rate of 
failure will be heavily influenced by unpredictable circumstances 

Figure 4 – Side-by-side comparison of a lithium ion polymer pouch 
cell that has undergone the onset of thermal runaway (left) and an 
undamaged cell (right) [10]. Image courtesy of Appuals.

Figure 5 – Lithium ion battery module thermal runaway leading to 
flammable gas release (left) and fire (right). Images courtesy of FM 
Global. Testing involved overheating of lithium iron phosphate cells 
without the presence of an external ignition [9].

Figure 6 – Annual deployed energy storage in the US. Excludes Pumped 
Hydro Storage. [11]. 

that could be classified as electrical, thermal, or mechanical abuse 
of the system. Furthermore, the sheer number of cells deployed 
means that failures are not only possible but will become more 
frequent.  One representative electric car battery using 18650 type 
lithium ion cells can have ~8,000 cells.  Assuming a failure rate of 
1 in 40 million cells, nearly 1 in every 5,000 representative vehicles 
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could fail due to a battery manufacturing defect over the product’s 
lifetime. The number of cells in a stationary energy storage system 
will vary more depending on the size and form factor of the cells.  
The McMicken battery in Arizona (2MW/2MWh) had 10,584 cells 
[14], SCE’s Mira Loma battery (20MW/80MWh) has 6,465,720 
cells [15], and Vistra’s Moss Landing Phase 1 (300MW/1200MWh) 
system has roughly 5,544,000 [16].

Thermal runaway is a major factor contributing to the fire and 
explosion risk that needs to be considered during all stages of system 
design.  While this is often initially managed with battery and ther-
mal management systems, newer installed systems may also include 
gas detection and ventilation to prevent fire and explosion if thermal 
runaway occurs. With enough research, the potential for subsequent 
fire and explosion may be controllable with proper system design 
and management but eliminating the threat of thermal runaway 
may remain a challenging goal.  
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