
TECHNICAL BRIEF

Energy Storage in Long-Term Resource 
Planning: A Review of Modeling 
Approaches and Utility Practices

1 INTRODUCTION
The pace of utility-scale battery storage deployment has accelerated since 2020, partly driven by continued technology cost 
reductions, renewable portfolio standards and, more recently, by storage targets set by some states1. According to the EIA 
[1], in 2023, developers plan to add 8.6 GW of battery storage power capacity to the grid, effectively doubling the total U.S. 
battery capacity (Figure 1). Rapid growth is expected to continue in the coming years, with developers scheduling more than 
23 large-scale battery projects2 ranging from 250 MW to 650 MW for deployment by 2025.

1	 To date, U.S. states that target specific amounts of large-scale battery energy storage capacity include California, Connecticut, Illinois, Maine, 
Massachusetts, Nevada, New Jersey, New York, Oregon, and Virginia. In addition, Maryland, New Hampshire, and Tennessee support the deployment 
of battery energy storage systems through tax credits [3].

2	 Lithium-ion batteries are the preferred energy storage technology in these projects.

Figure 1. Wind, solar and battery storage account for more than 80% of the new utility-scale generating capacity planned in 2023. 
Data source: U.S. EIA Form EIA-860M [2].
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Given the growing importance of energy storage in the 
future, resource planners are interested in understanding 
how this technology should be integrated into their long-
term planning studies and modeling tools. Energy storage is 
seen as a valuable resource to support grid decarbonization 
efforts because of its capability to provide flexibility to 
systems with an increasing penetration of renewables. 

Questions that planners are asking include:

•	 What types of energy storage technologies and 
features should be included? What services should be 
considered when modeling energy storage?

•	 How spatially- and temporally- detailed does the model 
need to be in order to accurately value energy storage?

•	 What simplifications affect the assessment of energy 
storage in long-term planning?

The assessment of energy storage systems is more complex 
than many other technologies because of the range of 
storage types, state-of-charge dependencies, wide range 
of operational space at temporal and spatial levels, and 
potential provision of multiple services. Each of these 
features make it difficult to capture energy storage in a 
single modeling framework (Figure 2) [4].

Existing analytical tools have limitations that require making 
simplifications about the technology itself, energy storage 
features to be considered, and the level of granularity 
in temporal and spatial scope. These simplifications may 
result in inaccurate evaluations that underestimate or 
overestimate the costs and benefits of storage resources in 
planning studies. Attempts to improve this valuation and 
to better integrate storage into planning tools are being 

Figure 2. Comparison of different types of energy storage technologies based on power rating (system size) and discharge 
time [5]. Authors:  T.R. Jensen and H.-W. Li 
1002-0071/©2017 Chinese Materials Research Society. Published by Elsevier B.V. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/BY_NC_ND/4.0/)
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pursued. These efforts focus on developing more accurate 
technological representations, considering relevant cost 
and performance characteristics, enhancing spatiotemporal 
resolution, and employing advanced methods and modeling 
tools that, for example, can incorporate a combination 
of services and account for their value changes with 
deployment levels [4, 6].

This technical brief reviews information from recent 
integrated resource plans (IRPs) and planning studies, 
peer-reviewed journal articles, and several EPRI technical 
reports, to understand approaches and modeling practices 
used by electric companies and planners, as well as use 
cases of storage in long-term resource planning.

2 MODELING STORAGE IN LONG-TERM 
RESOURCE PLANNING

2.1 Approaches in the Literature
Capacity expansion and portfolio planning models, 
production cost models, and resource adequacy 
models are extensively used for resource planning and 
valuation. In many cases these tools are not sufficient for 
a detailed examination of energy storage technologies, 
and consequently a suitable assessment of the value 
they provide to energy systems. For example, tools may 
be limited in their ability to capture full hourly resource 
dispatch, detailed consideration of transmission network 
constraints, or ancillary services. Moreover, extended 
solution runtimes and high model development costs tend 
to limit the type of analyses that can be performed when 
assessing storage [7]. Therefore, it would be valuable for 
planning entities to have access to improved methods for 
modeling energy storage systems within the tools they 
currently use [8, 9].

There are many challenges in modeling storage within 
long-term capacity expansion planning [16]. For example, 
storage systems have different configurations depending 
on the type of technology and whether they are hybrid 
or standalone systems; they have uncertain costs 
and technological parameters; and there are various 
operational-related performance characteristics (e.g., 
efficiency and degradation) that are difficult to model. In 
addition, the value of the wide range of applications such 
as energy arbitrage, firm capacity, regulation, spinning 

and non-spinning reserves, voltage support, congestion 
and network deferral, among others, depend not only on 
the services provided but also the amount deployed and 
the state of the system3. Only a subset of these services is 
commonly modeled within a long-term planning model. 
Other challenges, applicable not only to storage but to 
emerging technologies more broadly, include the evolving 
nature of the several policies and incentives at national and 
sub-national levels; forecast errors for load and variable 
renewable resources; uncertainty about load profile 
changes and growth; and others [6, 16].

Finally, accurately representing the technology’s “State 
of Charge (SoC)” and preserving key spatial elements of 
variability on a system are among the most challenging 
issues in modeling energy storage systems for long-term 
planning.  By nature, storage systems support power 
systems by storing system-generated energy during certain 
periods, and dispatching energy to meet system load during 
other periods. Thus, at any given time, a storage system 
contains a specific charge, defining how much energy it 
has at that time to meet load should it be called upon. 
The ability to keep track of a storage system’s SoC requires 
careful preservation of temporal chronology in a model—a 
feature that is often lacking within long-term planning 
models. Moreover, system variability, introduced in a power 
system as a result of demand, renewable energy generation 
and/or location-specific contingences, is a key economic 
characteristic for renewables and storage [10] which 
emphasizes the significance of spatial resolution in long-
term models that assess the value of storage. 

Unfortunately, increasing temporal and spatial resolution 
in a model also increases computational run times. 
Recognizing this challenge, modelers and planners typically 
include simplifications in their optimization studies to 
have tractable results within reasonable times. Temporal 
modeling simplifications include time sampling based on 
representative sequences (days or weeks); system states 
analysis; static optimization that preserves the full 8760 
hourly chronology within a year; sequential myopic or 

3	 This effect, known as value deflation (or “decreasing returns”), refers 
to the declining marginal value of energy storage as deployment 
increases on a particular system. For further information refer 
to https://esca.epri.com/pdf/Back-Pocket-Insights/EPRI-P201-
Decreasing-Returns.pdf
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recursive dynamic modeling approaches using an annual 
rolling basis; and other advanced optimization methods4.  
Spatial modeling simplifications include grouping generating 
units into larger clusters based on features such as location, 
engineering characteristics, technology type, and size; 
regional or zonal network aggregation; and reduced-form 
representations of the transmission system, among others5. 

All these approaches have disadvantages, and modelers 
need to weigh the tradeoffs between improved 
spatiotemporal resolution and model complexity. 
Simplifications along spatial and temporal modeling 
dimensions may:

•	 Dampen variability by averaging or flattening 
differences between peak and off-peak energy values, 
potentially understating the value of storage.

•	 Impact the assessment of storage systems of different 
durations, i.e., overestimating or underestimating 
the optimal installed capacity of short or long-
duration storage, as it may limit the energy that can 
be effectively managed over multiple days or across 
seasons.

•	 Impact the valuation of storage applications for 
deferring network investments or alleviating congestion 
by failing to capture the potential value streams 
associated with them due to the reduced number of 
transmission and distribution lines.

4	 The representative sequence method is the most common temporal 
aggregation strategy used throughout the literature. It involves the 
aggregation of days (or other sequences such as weeks) with similar 
characteristics, allowing chronology to be maintained within days, 
but not usually across them.

The system states approach identifies unique states that comprise 
time periods with similar characteristics and estimates a probability 
transition matrix between states [11]. It includes a structure to infer 
the hourly balance from the state transitions and aims to ensure it is 
within the storage technology’s available energy capacity.

The static approach relies on decoupling planning from operation 
decisions. Storage is only represented in an operation model 
that considers one year as a snapshot, or alternately, a planning 
model that considers one future year only with all 8760 hours and 
annualized costs [12, 13].

In a sequential myopic method, each year is solved individually (for 
all 8760 hours), and the capital stock is carried over to the next year.

5	 For further reference, Bistline et al. [6] and Merrick et al. [10] provide 
additional background on the relevant temporal and spatial modeling 
approaches found in the literature, as well as their main advantages 
and disadvantages in long-term energy system models.

2.2 Approaches in Practice
Many electric companies and planning entities across North 
America are including energy storage in their long-term 
planning assessments, and numerous IRPs incorporate 
utility-scale storage in their preferred portfolios. Planned 
battery and pumped hydro storage (PHS) additions through 
2050 for select electric companies are shown in Figure 3.

A review of official dockets and direct communication 
with a selection of electric companies allowed examining 
the modeling challenges the industry currently faces and 
the strategies being adopted to evaluate storage in their 
expansion plans.

There is a wide range of approaches being used in practice 
to incorporate energy storage into planning, including:

•	 Prescreening based on assumed costs and feasibility 
to determine which technologies to include in more 
detailed modeling;

•	 Exogenous selection added to optimal portfolios and 
evaluated using hourly production costs models for 
operational feasibility and economic benefits;

•	 Cost-benefit analyses using storage technology 
models (e.g., price-taker models) to assess the costs 
and benefits associated with sub-hourly flexibility of 
storage; and 

•	 Endogenous evaluation using a capacity expansion tool 
to determine the optimal portfolio.

The forecasted need for energy storage for the next 20-
30 years is primarily driven by renewable energy goals, 
carbon policies, economic conditions, and the retirement 
of conventional generation resources. The information 
presented in Table 1 shows that while recent IRPs have 
featured well-established energy storage technologies with 
readily available data on cost and technical specifications, 
emerging and less mature energy storage technologies 
are often excluded from the planning exercises due to a 
lack of available or reliable data. Also, hybrid solar and 
energy storage systems, typically featuring 2-hour to 8-hour 
duration batteries, are commonly considered candidates 
in assessment studies. In fact, this configuration is often 
preferred within portfolios over standalone battery systems. 
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Figure 3. Battery and Pumped Hydro Storage capacity additions through 2050 for a sample of electric companies6.  
Source: EQ Research IRP as a Data Service.

6	 Some companies have been aggregated as follows: Alliant (Alliant IA, Alliant WI), Southern Co. (Alabama Power, Georgia Power, Mississippi 
Power), Dominion (Dominion Virginia, South Carolina Electric and Gas), AEP (Appalachian Power Company, SWEPCO, Indiana Michigan Power), 
Duke Energy (Duke Energy Florida, Duke Energy Kentucky, Duke Energy Carolinas, Duke Energy Progress, Duke Energy Indiana), Xcel Energy (Xcel 
Energy, Xcel Energy Upper Midwest Region, Southwest Public Service).

0
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Table 1. Energy storage in recent IRPs7. Source: EQ Research IRP as a Data ServiceTM and official IRP filings [6]

7	 Acronym definition: EIA’s Annual Energy Outlook (AEO); NREL Annual Technology Baseline (ATB); Compressed-air energy storage (CAES); Capital 
expenditure (CAPEX); Effective Load Carrying Capability (ELCC); Inflation Reduction Act (IRA); Integrated Resource Plan (IRP); Long Duration Energy Storage 
(LDES); round-trip efficiency (RTE); EPRI’s Storage Value Estimation Tool (StorageVET); Upper Midwest (UM).

UTILITY REGION/STATE STUDY PERIOD COSTS KEY DETAILS OF STORAGE INCLUDED IN RESOURCE PLANS

AEP Arkansas, 
Louisiana, West 
Virginia, 
Virginia, 
Tennessee, 
Indiana, 
Michigan

2021–2041 $1,400 to 
$1,900/kW
Decline to 
$700/kW by 
2041

•	 50 MW/200 MWh (4-hr) Li-ion battery candidates

•	 10 MW/40 MWh (4-hr) Li-ion battery candidates

•	 High levels of energy storage are not selected unless 
installed costs are drastically reduced

•	 Hybrid (4-hr) resources are preferred to standalone 
batteries

•	 Standalone storage selected in near term to replace 
capacity retirement

Alliant Illinois, Iowa, 
Minnesota, and 
Wisconsin

2020–2040 Wood 
Mackenzie, 
NREL ATB

•	 28 MW of distributed storage, 94 MW of hybrid 
storage

•	 Standalone 4-hr Li-ion, 25 MW, 250 MW max per 
year, 98% capacity credit, 30-yr lifetime candidates

•	 Hybrid 40 MW solar, 10 MW battery, 1 GW maximum 
install per year

•	 For distributed storage, avoided distribution costs 
accounted as capital cost savings and exogenously 
determined

Ameren Missouri 2020–2040 Roland 
Berger and 
NREL costs 
data

•	 800 MW storage by 2035

•	 Pumped hydro, 2-hr and 4-hr Li-ion battery 
candidates

•	 4-hr Li-ion batteries selected in portfolios

Consumers 
Energy

Michigan 2021–2040 $1000 to 
$1100/kW

•	 Co-owned 1172 MW of pumped hydro with DTE

•	 Thermal storage, compressed air, flywheel screened 
out before CAPEX modeling

•	 4-hr Li-ion battery, 100 MW blocks modeled 
candidates

•	 Value stack created using EPRI’s StorageVET

Dominion Virginia 2024–2038 Capital costs 
based on 
company 
history and 
NREL ATB 
Moderate 
Case

•	 Aiming to meet targets set by the Virginia Clean 
Energy Act

•	 Battery Storage additions range from 3.9 GW to 10.3 
GW over a 25-year horizon

•	 Storage starting ELCC value is 82% for 4-hr systems, 
increasing after 2026

•	 4-hr Li-ion, 30 MW, 20-yr lifetime battery candidates

•	 Plans limited to 300 MW annual additions. For net 
zero cases, 900 MW additions after 2038

•	 Pursuing an LDES pilot

0
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UTILITY REGION/STATE STUDY PERIOD COSTS KEY DETAILS OF STORAGE INCLUDED IN RESOURCE PLANS

DTE Michigan 2024–2038 Cost data 
from NREL 
ATB Moderate 
Scenario cost 
assumptions

•	 Own 1.1 GW of pumped storage

•	 Li-ion batteries selected after initial technology 
screening which included 4-hr, 8-hr, and 10-hr 
duration batteries

•	 Battery capacity limits modeled for specific periods

•	 Preferred portfolio has 1830 MW of storage by 2042

•	 Scenarios with large capital cost reductions and IRA 
incentives increase battery capacities

•	 Ancillary services benefit and flexibility benefits 
estimated and included in expansion analysis

Duke 
Carolinas 
and Duke 
Progress

North Carolina, 
South Carolina

Through 2030 $2250-$4200 
$/kW 
overnight 
capital cost

•	 Up to 2200 MW stand-alone batteries per year per 
utility available beginning 2027

•	 1680 MW, 10-hr pumped storage considered for 2034

•	 Advanced reactor with integrated thermal storage 
(300 MW nuclear / 150 MW storage) available in 
2038

•	 Solar paired with storage, 4-hr, 6-hr and 8-hr 
standalone batteries candidates, available after 
2027/2028. 60% of new stand-alone batteries will be 
on retired coal sites

•	 Preferred portfolio has over 6 GW of battery storage 
(standalone and hybrid) by 2038 and 1.7 GW of 
planned pumped hydro by 2034

Georgia 
Power

Georgia 2023–2037 N/A •	 4-hr, 8-hr Li-ion battery candidates

•	 Piloting 2-hr Li-ion

•	 Upcoming pilot 100-hr duration project

•	 2470 MW battery storage by 2040

•	 Goal of 1000 MW storage capacity by 2030

Great River 
Energy

Minnesota 2022–2042 $895/kW
NREL ATB cost 
assumptions

•	 4-hr Li-ion battery candidates

•	 Preferred resource plan has 200 MW in 2030

•	 LDES pilot project of 1 MW/150 MWh aiming for 
2024

Manitoba 
Hydro

Manitoba, 
Canada

$1563 (CAN)/
kW overnight 
cost

•	 5-hr Li-ion battery candidates

•	 System-wide maximum battery capacity set at  
350 MW

•	 Benefits from transmission/distribution deferral, 
congestion relief, time shifting, ancillary services, 
customer services not incorporated in analyses

•	 Battery additions small overall and only after 2033

Table 1 (continued). Energy storage in recent IRPs. Source: EQ Research IRP as a Data ServiceTM and official IRP filings [6]
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UTILITY REGION/STATE STUDY PERIOD COSTS KEY DETAILS OF STORAGE INCLUDED IN RESOURCE PLANS

Minnesota 
Power

Minnesota 2021–2035 NREL ATB, EIA 
AEO, and IHS 
Markit cost 

•	 4-hr, 8-hr Li-ion battery and 12-hr flow battery 
candidates.

•	 Pre-screening included CAES and pumped hydro.

•	 Portfolios did not select storage resources.

Omaha 
Public 
Power 
District

Nebraska 2022–2050 N/A •	 150 MW storage additions before 2030 is the ‘least 
regrets’ decision

•	 Pumped hydro eliminated in the screening process

•	 Hybrid and thermal storage resource not evaluated

•	 Optimal net zero pathway adds 0.5 GW storage by 
2030, and 2 GW by 2050

•	 1–3 GW of storage are selected across all cases in 
2050

PacificCorp Utah, 
California, 
Idaho

2023–2042 $1460 to 
$4303/kW

•	 7400 MW of storage by 2029, 8095 MW of storage by 
2042. Most of new additions are Li-ion batteries (over 
90%), pumped hydro (35 MW), and LDES (350 MW)

•	 4-hr Li-ion battery, Flow battery, gravity battery, 
pumped hydro (400 MW, 10 hours discharge,  
14 hours charging, 78% RTE) candidates

•	 IRP included a Natrium advanced reactor 
demonstration project with molten salt thermal 
energy storage (5.5-hr duration at max capacity of 
500 MW)

•	 Reliability assessment includes 8-hr li-ion battery 
options and 100-hr iron-air batteries, and flow 
batteries. Sizing options included 20 MW and 200 
MW, and hybrid and standalone resources

•	 Most new solar is paired with battery

Salt River 
Project

Arizona 2017–2037 EIA AEO, NREL 
ATB costs

•	 Study cases in upcoming Integrated System Plan (ISP) 
include at least 2000 MW of battery storage

•	 4-hr Li-ion battery candidates

•	 1 GW pumped hydro candidate for longer durations
TVA Tennessee, 

Alabama, 
Mississippi, 
Kentucky, 
Georgia

2018–2038 $855 to 
$4050/kW

•	 Pumped hydro, utility-scale battery storage, CAES, 
fuel cells, advanced chemistry batteries candidates

•	 Without incentives, storage is not selected in base 
case plan.

•	 50 MW storage contract was signed in 2019

•	 Recommended plan includes 2400 MW by 2028 and 
5300 MW by 2038

Xcel Energy Colorado, 
Upper Midwest 
(UM)

15–20 years NREL ATB 
costs

•	 Existing 225 MW battery storage and 340 MW 
pumped hydro in Colorado

•	 1170 MW of storage additions (about 600 MW 
standalone) by 2030 in Colorado. 250 MW of storage 
by 2034 in UM

•	 4-hr Li-ion battery, 50 MW block, 250 or 365 round 
trip cycles per year candidates

Table 1 (continued). Energy storage in recent IRPs. Source: EQ Research IRP as a Data ServiceTM and official IRP filings [6]
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2.2.1 Temporal and Spatial Resolution
Temporal simplifications typically include on-peak and 
off-peak days8 with a limited number of hours or blocks 
per day9, typical weeks, or one or two chronological weeks 
per month. Some companies may use a limited number of 
blocks of nonchronological hours each month, based on 
load net of wind and solar resources.

Companies reported that their preferred approach for 
resource planning studies often involves regional network 
aggregation, typically using a copper plate approach 
without an intraregional network representation. This 
method may incorporate an interregional link to external 
and neighboring markets to account for energy transfers 
between balancing authorities. In larger-scale models, 
multiple balancing authorities are typically consolidated 
into a single region in long-term studies, while some 
electric companies opt for a zonal capacity expansion 
representation10. 

Run times depend heavily on the type of problem being 
solved and the size of the systems under consideration. 
They can range from minutes to hours to days, subject 
to the problem horizon length and resolution, system 
temporal and regional details, and the inclusion of 
operational parameters and ancillary services for energy 
storage technologies. Typically, a study period of 20 or 
30 years is employed, and companies either optimize for 
all years or adopt a segmentation approach for a limited 
number of years (e.g., a 30-year problem broken into 3 
optimization periods of 10-years each) to speed up the 
simulations. The forward-looking nature of the first strategy 
allows perfect foresight, while the latter approach, while 
faster, may compromise the optimality of the solution and 
miss intertemporal dynamics. Some companies reported 
typical capacity expansion runs, including multiple storage 

8	 For instance, a day when demand is at its highest and a day when 
demand is at its lowest for each month.

9	 These blocks may combine and average specific hourly data that has 
a specific feature such as off-peak demand hours.

10	 Generally, a power system is typically represented by various 
regions, which may be based on specific Balancing Authorities (BAs). 
Depending on the spatial resolution chosen for planning studies, 
this representation may include regional, zonal, or nodal network 
aggregation. In a regional network aggregation, all resources within 
a region are connected to a single node, and only the links between 
regions are modeled. In a zonal representation, different nodes are 
clustered into zones, with resources inside those zones connected to 
a single node, and links established between these zones.

alternatives, ranging in runtime from one to 20 hours. 
Meanwhile, others reported runtimes ranging from half a 
day to up to four days. The addition of ancillary markets 
roughly doubled the solving times for some.

2.2.2 Storage Capacity Accreditation
The capacity value or accreditation for storage is typically 
determined exogenously across various deployment 
levels11 and through different assessment methods [8, 17]. 
Resource adequacy modeling is used to establish Effective 
Load Carrying Capability (ELCC) curves for each storage 
technology and capacity levels, which are subsequently 
incorporated into capacity expansion models as additional 
technology input.

In these analyses, various energy storage technologies with 
durations typically ranging from 2-hr to 8-hr are considered. 
Several incremental capacity segments are integrated into 
the models, with ELCC values decreasing as penetration 
increases. These values exhibit a wide range depending 
on the electric company and market location, starting at 
approximately 100%-70% in the base year and declining to 
around 70%-35% (or even lower) by the end of the study 
period. In simpler approaches, some companies employ a 
single capacity value in their long-term studies. For hybrid 
solar and storage resources, ELCC is typically represented as 
the sum of each individual resource’s capacity credits (i.e., 
the “sum of parts”)12. 

Some companies have expressed concerns that existing 
analytical tools cannot capture the interactions of different 
generation resources and their effects on ELCC, a feature 
that is relevant for storage resources. As a resource’s ELCC 
level depends on the system’s future resource mix [19], 
stand-alone valuations tend to ignore the interactions with 
other technologies within portfolios. For example, the 
ELCC of storage may increase with higher solar penetration 
because solar can modify the net peak in such a way that 
storage can effectively cover it. However, once storage 

11	 Resource Adequacy (RA) obligations vary by region and can be met 
through different mechanisms and various entities. Some regions 
meet RA through participation in capacity markets at an ISO/RTO 
with additional rules set by states and/or PUCs. Other regions meet 
RA through voluntary capacity markets or standards set by state 
entities. In non-market regions, utilities work with PUCs to achieve 
RA where each state and utility can set their own requirements. For 
additional details refer to [19].

12	 Earlier research on resource accreditation [19] offers examples of 
storage ELCC curves in recent utility plans.
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capacity reaches a certain threshold, the benefit of adding 
more storage to the system diminishes, leading to increased 
costs for maintaining reliability through the same resource 
under that scenario. 

2.2.3	 Storage Technologies, Features, and 
Services
Electric companies typically consider various energy storage 
technology candidates with different attributes, including 
battery technologies of 2-hr, 4-hr, 6-hr to 8-hr of duration, 
and generic sizes of typically 25, 30, 50 or 100 MW blocks. 
The most common technology is lithium-ion, while other 
candidates include pumped hydro storage, redox flow, 
compressed air energy storage, fuel cells, advanced 
chemistry batteries, gravity energy storage, and thermal 
storage. Preferred portfolios often prioritize Li-ion batteries 
and hybrid solar energy storage resources. In systems 
where pumped hydro is already in place, the addition of 
new storage competes with this technology, which makes it 
challenging for long-term capacity expansion optimization 
models to select them. Additionally, many companies 
limit the addition of new storage resources to a specified 
amount per year, reflecting their expectations regarding the 
deployment pace of this technology.

Battery degradation is normally not included because of the 
limited capabilities that commercial tools have in including 
this characteristic in long-term capacity expansion models. 
A proxy for including this feature is through the O&M costs 
which account for the cost of maintaining the resource at 
its original capacity level13. However, this cost is typically 
based on a predetermined number of cycles per year, which 
does not endogenously take into consideration potential 
variations due to more cyclical operation of the battery. 
Some companies are working on incorporating explicit 
degradation models for lithium-ion battery energy storage 
systems in their capacity planning models [14, 15].

The inclusion of storage for reserves in capacity expansion 
models varies per utility. Some include frequency (up, 
down) regulation, as well as spinning reserves which can 
increase computational complexity and run times. Others 
choose to not include ancillary services in their capacity 

13	 In this case, periodic augmentation to maintain energy storage 
operational conditions will be reflected in the costs covered 
in maintenance contracts between the project owner and the 
technology developer.

expansion models.  Still, other companies exogenously 
estimate the flexibility benefits that storage resources may 
contribute to offsetting renewable integration which are 
later used as inputs in the planning tools14.  

3 CONCLUSION
While valuing energy storage systems is more complex than 
evaluating many other technologies, electric companies 
and planning entities are increasingly incorporating this 
technology into their assessments and planning tools. They 
also have plans to continue improving the representation of 
energy storage systems in the future.

Electric companies consider a variety of storage options for 
their long-term assessments. In practice, 2-hour, 4-hour, 
6-hour, and 8-hour Li-ion batteries are among the most 
evaluated due to their technological maturity and the 
availability of cost and technical specifications. Pumped 
hydro systems are also considered, which fall into the 
category of long-duration energy storage (LDES) resources. 
Some companies have even begun piloting advanced LDES 
systems capable of delivering electricity for 10 hours or 
more. These emerging technologies are expected to play 
a more important role in the future, depending on their 
relative costs, policy design and decarbonization strategies 
[18].

Modeling strategies can significantly impact the 
assessment of storage systems. When temporal and spatial 
simplifications are made, they can miss capturing realistic 
system variability and influence intertemporal dynamics, 
ultimately affecting the valuation of storage services. 
However, companies today use a variety of tools, including 
capacity models, production cost models, reliability 
assessments, and storage price-taker models, to address 
modeling challenges. Combining these tools enables a 
more practical and comprehensive assessment of energy 
storage across different timeframes, capturing reliability 
and operational impacts as well as interactions with the rest 
of the system.

In the end, planners and modelers must carefully weigh 
the tradeoffs between enhancing modeling strategies 
and increasing model complexity within the current 

14	 Typically, these benefits are estimated as the difference in cost 
to mitigate the additional flexibility events caused by increased 
renewables with and without storage.
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suite of long-term modeling tools. Today’s models need 
enhancements to address the existing challenges associated 
with storage to fully capture its range of potential services 
and capabilities, especially when energy storage is widely 
considered a key resource to support grid decarbonization 
efforts.
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