
 

Quantitative Risk Assessment for Hydrogen 
Energy Systems—Electrolyzers 
Hydrogen technologies are a promising option for decarbonizing key economic sectors such as transportation, 
energy storage, and chemicals production [1]. Enabling the wider adoption of hydrogen technologies requires 
rigorous investigation and quantification of associated risks to develop measures to mitigate and prevent 
failures. Quantitative risk assessment (QRA) is a rigorous methodology used to estimate risks posed by 
industrial systems or processes to provide information for decision making about system design and 
operations [2]. Ultimately, QRA aims to determine if system risk is tolerable or if mitigation measures are 
required to reach a more broadly acceptable level of risk to workers and the public. 

The objective of this work was to conduct QRA for a hydrogen electrolyzer and to identify gaps, QRA 
research needs, and opportunities for these systems. To achieve this objective, we defined a clear 
method for conducting QRA on electrolyzers (derived from QRA methodologies developed as part of 
previous work [2],[3]), and ensured the methodology includes all facets of a QRA:  

1. Defining the scope of the analysis and gathering relevant information and data, documenting the 
system being analyzed 

2. Identifying hazards and failure modes 
3. Causal modeling of risk and root causes 
4. Conducting frequency, probability, and consequence analysis 

We then applied this method to a PEM electrolyzer. Following the QRA, we identified key gaps by 
considering both the scientific literature, the current state of the art, and our experience in attempting to 
complete all steps of a QRA method. 

For the QRA study, we surveyed three types of electrolyzers: alkaline, proton exchange membrane (PEM), 
and solid oxide. For each system, we evaluated the state of the data and tools available to conduct a QRA 
study. A summary of those findings is presented in Section 1.2.3 Safety and Reliability. Based on this, we 
decided to conduct a QRA on a small PEM electrolyzer design due to the availability of detailed design 
information and the anticipated prevalence of PEM electrolyzers within the near-term planned 
deployments in the U.S. [4]. 
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First, we conducted a failure modes and effects analysis (FMEA) on the selected electrolyzer design to 
identify potential failure scenarios and their consequences. We identified a total of 133 failure scenarios 
resulting in three major consequences: hydrogen release, oxygen release, and hydrogen and oxygen 
mixing. Jet fires or explosions can result if the released hydrogen or collected hydrogen and oxygen gas is 
ignited. These situations pose significant risk to personnel surrounding the electrolyzer and need to be 
mitigated. Through analysis of the failure modes and scenarios, we determined that the primary 
components of concern are the electrolysis stack, the pump supplying water to it, and the non-return 
valves and backpressure regulators throughout the system. Based on these findings, we propose the 
following mitigation and prevention measures:  

1. Mechanical integrity checks and leak detection of the water pump, process valves and backpressure 
regulators. 

2. Mechanical integrity checks on electrolysis stack membrane. 
3. Prevention of flow blockages in valves, backpressure regulators, and piping segments through 

maintenance and process monitoring activities. 

We next developed failure logic models of these scenarios via fault trees (FTs), with the top events being 
hydrogen release, oxygen release, and hydrogen-oxygen mixing. These FTs were parametrized using 
reliability data sources: Non-electronic Parts Reliability Database (NPRD) [5], HyRAM+ version 5.0 [6], the 
Reliability Data for Safety Equipment (PDS) handbook [7], the Offshore and Onshore Reliability Data 
Handbook (OREDA) [8], and the CCPS Guidelines for Process Equipment Reliability Data [9]. The 
parametrization exercise allowed us to identify several gaps in the reliability data available, primarily 
around the electrolyzer stack and failure modes pertaining to flow blockages in valves. 

As a next step, we evaluated consequences, focusing primarily on the consequences from hydrogen 
releases. Thus, we calculated the probability of a hydrogen release from the electrolyzer system and 
simulated the resulting jet fires and explosions. We found that jet fires (thermal harm) were more likely 
to occur, but that the main consequence of concern was explosions (overpressure harm) due to the 
higher potential consequences to the site personnel. 

Next, we used component importance measures analysis to identify failure modes and events critical to 
the electrolyzer’s safety and reliability. The results highlighted the importance of leak detection and 
mitigation for hydrogen-water separators as well as inspection and maintenance of process valves to 
prevent flow blockages. 

This work shows that QRA can be used to gain insights on electrolyzer failure scenarios, their 
probabilities, and resulting consequences. However, we also highlight the need to scale up this analysis to 
larger systems that are more representative of those currently being designed and deployed in the U.S. 
and around the world. Also, we identified several gaps in the available data for system components and 
their failure modes. There is a need to collect reliability data that can be used to enhance the quality of 
the QRA studies and inform future design and deployments. 

This report is one of three companion reports. The other two reports cover liquid hydrogen fueling 
stations [10] and hydrogen transmission pipelines [11]. 
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