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REPORT SUMMARY

Flywheels are under consideration as an alternative for electrochemical batteries in a
variety of applications  This summary report provides a discussion of the mechanics of
flywheels and magnetic bearings, the general characteristics of inertial energy storage
systems, design considerations for flywheel systems, materials for advanced flywheels,
and cost considerations.

Background
Energy is stored in the rotating mass of a flywheel. Historically, flywheels have stored
the energy of short impulses so as to maintain a constant rate of revolution in rotating
systems. Steam and combustion engines have incorporated flywheels for that purpose
from the time of their invention. The application of flywheels for longer storage times is
recent. It has been made possible by developments in materials science and bearing
technology.

Objective
To provide a brief introduction to the state-of-the-art in flywheel technology.

Approach
The project team researched available technical literature to produce a brief but
comprehensive introduction to flywheel technology and to compile an up-to-date
bibliography of published books, papers, and reports on flywheel research and
development.

Results

Advanced flywheels require materials of high tensile strength, very light weight, and
"benign" failure mode. The enabling development from materials science is fiber-
reinforced polymers, a class of composite materials that is the best current candidate for
flywheel applications. The comparable development in bearing technology is the
magnetic bearing, which suspends a rotating shaft or rotor by magnetic forces. Owing
to the absence of contacts between solid surfaces, drag torques are very low in magnetic
bearings and lubrication is unnecessary. Other advantages include high reliability,
absence of wear, high allowable peripheral speeds, and the capacity for controlling
stiffness and damping in real time.
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In principle, flywheel systems have load leveling capabilities that are matched by few
near-term technologies. These capabilities are especially desirable for ground vehicles
such as automobiles and locomotives, which benefit by rapid acceleration, speed
maintenance on grades, and regenerative breaking. In the electric power industry, large
flywheels may be useful for load management during peak hours, for storing electricity
from base-loaded generators during low-demand periods, and for electricity storage
from alternative power sources such as wind or solar.

EPRI Perspective
While government agencies, national laboratories, automobile companies, utilities, and
manufacturers are investing in flywheel-related projects, flywheel energy storage
remains in the R&D stage.  For several reasons, commercialization may occur in the
near future. Fiber-reinforced composites are becoming better and cheaper, and new
rare earth-transition metal magnets have become available that can enhance the
performance of magnetic bearings. Perhaps most importantly, concerns about flywheel
safety are being addressed seriously by a consortium run under the aegis of the
Defense Advanced Research Projects Agency.

TR-108387

Interest Categories
Power conditioning
Applied science and technology
Energy storage

Key Words
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1 
INTRODUCTION

Storing mechanical kinetic energy for comparatively short times with flywheels has
been known for centuries. Flywheels are now being considered for a variety of
applications such as replacement of, or assists for, electrochemical batteries. A useful
account of all aspects of flywheels, including their history, is given by Genta.1

Energy is stored in the rotating mass of a flywheel. Historically, flywheels have stored
the energy of short impulses so as to maintain at a constant rate the revolutions of a
rotating system; steam and combustion engines have incorporated flywheels for that
purpose from the time of their invention. The application of flywheels for longer
storage times is recent, and has been enabled by developments in materials science and
bearing technology.

As will be seen, advanced flywheels require materials of high tensile strength, very
light weight, and "benign" failure mode. The enabling development from materials
science is fiber-reinforced polymers, a class of composite materials that is better suited
for flywheel applications than any other now available. The comparable development
in bearing technology is the magnetic bearing, which suspends a rotating shaft or rotor
by magnetic forces. Owing to the absence of contacts between solid surfaces, drag
torques are very low and there is no need for lubrication. Other advantages include
high reliability, absence of wear, high allowable peripheral speeds, and the capacity for
controlling stiffness and damping in real time.

This summary report provides very brief discussions of the mechanics of flywheels and
magnetic bearings, general characteristics of inertial energy storage systems, design
considerations for flywheel systems, materials for advanced flywheels, and cost
considerations. Two appendices are included: a table of the organizations and key
people engaged in development of flywheels and magnetic bearings; and a
bibliography of published books, papers, and reports on flywheel R&D from 1947 to
the present.
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2 
BASIC MECHANICS

Flywheel Energy

The energy content of a rotating mechanical system is

W = 0.5 Iω2

where I is the moment of inertia and ω is the angular velocity. The moment of inertia is
determined by the mass and shape of the flywheel, defined by

I = ∫ x2dmx

where x is the distance from the axis of rotation to the differential mass dmx.  If the
mass of a flywheel of radius r is concentrated in the rim, i.e., x = r = constant,

I = x2∫dmx = mr2

and W = 0.5r2mω2,

which shows that the stored energy depends on the mass of the flywheel and the
square of the angular velocity. To store large amounts of energy, high angular velocity
is much more important than the mass of the rotating system.

The energy density (amount of energy per kilogram) of a flywheel is simply

W = 0.5r2ω2.
m

Likewise, the volume energy density is obtained by expressing the mass as the product
of density, ρ, and the volume V

W = 0.5ρr2ω2.
V
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The upper limit for angular velocity is determined by the tensile strength of the
flywheel material. In the elementary example given above, the tensile (hoop) stress in
the rim is

σ = ρω2r2,

so that the maximum energy per unit volume is

u
max

5.0
V

W σ=





and the maximum energy per unit mass is

ρσ=





u
max

5.0
V

W

Thus, for fixed dimension, the main requirements for high energy storage are high
tensile strength and low density.

The factor 0.5 in the expressions for energy and energy density applies only to a simple
rim flywheel. A more general description for any flywheel constructed from material of
uniform density is

ρσ=





u
max

K
V

W

where K is a shape factor that is a measure of the efficiency with which the flywheel
geometry uses the material strength. That is, the value for K depends on the moment of
inertia (I) and how the flywheel shape affects the magnitude of the restraining stresses
set up by centrifugal forces. This is illustrated in Figure 2-1 for a number of flywheel
shapes. The value of K for a constant-thickness disc, for example, is reduced by a
central hole, which acts as a stress concentrator; a large central hole (i.e., a thin-rim
disc) is less of a stress concentrator than a small central hole (pierced constant-thickness
disc). However, it is also true that the large central hole detracts more from the energy
capability of the flywheel since there is less rotating mass.
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Figure  2-1
Shape factor K for some flywheel shapes.
Source: adapted from Genta1
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Gyroscopic Moments of Flywheels

A flywheel reacts with a gyroscopic moment, M, to any angular motion of its rotation
axis. For a flywheel spinning about one of its principal axes of inertia with angular
velocity ω, a movement of the rotation axis at angular velocity Ω produces a moment
(in vector notation)

Ω×ω= IM

This means that a torque about an axis perpendicular to the spin axis causes a moment
around a third axis perpendicular to the other two. In the case of a flywheel-powered
vehicle with the flywheel spinning around the vertical (yaw) axis, a torque in the plane
of the vertical-longitudinal (roll) axis will result in an overturning moment around the
longitudinal axis. For road vehicles, the highest angular velocities experienced during
normal operation are around the vertical (yaw) axis; therefore, when the flywheel
rotation axis is vertical, such maneuvers do not result in a gyroscopic reaction.

Returning to the moment equation, it is seen that the gyroscopic moment depends on
the first power of the rotational speed, the first power of the mass, and the square of the
radius of the rotating part. In terms of the stored energy,

22

W2
M

ω
Ω×ω=

Thus, for a given stored energy, gyroscopic moments are minimized by high-speed,
small-diameter, low-mass flywheels. Gyroscopic moments can also be much reduced or
effectively eliminated by clever designs, as will be seen.

Magnetic Bearings

The maximum axial and radial loads, Fax and Frad, that can be withstood by magnetic
bearings can be estimated from the following relationships:

Fax  = 2πpadbwr

and Frad = prdbws,

where db is the outer diameter of the shaft bearing or plate bearing, and wr and ws are
the width of the magnetic field. The coefficients pa and pr, measured in pressure units,
are materials dependent: for Fe-3% Si, pa = 50 x 104 Pa and pr = 25 x 104 Pa, whereas for
high saturation Fe-45% Co-2%V, pa = 100 x 104 Pa and pr = 50 x 104 Pa.
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The stiffness of active magnetic bearings depends on the control system. An order of
magnitude stiffness can be estimated from

k = m(2πf)2,

where m is the suspended mass and f is the natural frequency for the control system.
Frequencies of 100-500 Hz are suggested for the amplifiers, which give high values of
stiffness.

Although magnetic bearings are virtually frictionless, small losses occur from three
sources: eddy currents generated in the rotating shaft; leakage flux (stray flux paths);
and hysteresis in the rotor material. The sum of these losses, known as the drag torque,
can be estimated from

M = mg(3.2 x 10-5 + 1.3 x 10-8 bω)

for a horizontal rotor of mass m. The constant b, which depends on the number of
poles, ranges from b=2 for small machines to b=6 for larger machines. For vertical
rotors, the torque is even smaller.
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3 
GENERAL CHARACTERISTICS OF INERTIAL ENERGY

STORAGE

All flywheel energy storage systems have high power densities. They can be charged at
high rates and they can deliver their energy in very short times (high power); the main
limits on power delivery are the transmission system, or overheating of the motor-
generator if the power is withdrawn as electricity, and the torque that the flywheel
itself can withstand. In contrast, electrochemical batteries depend on a chemical
reaction that becomes increasingly irreversible as the discharge rate is increased. This
can be seen in Table 3-1, which compares the energy densities and power densities of
two common electrochemical batteries with those projected for flywheel systems. A
more extensive comparison among energy systems is shown in Figure 3-1.

Table  3-1
Typical Energy Densities and Power Densities for Energy-Storage Systems

System
Energy Density,

Wh/kg

Power Density
(50% DOD),

W/kg

Lead-Acid

Nickel-Cadmium

Flywheel

30-50

40-70

100-250

60-90

160-185

500-5000
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Figure  3-1
Power density versus energy density for energy accumulators.
Source: adapted from Genta1

The volumes of flywheel-energy storage systems are not much different from those of
electrochemical batteries. If 30 kWh of stored energy is required for a vehicle with a
range of 200 miles at 60 mph, a modular flywheel system would occupy about 0.36 m3

(0.012 m3/kWh), compared to about 0.4 m3 for lead-acid batteries. The weights,
however, are very different: 300 kg for the flywheel system versus 725 kg for the lead-
acid batteries.

The flywheel itself has very high efficiency. For short-time storage the efficiency can be
almost 100%, which decreases progressively for medium- and long-time storage.
Operation in vacuum is required to reduce such losses to acceptable levels, since
flywheels cannot store energy for more than a short time at atmospheric pressure. Also,
special bearing systems (e.g., magnetic bearings) are needed for high efficiency. An
advanced flywheel, operating in high vacuum (3x10-5 torr) and suspended on magnetic
bearings, can maintain a high efficiency for long periods (weeks or months), but such
systems are still in the development stage.

Some disadvantages of flywheels are partly a matter of perception. An example is the
concern about safety, which stems from catastrophic bursts of large rotating machines
such as combustion turbines. For large monolithic flywheels, this concern is real.
However, advanced flywheels constructed of fiber composites do not explode into two
or three chunks that fly apart at high velocity. Flywheels that are designed to operate at
tip speeds of up to 800 m/s (corresponding to just over 50,000 rpm for a 0.3 m (12 in)
diameter rotor) fail by delamination, which is a pulverizing process. Housings able to
withstand atmospheric pressure are adequate containments. Genta has performed more
than 50 burst tests on advanced rotors without breaching the casing. However, failure
modes of composite flywheels rotating at the substantially higher tip speeds
contemplated for the most advanced designs have not yet been adequately defined.
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A major disadvantage derives from the very concept of kinetic energy storage, which
involves at least one fast-moving piece of machinery with all the associated problems of
fatigue, wear, and vibration. A properly designed flywheel system, however, has a
much longer fatigue life than a lead-acid battery does, particularly when deep and fast
discharges are required. Nevertheless, it is true that advanced flywheels are usually
highly deformable, difficult to balance, and the balance can change over the useful life.
Design must account for such dynamic characteristics. It is fortunate that designers can
rely on very extensive studies of similar problems with high-speed turbines. Experience
with turbines suggests that the problems of vibration, balance, and wear can be
overcome for fiber-composite flywheels as well.

0
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4 
DESIGN CONSIDERATIONS

Flywheels

The classical configuration of flywheels for steam engines is a hoop connected by
spokes to a hub. It will be readily appreciated that the stored energy density of this
configuration is too low for modern applications, inasmuch as most of the volume
(between rim and hub) is empty space and therefore useless. Filling up that space, to
make a disk with a central hole, does not solve the problem because centrifugal forces
set up restraining stresses within the disk. These stresses are higher than those in a thin
rim rotating at the same speed, with the highest stress at the inner hole (Figure 4-1).

Figure  4-1
Operating stresses (arbitrary units) in a thick-rim flywheel.
Source: Post and Post2

0



Design Considerations

4-2

For one-piece disks made of homogeneous material, it has been known for a long time
that the concentrated stresses near the center can be alleviated by making a tapered
disk, thickest at the center. High-speed turbine wheels are configured this way. How-
ever, the tapered design is unsuitable for construction with fiber composites, which
have the potential to maximize the benefits of high strength with low density.

Fiber composites are anisotropic materials; maximum strength is obtained when all the
fibers are aligned in the direction of the tensile stress. The bonding material, typically
an epoxy resin, can only transmit relatively weak forces between adjacent fibers.
Strength perpendicular to the fibers is on the order of only a few percent of the strength
parallel to the fiber direction. Radial delamination causes flywheels made from fiber
composites in solid disk or thick ring configuration to fail at rotational speeds far below
those corresponding to the tensile strength of the fibers. Design must take into account
this disparity between longitudinal and transverse strength.

It is possible, in principle, to avoid the delamination problem while taking advantage
of fiber composite properties to obtain high volumetric efficiency. Such a flywheel
would consist of multiple rings assembled concentrically.2 Small gaps between adjacent
rings would be filled with an elastomer to hold the flywheel together and allow for
relative expansion of the rings under circumferential stresses. Individual rings are thin
(approximately 10% of their radius) to minimize internal radial stresses.3 However,
centrifugal forces are lower and less energy is stored in the inner rings (small radii) if
all the rings are made of the same materials. Dimensional stability and efficiency can be
preserved by making the rings progressively more dense or of lower elastic modulus
from the outside to the inside. This could be accomplished with either dense loading
materials, or by fibers with graded elastic moduli, or by a combination of both
approaches.3 A schematic of such a construction is shown in Figure 4-2.

Figure  4-2
Schematic of a flywheel built with concentric rings of fiber composite separated
by thin layers of elastomer.
Source: adapted from Post and Post2
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In the multi-ring rotor design, unstable resonances can arise from transverse
oscillations of the shells with respect to each other. Analysis has shown that instability
can be avoided if the lowest mode of oscillation (determined by the effective spring
constants of the separators) is constrained to lie above the highest operating speed of
the flywheel.3 Likewise, dissipative losses and consequent out-of-phase torques can
occur within the rotor. It is anticipated that these "whirl" instabilities will be eliminated
by compliant and/or dissipative elements in the magnetic-bearing supports.3 Finally,
synchronous rigid-body modes and critical speeds associated with bending modes can
be avoided by designing for a rotor length to diameter ratio of less than one.4

Energy Input and Extraction

Charging and discharging can be accomplished mechanically or electrically, in any
combination. The flywheel can be spun up mechanically, for instance, by direct
coupling with a shaft or through a gearbox and discharged electrically by means of a
generator. This was mostly the case in past designs, in which one end of the flywheel
shaft was connected to the charging system and the other end was coupled to the
output device. Modern high-performance flywheel systems are almost always all-
electrical; a single motor-generator (motor-alternator) spins the flywheel up to full
operating speed and extracts energy by generating electricity. In today's designs, the
motor-generator is integral with the flywheel. Rare-earth permanent magnets mounted
on the innermost shell of the rotor rotate past stationary coils, either to generate
electricity or to energize the flywheel. The entire assembly is "ironless" for low standby
losses (no hysteresis losses) and the motor-generator is electronically commutated.

Flywheels in Vehicles

For flywheels to be applied in vehicular propulsion, two other concerns confront
design: dynamic loads (road shock) and gyroscopic forces. Designs currently being
developed isolate transitory loads from the rotor with shock-absorbing or elastomeric
systems. In addition, it is envisaged that the bearings (preferably of the magnetic type)
will provide the restraint necessary to counteract inputs not damped out by the shock-
and vibration-isolation systems. The gyroscopic effect is diminished with flywheels of
small diameter, since the angular momentum varies as the square of the radius. Post
states that a 1 kWh flywheel has a gyroscopic moment comparable to that of the
flywheel in a typical automobile engine.5 Moreover, current designs embody either
counterrotating rotors that inherently cancel gyroscopic forces or an even number of
flywheel modules that ameliorate much of the gyroscopic effect. Again, it should be
borne in mind that many detailed analytical studies of gyroscopic effects have been
performed for high-speed rotating machinery in aircraft.
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Magnetic Bearings

Magnetic bearings can be of the passive or active variety. A passive magnetic bearing
depends on a system of permanent magnets, whereas active bearings employ
electromagnets under electronic control via feedback circuits.

Figure  4-3
Schematic of five axes magnetic suspension; springs and dashpots represent
stiffness and damping of the magnetic bearings.
Source: Genta1

Since five out of the six rigid-body degrees of freedom of a flywheel rotor must be
restrained by the suspension system (the unrestrained degree of freedom is rotation
about the rotor axis), various kinds of magnetic and conventional bearings can be
combined in many ways. Arrangements range from a simple magnetic thrust bearing
with conventional bearings for the other four degrees of freedom, to five-axis magnetic
systems. In a complete five-axis system, shown schematically in Figure 4-3,  a typical
layout embodies two active radial bearings, Figure 4-4, and two active axial bearings.
Less complicated systems can be devised with the rotor suspended either on two
passive radial bearings and one active axial bearing6 or on radially active and axially
passive bearings. The latter arrangement is illustrated in Figure 5-1.7  A cutaway
schematic of a passive radial bearing is shown in Figure 5-2.8 CAD programs for design
of magnetic bearings are readily available.7

Note that EPRI has undertaken two projects aimed at applying magnetic bearings in
boiler feed pumps and recirculating fans.9
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Figure  4-4
Exploded view of magnetic bearing with active control in two orthogonal radial
directions and passive control of all other degrees of freedom (except flywheel
spin).
Source: Anand, et al.7
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5 
MATERIALS CONSIDERATIONS

Flywheels for engines have traditionally been made of isotropic materials in monolithic
forms. High-strength steels were a common choice: AISI 4340, 18Ni-maraging steels, or
9Ni-4.5Co-1Mo steel. Although their specific strengths are relatively low and their
failure modes are not favorable for flywheels with high energy densities, they can be
readily produced in shapes with high values of the shape factor (see Figure 2-1). Other
conventional materials such as aluminum, magnesium, or titanium alloys are also
characterized by the same deficiencies of low specific strengths and unfavorable failure
modes.

As has already been pointed out, the performance of flywheels depends on high
rotational speed, which is limited by the tensile strength and density of the flywheel
material. In this respect, modern composite materials, i.e., polymers reinforced with
high-strength fibers, are clearly indicated as the preferred materials of construction.
The  advantage  of  fiber composites is apparent in Table 5-1, in which the listed
properties are for purposes of comparison and are not meant to represent the best
achievable material in any of the categories. However, fiber-reinforced polymers are
highly anisotropic, and their low strength perpendicular to the fiber direction does not
permit the use of shapes with high shape factors. Hence, the suggested design of Figure
4-2 that consists of thin (about 10% of radius) concentric rings with densities or moduli
that are graded from the rim to the hub.3
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Figure  5-1
Radially active and axially passive pancake magnetic bearing.
Source: Anand, et al.7

Figure  5-2
Cutaway of combination passive-active magnetic bearing.
Source: O'Connor8
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Owing to the motivation primarily from the aerospace industry, development of fiber-
reinforced composites is proceeding at a rapid pace.11 Epoxy composites made with
"high strain" graphite fibers, for instance, have been fabricated into prototype flywheels
with ultimate hoop strengths of about 3200 MPa.10 Recent introduction of boron-
graphite hybrid composites12 with the properties listed in Table 5-2 is another example;
tension and bend strengths  of  these  hybrids are  claimed to  be higher than  any other
material. The fatigue resistance of fiber-reinforced polymers,  particularly  those  made
with  graphite,  aramid (Kevlar), and boron fibers, is likewise excellent, as shown in
Figure 5-3. Notice that composites  made  with  glass  fibers  have  much  lower  fatigue
resistance than the other composites shown in Figure 5-3. Nevertheless, cyclic tests of
high-energy, prototype flywheels constructed of S-glass sheet molding compound, both
with and without graphite fibers, showed that the rotors suffered no degradation in
performance after 10000 cycles.10

Figure  5-3
S-N curves for various composites in tension-tension cycling.
Source: Chung11

Other ongoing developments in fiber-reinforced composites include compressive
prestressing to improve fatigue resistance, co-polymerizing epoxy with elastomers to
increase transverse strength, and hybridizing with inexpensive glass fibers to reduce
costs. In summary, the outlook for application of fiber-polymer composites in advanced
flywheels is considered to be outstanding. A conceptual schematic embodying some of
the configurational features and materials discussed in the foregoing, is shown in
Figure 5-4. Note that modern designs are quite compact; the main feature of a 3 kWh
module tested at Lawrence Livermore National Laboratory, for example, is a rotor only
25.4 cm in diameter and 25.4 cm high.5
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Table  5-1
Materials for Flywheels

Materials

Ultimate
Tensile

Strength, σu

MPa
Density, ρ

g/cm3
σu/ρ

kJ/kg (Wh/kg)
Monolithics
    7075-T6 Aluminum
    Ti-6Al-4V Titanium
    4340 Steel
    18 Ni Maraging Steel

572
1103
1517
2070

2.76
4.43
7.7
8.0

    208 (57.8)
    249 (69.2)
    197 (54.7)
    259 (71.8)

Composites
    E-glass/epoxy
    S-glass/epoxy
    Kevlar/epoxy
    Graphite/epoxy

1034
1751
1241
1586

2.10
1.99
1.39
1.54

    492 (136.8)
    880 (244.4)
    893 (248.0)
   1030 (286.1)

Other
    Metglass 2627 8.0     328 (91.1)

Table  5-2
Boron-Graphite/Epoxy (Hy-Bor*) Composites

Boron fiber size
Graphite fiber type
Resin system

0.1 mm
IM-7

3501-6

0.1 mm
T-300
SG100

0.076 mm
T-300
SG100

0.1 mm
T-650
SG100

0.076 mm
T-650
SG100

Tensile strength, MPa
Tensile modulus, GPa
Flex strength, MPa
Flex modulus, GPa
Interlaminar shear
   strength, MPa
Fiber volume, %

2206
269

2965
255

116.5
77

1793
234

2413
228

93.8
77

2275
228

2827
221

95.2
73

2000
255

2689
248

94.5
75

2413
255

3103
241

93.1
72

*Textron Specialty Materials, Lowell, MA Source: Adapted from ref. 12
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(a) Counter-rotating rotors, enclosure, and suspension system.

(b) Multi-ring construction, bearings, and motor-generator.

Figure  5-4
Conceptual schematic of a flywheel energy system for vehicular propulsion.
Source: Post and Post2
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6 
COST CONSIDERATIONS

Costs of flywheel-energy storage systems are difficult to obtain, since most of the extant
examples are experimental and therefore were built only in ones and twos. Here, we
rely on an analytical study of flywheel-energy storage for wind turbines4 that appears
to be thorough, sensible, and not unduly optimistic. A modular approach was taken in
which each flywheel module was capable of storing 277 kWh (1 GJ). Table 6-1 lists the
specifications for each flywheel module and Table 6-2 itemizes the capital costs.

Table  6-1
277 kWh (1 GJ) Flywheel Design

       Speed          12500 rpm

       Flywheel radius          0.84 m (33 in)

       Flywheel inside to outside radius ratio          0.7

       Shaft diameter          0.2 m (8 in)

       Mass of composite          2060 kg

       Mass of arbor plates (2)          100 kg

       Tip speed          1120 m/s

       Length          1.12 m (44 in)

       Shaft bore          0.075 m (3 in)

       Hoop stress          1900 MPa (276 ksi)

       Mass of shaft          237 kg

Source: Headifen4
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Table  6-2
Cost Breakdown for 277 kWh (1 GJ) Flywheel

Component Quantity Unit Price Fabrication
Price

Total Cost

 Composite         2270 kg        $28/kg          $6/kg $77,040
 Arbor plates          110 kg        $18/kg       $1,800 each 5,580
 Shaft          260 kg       $2.5/kg         $1,800 2,450
 Motor-gen rotor          190 kg        $22/kg         $  900 5,010
 Permanent magnets           64 kg       $220/kg         $2,000 16,100
 Motor-gen stator           75 kg       $2.5/kg         $3,600 3,800
 Housing         2750 kg       $2.5/kg 10,500
 Magnetic bearings            2       $25,000 50,000
 Power electronics          300 kW       $100/kW 30,000
 Other items, bolts, etc.       $10,000 10,000
 Installation       $10,000 10,000

         Total $220,500

 Source: Headifen4

For comparison purposes, the corresponding cost of an equivalent chemical battery
bank was estimated on the basis of existing systems. It was also estimated that the
chemical batteries would have to be replaced every four years (1500 cycles) and
maintained at an annual cost of $235/kWh capacity. Comparable annual maintenance
costs for the flywheel system were assumed to be $10,000/flywheel. Table 6-3
summarizes the results.

Table  6-3
Cost Comparison of Flywheel and Chemical Energy Storage

Category
5 Flywheel
Modules

Lead-Acid
Batteries

Ratio of
Flywheel: Chemical

Batteries
  Capital costs $1.10 million $1.55 million 0.71
  20-year costs $2.60 million $4.37 million 0.59

Source: Headifen4
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7 
A SNAPSHOT OF CURRENT STATUS

In principle, flywheel systems have load-leveling capabilities that are matched by few
near-term technologies. These capabilities are especially desirable for ground vehicles
(automobiles, trucks, buses, and locomotives), which are benefitted by rapid
acceleration, speed maintenance on grades, and regenerative braking. In the electric
power industry, large flywheels can be envisaged for load management during peak
hours, for storing electricity from base-loaded generators during low-demand periods,
and for electricity storage from alternative power sources (e.g., wind or solar power).

In recognition of these qualities, government agencies, national laboratories,
automobile companies, utilities, and manufacturers are evincing serious interest in
flywheel energy storage by making resources available for R&D (see Appendix 1). Just
how much is being spent on flywheel R&D is not known because a significant amount
is in the private sector and considered proprietary. On the basis of published
information about CRADAs and limited descriptions of industrial activities, it is
estimated that the expenditure is $15-25 million per year.

As can be seen from the bibliography (Appendix B), the elements of flywheel design
and materials have been known for more than twenty years. In spite of that, flywheel
energy storage is still in the R&D stage; it is not yet ready for the mass market. What
has changed in the last few years that would convince the various funding
organizations that the technical and economic impediments to commercialization can
be overcome?

The changes listed below have been evolutionary rather than revolutionary.

• Fiber-reinforced composites are more capable and less costly. For example, a joint
venture between Dow Chemical and United Technologies Corp. has developed a
proprietary resin-transfer molding process for flywheel rotors. In addition to
filament-wound hoop fibers, reinforcement fibers are aligned in the radial direction
by a "polar weaving" method. This permits a significant fraction of the graphite
filaments in the hoop direction to be replaced by high performance but much less
costly E-glass fibers.
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• Rare earth-transition metal magnets (e.g., neodymium-iron-boron), which provide
much higher flux intensities than were available twenty years ago, enhance the
performance of magnetic bearings and motor-generator units.

• Flywheel motor-generators deliver electricity of variable frequency and voltage,
which must be conditioned to match the load or charging system. Advanced
controls will also be needed for active magnetic bearings and the motor-generator.
Solid-state power electronics and controls have been getting steadily smaller and
cheaper, allowing them to fulfill the required functions economically.

• Twenty years ago magnetic bearings were laboratory curiosities; now they are
articles of commerce, with a number of very competitive suppliers.

• Flywheels are now regularly employed for attitude control in orbiting satellites and
in space probes. A great deal of experience was gained from the space program over
the last twenty years. Experience with high-speed combustion turbines for aircraft
has been equally valuable in matters of dynamic balance and in designs to cope
with gyroscopic moments.

Perhaps the most important issue to emerge in the last year or two is a renewed
concern about safety. Most of the past development work had concentrated on
improving the bearing, rotor, and motor-generator technologies. Relatively little effort
was devoted to containment, owing largely to the assumption that failure of filament-
wound, composite rotors would occur by a pulverizing process and that the debris
would be easily contained. At tip speeds of 800 m/s, a common design feature,
purposely weakened flywheels do, in fact, come apart "like cotton candy." However, at
tip speeds of 1400 to 1600 m/s, the failures can be rather more dramatic bursts.14

As a consequence of this new information, in 1995 the Defense Advanced Research
Projects Agency (DARPA) established the Flywheel Safety Project, a consortium
consisting of the Southern Coalition for Advanced Transportation (administration), Test
Devices Inc. (spin-test facility), and flywheel developers Center for Electromechanics
(University of Texas), Trinity Flywheels Inc., and U.S. Flywheel Systems. The project
will develop new test techniques, instrumentation, dedicated test apparatus, and
advanced safety approaches. Flywheels will be individually designed and fabricated
by the project members, and then burst in candidate containment structures. Results
will be used for modeling, simulation, and theoretical development. A final report will
document the likely failure scenarios, and make design and procedural
recommendations.14
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8 
QUESTIONS AND UNRESOLVED ISSUES

Proponents of inertial energy storage imply that all the technologies for a high-
performance, flywheel-energy system are now available; the challenge is to integrate
them effectively.5 Some of the constituents of that challenge are itemized below.

Protection Against Wheel Failure. A lightweight, cost-effective containment system is the
No. 1 unresolved issue that is currently inhibiting acceptance of the most advanced
flywheel designs.

Magnetic Bearings. Has an advanced flywheel device of 1 kWh capability or larger been
built with magnetic bearings and tested? If so, what was the cost of the magnetic
bearings? This is probably the No. 2 unresolved issue confronting the widespread
application of flywheel energy systems.

Mechanical Stability. Internal vibrations (mechanical resonances) are intrinsic to rotating
machines. Post states that the multiring construction can be configured so that all
critical speeds are well above the highest operating speed.2 Is this prescription
consistent with the statement that supercritical operation (above the first critical speed
of the rotor) will avoid the necessity for balancing,3 which would be difficult (if not
impossible) for a fiber-composite rotor? Does extraction of maximum power, a cited
advantage of flywheels, cause speed reductions into the critical ranges?

Gyroscopic Moments. Clearly, there are design approaches for minimizing or eliminating
gyroscopic effects. Still, prudence dictates that such designs be evaluated by way of
analytical models to ensure that violent maneuvers (such as can occur in road
accidents) do not produce dangerously high angular velocities.

Vacuum Operation. How will long-term vacuum be ensured? Will a sealed chamber
containing polymeric components remain at pressures less than 10-4 Torr for long
enough that vacuum maintenance does not inhibit vehicular application?

Electrical Components. The motor-generator, power electronics, and controls for an
inertial energy storage system must be of a size, efficiency, and cost consistent with an
advanced flywheel and with the constraints imposed by commercial application. This
combination is still to be demonstrated.
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ORGANIZATION
KEY

PERSON(S) CAPABILITY/SPECIALTY
PARTNER(S)/

ASSOCIATE(S) LOCATION
Advanced Controls Technology,
Inc. (AVCON)

Crawford Meeks, Pres
& CEO

Homopolar bearings; hybrid-
permanent-magnet/ electromagnet
bearings

Allied-Signal is part
owner

Northridge, cA

Allied-Signal, Inc. Magnetic bearings; super-conducting
passive bearings

Part owner of
AVCON

Morristown,
CA

American Flywheel Systems Edward Z. Zorzi, VP
Engng; Edward W.
Furia, Chrm & CEO

Dual rotor, counter-rotating flywheel
systems; magnetic bearings

ARPA; Sacramento
MUD; joint venture
with Honeywell
Satellite Systems

Medina, WA

Argonne National Laboratory Superconducting magnetic bearings United Technologies
Research Center

Argonne, IL

Aura Systems, Inc. Producer of magnetic bearings Los Angeles,
CA

Dow-United Technologies
Composite Products, Inc.

David Maass Graded composites with radial
strength, made by resin-transfer
molding

CRADA with Dept.
of Commerce (NIST)
to develop composite
rotor

Wallingford,
CT

Energy Research Unit,
Rutherford-Appleton Laboratory

Dr. Simon Watson,
contact;
Dr. J. Halliday, head
of ERU

Flywheel energy storage systems for
wind energy

UK

Flywheel Energy Systems, Inc. Ralph Flanagan, Pres Biannular flywheel design with
aluminum flex-ring hub and
concentric composite rings

Thortek, Inc.; MTI Ottawa, Ontario
Canada

General Motors Corp. Larry Oswald,
GM/DOE Hybrid
Vehicle Propulsion
Program; Don Bender
(LLNL)

Entire vehicular propulsion system:
flywheel, bearings, motor-generator

CRADA with DOE
(via NREL) LLNL

Detroit, MI
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ORGANIZATION
KEY

PERSON(S) CAPABILITY/SPECIALTY
PARTNER(S)/

ASSOCIATE(S) LOCATION
Honeywell Satellite Systems Attitude-control gyroscopes and

control electronics for U.S. space
program

Joint venture with
American Flywheel
Systems

Phoenix, AZ

IfR with Institute of Electrical
Machinery (ETH), Chair of Power
Electronics (ETH), and Swiss
Federal Railways

Peter von Burg
Markus Ahrens

Joint project to develop kinetic
energy storage system with 1 kWh
energy and 250 kW power

Zurich,
Switzerland

Lawrence Livermore National
Laboratory

Richard F. Post,
Senior Scientist

Experimental flywheel energy
storage systems; nested thin-wall
composite rings of fiber-epoxy;
permanent-magnet motor generator

CRADAs with
General Motors,
Westinghouse, and
Trinity Flywheel
Batteries

Livermore, CA

Magnetic Bearings, Inc. Frank Pinckney,
Director Engng.

Producer of magnetic bearings for
large machines

Roanoke, VA

Mechanical Technology, Inc. Paul Lewis, Mgr.
Core Technol.; Jos.
Reinhart, Mgr. Corp.
Dev.

High-speed rotating machinery;
magnetic bearings

Flywheel Energy
Systems; Waukesha
Bearings Corp.

Latham, NY

Oak Ridge National Laboratory John Coyner, Progr.
Mgr. Flywheel &
Composite Technol.

Composite rotors; high-specific-
power, axial-gap electric motors and
generators

Oak Ridge, TN

SatCon Technology Corp. David Eisenhaure Innovative drive-train components
for vehicles

Chrysler Corp. Cambridge,
MA

Thortek, Inc. Douglas Thorpe, Pres Integrating existing kinetic energy
storage components into
demonstration

Flywheel Energy
Systems

Knoxville, TN

Trinity Flywheel Batteries, Inc. CRADA with LLNL San Francisco,
CA

Unique Mobility David Patch Flywheel energy system designs,
especially motor-generators

Previously associated
with Flywheel Energy
Systems

Golden, CO
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ORGANIZATION
KEY

PERSON(S) CAPABILITY/SPECIALTY
PARTNER(S)/

ASSOCIATE(S) LOCATION
United Technologies Research
Center

Superconducting passive magnetic
bearings

ANL East Hartford,
CT

University of Maryland James A. Kirk, Prof.
Mech. Engng.

Design and testing of flywheel
components and systems

Baltimore Gas &
Electric

College Park,
MD

University of Texas at Austin R. N. Headifen Analysis of flywheel systems Southwestern Public
Service

Austin, TX

U.S. Flywheel Systems, Inc. Bruce Swartout,
Chairman

High-speed composite rotors and
magnetic bearings; 4 kWh prototype

Calstart Laguna Hills,
CA

VistaTech Engineering, Inc. R. N. Headifen Design studies for flywheel energy
storage in wind turbines

Southwestern Public
Service

Westinghouse Electric Corp. Power-generating machinery;
motors; switchgear

CRADA with LLNL Pittsburgh, PA
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