
A Primer on Embedded Systems
with a Focus on Year 2000 (Y2K)
Issues
Understanding the Millennium Bug

TR-111189

Final Report, August 1998

EPRI Project Manager
J. Weiss

EPRI • 3412 Hillview Avenue, Palo Alto, California 94304 • PO Box 10412, Palo Alto, California 94303 • USA
800.313.3774 • 650.855.2121 • askepri@epri.com • www.epri.com

0

DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES

THIS REPORT WAS PREPARED BY THE ORGANIZATION(S) NAMED BELOW AS AN ACCOUNT OF WORK
SPONSORED OR COSPONSORED BY THE ELECTRIC POWER RESEARCH INSTITUTE, INC. (EPRI).
NEITHER EPRI, ANY MEMBER OF EPRI, ANY COSPONSOR, THE ORGANIZATION(S) BELOW, NOR ANY
PERSON ACTING ON BEHALF OF ANY OF THEM:

(A) MAKES ANY WARRANTY OR REPRESENTATION WHATSOEVER, EXPRESS OR IMPLIED, (I) WITH
RESPECT TO THE USE OF ANY INFORMATION, APPARATUS, METHOD, PROCESS, OR SIMILAR ITEM
DISCLOSED IN THIS REPORT, INCLUDING MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE, OR (II) THAT SUCH USE DOES NOT INFRINGE ON OR INTERFERE WITH PRIVATELY OWNED
RIGHTS, INCLUDING ANY PARTY'S INTELLECTUAL PROPERTY, OR (III) THAT THIS REPORT IS SUITABLE
TO ANY PARTICULAR USER'S CIRCUMSTANCE; OR

(B) ASSUMES RESPONSIBILITY FOR ANY DAMAGES OR OTHER LIABILITY WHATSOEVER (INCLUDING
ANY CONSEQUENTIAL DAMAGES, EVEN IF EPRI OR ANY EPRI REPRESENTATIVE HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES) RESULTING FROM YOUR SELECTION OR USE OF THIS
REPORT OR ANY INFORMATION, APPARATUS, METHOD, PROCESS, OR SIMILAR ITEM DISCLOSED IN
THIS REPORT.

ORGANIZATION(S) THAT PREPARED THIS REPORT

Applied Microsystems Corporation

ORDERING INFORMATION

Requests for copies of this report should be directed to the EPRI Distribution Center, 207 Coggins Drive, P.O. Box
23205, Pleasant Hill, CA 94523, (510) 934-4212.

Electric Power Research Institute and EPRI are registered service marks of the Electric Power Research Institute, Inc.
EPRI. POWERING PROGRESS is a service mark of the Electric Power Research Institute, Inc.

Copyright © 1998 Electric Power Research Institute, Inc. All rights reserved.

0

iii

CITATIONS

This report was prepared by

Applied Microsystems Corporation
5020 148th Ave N.E.
Redmond, WA 98052

Principal Investigator or Author
Arnold S. Berger, Ph.D.

This report describes research sponsored by EPRI and Applied Microsystems
Corporation.

The report is a corporate document that should be cited in the literature in the
following manner:

A Primer on Embedded Systems with a Focus on Year 2000 (Y2K) Issues, EPRI, Palo Alto,
CA, 1998. TR-111189

0

0

v

REPORT SUMMARY

This report serves as a primer on embedded systems with a focus on Year 2000 (Y2K)
issues. Because embedded systems can be impacted by Y2K issues, a better
understanding of embedded systems can help our industry remediate these issues.

Background
The Y2K issue potentially impacts all types of equipment with embedded systems. At
times, these systems have been designed by our equipment suppliers. More often,
however, they are designed by embedded system companies that specialize in micro-
processor design and are then supplied as subsystems to system suppliers.
Consequently, often the expertise in how these devices work is outside of industry
experience. Even though embedded systems are found in many varied applications,
they share many common characteristics. With Y2K issues potentially impacting the
microprocessors in embedded systems, it is important to have a better understanding of
how these devices work and how date-related issues can impact them. Understanding
how dates can be transmitted between systems with real time clocks, and even systems
without real time clocks, is essential for testing these systems for Y2K susceptibility.

Objectives
• To develop a better understanding of how embedded systems use date-related

information

• To better understand how Y2K issues can impact embedded systems and to develop
testing techniques

Approach
EPRI contracted with a vendor experienced in the design of microprocessor-based
systems in order to develop an embedded systems primer using current information on
typical utility industry applications.

Results
This primer provides an excellent source of information for technicians, engineers,
managers, and other personnel assigned to Y2K programs. It addresses embedded
system hardware and software design, as well as application programming interfaces
(APIs). It also includes a discussion of how dates are transmitted, an example of how

0

vi

dates and data are transmitted in typical embedded systems, analytical tools, and Y2K
analysis strategies.

EPRI Perspective
Y2K issues can affect all microprocessor-based date-related applications. This primer
can help provide a basic understanding of embedded systems and the potential impacts
of Y2K issues. In a parallel effort, EPRI and the contractor are developing a tool that can
be used to determine if embedded systems are exchanging date information across
serial communication links.

TR-111189

Interest Categories
Applies to all categories that use microprocessors

Keywords
Year 2000
Embedded systems
Microprocessors

0

vii

ABSTRACT

Most of the Year 2000 (Y2K) discussion has centered around its impact on mainframe
and other back-office software. Very little discussion has been devoted to its impact on
embedded systems. While mainframe computers are the database and financial engines
of our society, it is the embedded systems that control the operation of our
manufacturing base. Embedded systems, defined as systems operating in a real time
environment using dedicated microprocessors, traditionally are not under the aegis of
the IT organization. Consequently, addressing embedded systems for Y2K is just
recently coming to the forefront.

The Y2K issue potentially impacts all types of equipment with embedded systems. In
general, these systems were designed by outside vendors or third party system
integrators. Consequently, the expertise in how these devices work is many times
outside of our experience. Even though embedded systems are found in many varied
applications, they share many common characteristics.

With Y2K (date-related issues) potentially impacting the embedded system
microprocessor, it is important that we have a better understanding of how these
devices work and how date-related issues can impact them. Understanding how dates
can be transmitted between systems with real time clocks, and even systems without
real time clocks, is essential for testing these systems for Y2K susceptibility.

This primer provides an excellent source of information for technicians, engineers,
managers, and other personnel assigned to Y2K programs. The primer consists of a
discussion of embedded system hardware and software design, application
programming interfaces (APIs), a discussion of how dates are transmitted, an example
of how dates and data are transmitted using a flow transmitter as a test case, analytical
tools, and Y2K analysis strategies.

0

0

ix

CONTENTS

1 INTRODUCTION.. 1-1

2 EMBEDDED SYSTEMS... 2-1

3 DESIGNING EMBEDDED SOFTWARE .. 3-1

4 DESIGING EMBEDDED HARDWARE .. 4-1

5 ANALYTICAL TOOLS... 5-1

6 Y2K ANALYSIS STRATEGIES ... 6-1

7 SUMMARY AND CONCLUSIONS... 7-1

0

0

xi

LIST OF FIGURES

Figure 1-1 Common components of an embedded system .. 1-2

Figure 2-1 An embedded system based upon a microprocessor (left side), and a
highly-integrated microcontroller (right side). Note that all peripheral devices and
program memory are contained within the microcontroller circuitry and not available
to outside visibility.. 2-2

Figure 2-2 Block Diagram of a "typical" embedded system. The dotted line defines the
minimum number of required elements for the system to operate by itself 2-4

Figure 2-3 An embedded system in a physical environment .. 2-7

Figure 3-1 Abstraction layers in the software of an embedded system................................... 3-2

Figure 4-1 Implementation of the logical AND function in hardware and software.................. 4-3

Figure 6-1 Levels of observability into embedded systems .. 6-3

Figure 6-2 Analyzing a portion of the embedded system for Y2K detection 6-4

Figure 6-3 A model of a real embedded system... 6-6

0

0

1-1

1
INTRODUCTION

Unlike most projects, the completion date of the millennium, December 31, 1999, is not
going to slip. It is common knowledge that there may be a problem surrounding our
computer systems’ ability to deal with a date that apparently rolls over from 99 to 00.
While the financial community is well-aware of the impact of people losing money due
to 30 year old COBOL-based computer programs miscalculating the date, for many
people, the impacts of the date problem on embedded systems are less easily quantified
and understood.

The EPRI-sponsored, Year 2000 (Y2K) Embedded Systems Program with a significant
level of participation is an indication that the industry is concerned enough about it to
want to learn more. My goal is to try to help you understand the nature of the problem
and how it manifests itself within your embedded systems at a more technical level,
rather than present a superficial understanding of the source of the Y2K problem.
Hopefully, once you have acquired a basic understanding of the nature of these
systems, you will be better able to make timely and cost effective decisions about how
to deal with potential problems within your particular environment.

At this point you may be wondering how, given the variety of applications that
embedded systems are used for, can I cover all of this material in any reasonable depth?
Well, I can’t tell you about every embedded system that has ever been designed, but I
can share with you common characteristics of most of systems that you are likely to
have in your own facilities. Hopefully, this knowledge will help you sort out your
embedded systems and plan your Y2K testing methods.

Figure 1-1 is an aggregate embedded system showing as many of the variant
characteristics as I could envision. While there are a lot of variants, the number is still
finite. Understanding how these common threads interact within the system is enough
to understand the general behavior of most embedded systems.

0

Introduction

1-2

“Typical” Embedded System

Microprocessor
• 4, 8, 16, 32, 4 bit bus
• CISC, RISC, DSP
• Integrated peripherals
• Debug/Test Port
• Caches
• Pipeline
• Socketed
• Multiprocessing Systems

DEBUG Port
Non-volatile memor y
• EPROM, FLASH, DISK
• Socketed
• Hybrid

Volatile Memor y
• DRAM, SRAM
• Hybrid

Custom Devices
• ASIC’s
• FPGA’s
• PAL

Standard Devices
• I/O Ports
• Peripheral Controllers

Communication Devices
• Ethernet
• RS-232
• SCSI
• Centronics
• Proprietary

Microprocessor Bus
• Custom
• PCI
• VME
• PC-102

System Clocks
• RTC circuitry
• System clocks
• Integrated in uC
• Imported/Exported

Peripheral Bus

Software
• Application Code
• Driver Code / BIOS
• Real Time Operating System
• User Interface
• Communications Protocol Stacks
• C, C++, Assembly Language, ADA
• Legacy Code

T
o

O
ut

si
de

 W
or

ld

Figure 1-1
Common components of an embedded system

0

2-1

2
EMBEDDED SYSTEMS

What is an embedded system? Simply, it is a device, or combinations of devices1, that
contain dedicated computers as controllers and calculating elements. A dedicated
computer is a computer that is programmed to do a single task. The task may be very
complex, like controlling an aspect of the flight avionics for a Boeing 777 wide-body
aircraft, requiring millions of lines of computer instructions and high-performance
microprocessors.

The task might be very simple, perhaps running a lawn sprinkler controller or a
dimmer switch on a light. In all cases, the defining factor is that it is not a general-
purpose, programmable device, like the personal computer on your desk. That is not to
say that a PC can’t be an embedded system controller. In fact, it can and often is used in
this manner. For example, many numerical control machine tools use whole dedicated
computers as embedded control elements. The key is that it does a single controlling
task, rather than run Excel, Word, etc.

Most embedded systems are controlled by one or more microprocessors. These
integrated circuits have been around since the mid 1970’s and have been doubling in
complexity every 18 months since that time2. The Pentium-class microprocessor that we
are all familiar with from our desktop PC is the exception rather than the rule in
embedded systems. Most embedded systems are extremely cost-sensitive, so
microprocessors in the $1.00 to $25.00 range dominate embedded applications.

In addition, manufacturers tend to drive down the costs of embedded systems by going
to devices that have higher levels of integration than the microprocessor. These devices are
called microcontrollers, in recognition of the fact that they dominate the embedded
controller application space. In fact, over 90% of the total embedded marketplace is
dominated by one device and its derivatives, the 8-bit 8051 microcontroller. Figure 2-1
illustrates the differences between a microprocessor and a microcontroller. Since the
microprocessor (left side) interfaces with the peripheral devices across external circuits
paths (the copper traces on a printed circuit board), it is generally straightforward to

1 Embedded systems also tend to be hierarchical, with larger systems built upon smaller ones.
2 This fact, known as Moore’s Law (after Gordon Moore, a founder of Intel) has yet to breakdown.

0

Embedded Systems

2-2

observe data moving through an embedded system that uses a discrete microprocessor
and discrete peripheral devices.

Microprocessor

I/O

I/O

Real-time
Clock

Program
Memory

I/O

Data
Storage

To outside world

A Microprocessor-Based Embedded System A Microcontroller-Based Embedded System

Microprocessor
Core

Program
Memory

Data
Storage

I/O

I/O

Real-time
Clock

I/O

To outside world

Figure 2-1
An embedded system based upon a microprocessor (left side), and a highly-
integrated microcontroller (right side). Note that all peripheral devices and
program memory are contained within the microcontroller circuitry and not
available to outside visibility

In contrast, the microcontroller buries its Input/Output (I/O) devices on the single
silicon die, within its package. This means that observing the system behavior is much
more difficult, if not impossible. Specialized tools are often required and even these
tools may only provide incomplete data at best.

Finally, in my opinion, the explosion of growth of embedded systems has been due to
one property of the microcomputer: the ability to make a decision based upon the state
of external events, thus altering its control flow. This is very difficult to do in most
electromechanical systems, but pretty simple to do if you use a computer as a decision
element. Look at your car if you want a good example of that fact. Exhaust emissions
are down to 10 percent of what they were 20 years ago, performance is up, and the
carburetor has followed the buggy whip into obscurity. The engine management
microcontrollers are the decision making elements in your car’s fuel and ignition
systems.

0

Embedded Systems

2-3

Let’s look more deeply into the inner world of the embedded system and try to
understand what is going on and why. Figure 2-2 is a block diagram of a “typical”
embedded system. The microprocessor is the heart of the system. The rest of the devices
exist to provide support and data to the microprocessor. As I mentioned earlier, the
microprocessor may be a microcontroller, with some or all of the peripheral devices
incorporated on-chip with the central processing unit (CPU).

The next functional block of interest is the clock generation and distribution circuit. This
is NOT the same as the real-time clock that is causing all the Y2K aggravation.
Microprocessors depend upon precisely spaced timing pulses in order to synchronize
all of their internal and external operations. The source of these pulses is (confusingly)
called the “clock”. For those of you constantly upgrading your PC, this is the clock
frequency they refer to. Since every operational cycle of the processor depends upon a
set number of clock pulses, the faster the clock pulses arrive, the faster the processor can
execute its instructions. For example, a fairly typical microprocessor may run at a
20 MHz input clock frequency. This clock is in the form of a square wave with exactly
50 percent duty cycle, oscillating between zero volts (low state) and five volts (high
state). Suppose that an average instruction cycle takes four clock cycles to complete. The
reciprocal of 20 MHz is 50 nanoseconds3 (nsec). Therefore, the instruction takes
4 x (50x10-9 sec), or 200 nsec, or about five million instructions per second.

Other microprocessor attributes of interest are the width (number of bits) in the address
bus and the data bus.4

3 50 nsec = 50 x 10-9 seconds, or 50 billionths of a second.
4 The term Bus is used to define a set of grouped signals that are like a spinal cord for the system. The
various sub-systems connect to the bus, much like driveways onto a roadway, and allow devices to easily
communicate to the microprocessor and to each other.

0

Embedded Systems

2-4

Microprocessor

Address Bus

Data Bus

Status Bus

Glue Logic and
Address Decode

Clock Generation
and Distribution

Real Time Clock

Random Access
Memory - RAM

Read Only
Memory - ROM

(FLASH)

Minimally Requiremented for an Embedded System

I/O Interface
(D/A, A/D, Digital)

Communications

Other
Peripheral
Devices

To Outside World

To outside world
To other devices
To host Computer
To User I/F

Watchdog Timer

NMI

Figure 2-2
Block Diagram of a "typical" embedded system. The dotted line defines the
minimum number of required elements for the system to operate by itself

The width of the address bus, (see Figure 2-2) determines the amount of memory that
the processor is capable of addressing. Processors like the 386, 486 and Pentium
processors have 32 address bits. This corresponds to 232 distinct physical addresses in
the processor’s address space, roughly 4.3 billion addresses. Now the typical embedded
system has less than ten million distinct address cells (bytes5), so most of the address
space is taken up by thin air. There are reasons for this, but it is not necessary to review
them in this discussion.

The width of the data bus is similarly defined. This bus contains the actual contents of
the memory cells. So, if the processor needs to get information stored in memory cell
number 1094 (called a read operation), the data bus would return the data value stored
in that cell, 12456, for example.

If the processor wants to store data into a memory cell (called a write operation), then it
sends the data, 12456, to memory cell number 1094. Note that the address bus is one-
way only; the address comes out of the processor and is distributed throughout the

5 A byte represents a group of 8 single address lines, or bits . A single bit is the atomic unit of a digital
system. A group of 4 bits taken together is a nibble . 16 bits (two bytes) is a word . 32-bits is a long word .
For the sake of confusion, 64-bits is also a long word.

0

Embedded Systems

2-5

system. The data bus is bi-directional. Data can flow from the processor or to the
processor on any operational cycle.

The width of the data bus determines how big a number the processor can consume in
one cycle. The most common embedded microprocessors in use today have 8-bit wide
data busses. This means that they can handle numbers from 0 to 255 (256 total because
zero counts as a number), or 28. If the system is dealing with negative numbers then the
range becomes -128 to +127.

Similarly, a 16-bit data bus can handle numbers in one bus cycle from 0 to 65,535 or
-32,768 to +32,767. Notice that “one bus cycle” is in italics. Even the lowly 8-bit
processor can perform calculations with large numbers, just like the larger bit-width
processors. However, it will take the 8-bit processor longer because it must perform
multiple bus cycles to accomplish equivalent tasks. A good rule of thumb is that
doubling the data bus width quadruples the processing speed, while doubling the clock
doubles the system speed.

The status bus is the housekeeping bus. It tells the rest of the system what the processor
is doing, and is going to do (read, write, reset, etc.), and it tells the processor what the
rest of the system is up to (e.g., an interrupt6 event). The clock circuit sends clock signals
to the rest of the system to keep it synchronized to the processor’s internal operation.

The glue logic and address decode block does two jobs. It contains most of the assorted
housekeeping hardware that “glues” the system together (hence, the name) and also
decides which memory or peripheral device can become active at any point in time.
Doing this reduces the number of individual address lines each device must monitor.
Without address decoding, every memory device would need to look at all 32-bits and
decide when it should respond or remain inactive.

The watchdog timer plays a very important role in critical digital systems. Its job is to
monitor the health of the system and force it to shut down or return to a known
condition if a fault is detected. The fault might be an imminent power shutdown or a
system glitch7 that forces the processor to deviate from the expected program and start
trying to execute non-existent instructions. By whatever method the watchdog timer
uses to monitor the system, its function is to force the system back under control in case
of a system fault.

6 The interrupt is a way that a peripheral device can notify the processor that it needs to be serviced, e.g.
an A/D converter has data ready to be read, or a communications circuit has data ready to read. Interrupts
can be ignored (masked) or must be taken (non-maskable or RESET). An example of a non-maskable
interrupt is a signal that the system is losing power and needs to shut down.
7 Walking across a nylon carpet with leather shoes in Phoenix, AZ and then touching a PC board is a good
way to cause a serious system glitch.

0

Embedded Systems

2-6

Read-only memory, or ROM, is the program storage memory. ROM memory retains its
contents even when power is removed from the system. Since the processor can only
read from ROM, and not write to it, there is no way for the instruction code to be
modified. The processor will always execute the same set of instructions upon power or
reset. FLASH memory is a newer form of ROM. Earlier ROM’s were either
programmed permanently at the factory (mask programmed ROMs) or could be bulk
erased by exposing the silicon die to ultraviolet light. The ROM can be reprogrammed
using special programming devices, but is not reprogrammable in-circuit.

FLASH memory retains the ROM characteristics of the older memory devices but can
be reprogrammed in-circuit. Thus, devices using FLASH memory can be field
upgradable, or repaired in the field. Most of the newer BIOS8 ROM’s in modern PC’s
use FLASH memory for BIOS storage and have utility programs on floppy disk that
you can use to upgrade the BIOS ROMs. The caveat is that if you don’t reprogram the
ROM’s properly, and lose the BIOS, then the only recourse is to send it back to the
manufacturer. However, devices which are identified as Y2K sensitive AND use FLASH
memories are good candidates for field upgrade to remove a Y2K defect.

Random access memory or (RAM) memory is volatile memory. It will retain its contents
as long as it has power applied to it. If power is removed, even for an instant, there is no
guarantee that the contents of the RAM are still intact. Thus, ROM memory is generally
positioned so that when the processor first comes alive, either by coming out of RESET,
or after power-on, it will begin to executed its instructions from ROM. Typically, it will
move initial values for variables into RAM and set up its operating environment before
it begins to function as a device. Sometimes you will see power on self-tests (POSTs)
being executed when power is first applied to the device.

Since RAM is faster memory then ROM, embedded systems will often copy the contents
of the ROM into RAM and then execute code out of RAM. In this manner, a single 8-bit
wide ROM can be used in a system with a 32-bit wide microprocessor.

The microprocessor, clock generation, address decode, glue logic, RAM and ROM are
the minimum components necessary to have an embedded system (plus power). This is
a rather uninteresting embedded system because, from a user’s point of view, it can’t do
anything useful. To be useful, we need to allow our embedded system to interact with
the outside world. The outside world may be a user, through a user interface (keyboard
and display, or front panel) as well as an array of input and output devices to connect
the embedded system to its environment. Let’s consider an analog to digital converter,
A/D, as our prototypical circuit. Figure 2-3 is a block diagram of such a system.

8 BIOS = Basic Input/Output System.

0

Embedded Systems

2-7

In this example, the flow sensor is an electromechanical transducer that converts a
mechanical force (fluid motion) into an electrical signal by changing the resistance of its
sensing element. The signal conditioner/transmitter then converts this resistance value
into a current that is appropriate for sending over a pair of wires to a receiver. The
resistance change of the sensor is the electrical analog of the fluid flow rate and the
current sent between the transmitter and receiver is the electrical analog of the
resistance of the flow transducer. The receiver converts the current back to a voltage
level that is the appropriate input to the A/D converter.

Section of Pi pe

Flow SensorSignal
Conditioner/
Transmitter

1

Step 1: 0 gpm flow = 100 ohms
 100 gpm = 10,000 ohms
Step 2: 100 ohms = 4ma
 10,000 ohms = 20ma
Step 3: 4 ma = 0 VDC
 20 ma = 5 VDC
Step 4: 0 VDC = 00000000
 2.5 VDC = 10000000
 5 VDC = 11111111

Step 5:
 Get A/D_data
 if FLOW_RATE <= 00001111

then OUTPUT_PORT = 1
 else SEND_FLOW_RATE
Step 6: 0 = 0 VDC
 1 = 5 VDC
Step 7: 0 = 0 VAC
 1 = Warble tone, 50 VAC
Step 8: FLOW_RATE = 78 GPM (ASCII RS232)

2

Signal
Conditioner/

Receiver

Embedded S ystem

A/D
Converter

3

Micro processor

4

5

Output Port

6

Power
Driver

7

RS-232
to Central

Data
Processor

8

RTC

Figure 2-3
An embedded system in a physical environment

In this example, the A/D is an 8-bit device. It digitizes the voltage so that a voltage of
0 volts corresponds to a digital value of zero (0000000) and 5 VDC full-scale
corresponds to a digital value of 255 (11111111). It is easy to calculate that the resolution
of this converter is 5 volts, divided by 256, or about 20 millivolts per step.

Once the A/D converter has digitized the voltage, it signals the microprocessor by
generating an interrupt request, or an IRQ in computer jargon. The computer reads the
A/D value with a special part of the program called the interrupt service routine. The
interrupt service routine for the A/D may also be called the A/D driver code. This

0

Embedded Systems

2-8

terminology is important because it has a lot to do with how embedded software is
written, organized, and how Y2K problems may be masked by software.

The embedded processor now must interpret the data value according to the conditions
establish in its program. This is called the application code, to distinguish it from the
driver code. If the fluid flow rate is within normal bounds, the embedded processor will
simply convert the value to its ASCII9 code equivalent and then write the value to the
RS232 communications circuit, or serial data port10. In Figure 2-3, this is a flow rate of 78
GPM (78 in binary is 0100111011).

In order to send this as an ASCII number, the 8-bit binary number needs to be
converted to 2 ASCII digits, or 0100101 (37) followed by 0100110 (38). This is the serial
data string that the embedded processor would transmit to the remote location. If you
attached a serial data analyzer of some kind to the RS232 port, you would see these two
distinct codes go by.

However, the embedded system would probably be programmed to transmit the data
as a complete information packet, such as the Distributed Network Protocol standard,
that includes date and time information, header information to identify itself to the
remote system, and some sort of preamble to the flow value so that the complete
message might be a string of ASCII characters that looks something like:

UNIT_7A3$$12,AUG,98$$14:56:29$$CH1=78CR

Here:

· UNIT_7A3 is the unit’s self-identifier that has been pre-programmed into it

· $$ is a delimiter that is used to separate the fields from each other

· 12,AUG,98 is a Y2K sensitive date from the real-time clock chip

· 14:56:29 is the time, also from the chip, note that “:” is also a delimiter

· CH1=78 is the output value (in GPM) of analog channel #112

· CR is a symbol for “Carriage Return” used as an “end of data field” symbol

9 The American Standard Code for Information Interchange (ASCII) defines 127 (seven bit) binary codes
for the alphabet, numbers, punctuation and special control characters, such as “carriage return”. ASCII is
the most widely accepted standard communications code in use today.
10 This would be built into the processor in the case of a microcontroller.
11 How I figured this out is the subject of another paper.
12 In all likelihood, this embedded system can read multiple analog channels

0

Embedded Systems

2-9

Finally, let’s look at what happens if our flow rate is dangerously low13. As the code
snippet in Figure 2-3 illustrates, the processor takes another path and actuates the alarm
signal (steps 6 and 7).

Let’s summarize what we’ve discussed so far. We’ve looked at the basic components
that make up an embedded system (the microprocessor, system busses, clocking
system, glue logic, address decoding and peripheral devices) and briefly reviewed their
purpose. Next, we put some of these elements together to examine how an embedded
system does something useful in the real world. Finally, we saw how an errant date can
be generated from inside of our embedded device and transmitted to the rest of the
system.

13 Suppose the pipe carries cooling water to the reactor.

0

0

3-1

3
DESIGNING EMBEDDED SOFTWARE

In this section we’ll examine the process of embedded system design. Understanding
the development process is important to understanding how Y2K defects can get
introduced into a product as it is being developed. As you will see, the presence or
absence of a real-time clock circuit is not a conclusive factor. Also, the tools used in the
design of embedded systems are useful in the analysis of embedded systems for Y2K
defects.

The design process for embedded systems typically follows several well-defined steps:

1. Specification: The product is conceived and defined by system architects, software
team leaders and hardware team leaders.

2. Implementation: Hardware designers and software designers separately develop
their pieces of the design. Typically, a development team is composed of seven
software developers for each hardware developer.

3. Integration: The prototype hardware and software are brought together and the
teams bring the system to life. This phase consists of iterations from integration back
to implementation as defects are uncovered in the pieces being integrated.

4. Release: The products are tested for integrity and freedom from defects.

5. Post-release: Often called the “maintenance and upgrade” phase. This is often
separate engineering teams that have the task of doing post-release bug fixes and
product enhancements. Often, feature-set improvements can be achieved by fine
tuning the operational software of the product, thus avoiding a complete redesign of
the hardware.

Let’s take a look at the software design process. We’ll discuss the hardware process
later. In most embedded systems, software is developed in layers, often referred to as
abstraction levels. This is illustrated in Figure 3-1.

The first level of software that is closest to the hardware is called driver level.
The drivers (also called the BIOS) talk to and control the hardware. Interrupt service
routines (ISR’s) reside within the driver layer. Let’s look at how the software drivers
function. Referring back to our A/D example in Figure 2-2, the A/D converter

0

Designing Embedded Software

3-2

generates an interrupt when it has completed its conversion of the voltage to an 8-bit
binary number. If the processor is accepting interrupts14, it will automatically alter
program flow to its ISR. The ISR saves the current state of the processor (so it can return
to what it was doing before it was interrupted) and then gets the value from the A/D
and puts it in a memory location. It also sets another signal in memory indicating that
there is new data available.

Physical Hardware

Software Driver (Firmware or BIOS)

Application

Operating System (RTOS)

User Interface (Command)

Figure 3-1
Abstraction layers in the software of an embedded system

The software that needs the data is called the application software. This is generally the
body of code that gives the embedded system its personality. Since the application
software needs to process the data, it will call the A/D driver, or, in other words, send a
message to the driver layer requesting data. The A/D driver may do one of several
things. It may go to the A/D converter and initiate a conversion, or, if there is already
new data available, it may return the location of the data to the application program.
This way, the application program operates with the data, instead of a copy of the data.
It is the application software that decides if there is a problem with the flow rates and
what to do about it.

14 It may not accept the interrupt if it is already handling a higher priority interrupt

0

Designing Embedded Software

3-3

Sitting above the application software is the real time operating system, or RTOS. Not
all embedded systems use RTOS’s. The more complicated ones do, and simpler ones do
not. It is the job of the RTOS to manage multiple applications and system resources all
at the same time and do this within the constraints of real-time events occurring more
or less randomly.

At the highest level is the user interface. This is where the commands to the device
come down, are processed, and spawn new tasks for the processor to carry out. One of
the jobs of the RTOS is to manage the initiation of these tasks and to shut them down
when they are no longer needed. However, in a simpler system, pushing a front panel
button might generate an interrupt and the front panel ISR gets the button-pushed
information and then goes back to what it was doing.

The important point is that software layers tend to be developed with defined interfaces
between them. This frees designers at the upper layers (called higher abstraction layers)
from worrying about implementation details at the lower layers. This has important
ramifications for the Y2K problem. Generally, looking down from the higher abstraction
layers, the software at the lower level is accessed through an application programmer
interface, or API. The API is designed to be the only access mode that upper layers can
have to the functions within the lower layers.

Driver software is not new. The concept of the API is relatively new, although software
academics have been advocating the concept for many years. Even driver software can
have an API interface assigned to it. The API is the rules that one programmer supplies
to another programmer in order for the second programmer to access the functions
(software code) in the way that the designer intended. As an example, consider the new
programming language called, EightBOL.

The following statement is an API for a function that returns a BOOLEAN value (true
or false) depending upon the value that is input to it. Let’s have a look:

BOOLEAN SOUND_ALARM (SHORT INT FLOW_RATE)

Recall our fluid flow example from Figure 2-3. The API, above, says that you (the
programmer calling this function) must send into the function an integer value (no
fractions), representing the rate of fluid flow, between zero and 255.

This API says that you (the programmer calling this function) must send into the
function an integer value (no fractions) between zero and 255. The function, when it
completes it’s execution of its code, will return a TRUE or FALSE value that the
programmer can use to determine whether or not to sound the alarm.

The key point here is that you, the programmer cannot see the actual code contained
within the function SOUND_ALARM. All you see is the interface structure that will

0

Designing Embedded Software

3-4

allow you to use it. The API is the interface structure. The key point is that you can only
access the parts of the function that the developer of the API wants you to see. You do
not have Carte Blanche to go anywhere in that function, handle internal variables, and
generally make a mess of the code.

In theory, there is nothing to stop any software from accessing any functionality of the
system. This would allow an application program to directly access the A/D circuit and
get the data, bypassing the driver. It makes programming simple, right? Not quite. It
makes programming, software quality, and more importantly, software maintenance, a
nightmare.

The problem arises because any change made in the system causes side effects to ripple
through the entire system. By encapsulating the accesses to the A/D within the A/D
driver, changing the A/D isolates any other changes to the driver, not to the entire
system. This makes code and product maintenance much easier.

The downside to this is that it allows Y2K problems to be perpetuated, even though
Y2K compliant hardware is present in the system. This might mislead an inspector who
is trying to determine Y2K compliance by examining the hardware for specific Y2K
sensitive devices. Here’s the scenario. Suppose that the original real-time clock driver
was written for a non-Y2K compliant real-time clock. The driver goes out and reads the
various memory cells within the clock circuit that contain the date and time elements. It
then formats this information according to the API interface specification and presents
it to the higher level software.

Now, suppose that the application code was originally written for a 2-digit year because
the original real-time clock (RTC) chip kept track of the year as a 2-digit value. Thus, the
driver only needs to reads the year information as two digits, and the application
expects the data as a 2-digit year. However, suppose the RTC chip is now Y2K
compliant (i.e. a 4-digit year), but the API specification is for the original 2-digit year.
The new driver may read the 4-digit year from the RTC correctly, but it will then strip
off the century part of the year and present only the 2-digit information in order to
comply with the original, 2-digit interface specification. This is the benefit and curse of
encapsulating the driver code.

Observing the type of RTC circuit in your device will tell you if the device has a time
and date capability, but won’t tell you if it is being used properly by the software.
However, if it does have a Y2K compliant RTC circuit, then you know that the leap year
dates will be properly computed and reported for the year 2000 and thereafter, even
though the year may be truncated by the driver.

0

4-1

4
DESIGNING EMBEDDED HARDWARE

There is an issue with the hardware design as well. In our discussion we’ve been
focusing on commercially available devices, such as real-time clock chips (RTCs).
However, advances in semiconductor technology have enabled hardware designers to
build entire systems on a single silicon die. These are often called Systems-on-Chip or
SOCs. The advantages are obvious: costs go down, reliability, functionality and speed
go up. Today, we have the capability of putting four million gates on a single piece of
silicon. This is equivalent to all of the circuitry needed to drive a big, high-speed,
networked color laser printer in a single package.

The revolution comes from our ability to create application specific integrated circuits
or ASIC’s15 and our ability to create the hardware elements by writing software, instead
of creating a schematic diagram. Figure 4-1 is a simple example of this concept.

In Figure 4-1 we have a simple digital logic element, the AND function (using an AND
gate). Both input signals must be true if the output is true. The hardware designer
might design this function by choosing a part that contains four 2-input AND gates
inside of it, and connecting A, B and C to one of the gates in the package. Such a device
is illustrated in the figure.

Actually, the software designer could also implement the logical AND function as
software variables, also shown in Figure 4-1. This wouldn’t be as fast as the hardware,
but logically, it could do the same thing. However, the hardware designer, if the design
is an ASIC, could write the Verilog16 assignment statement for the logical AND gate, but
the design tools would translate it into the Integrated Circuit (IC) gate element instead
of software instructions for the microprocessor. Once a VHDL design is complete, the
design “software” is sent to a silicon manufacturer (often called a foundry) who would
convert the VHDL design to a process database that describes the actual logic circuits
and interconnections. The foundry would then fabricate the silicon chip according to
the description in the designer’s VHDL code. Thus, both the hardware designer and the
software designer will write a program, but the hardware designer’s program gets

15 Not to be confused with the running shoes.
16 Verilog and VHDL are two examples of hardware description languages (HDL) used to design
integrated circuitry. They are similar in structure to the “C” programming language used by software
developers.

0

Designing Embedded Hardware

4-2

translated to instructions for creating the ASIC instead of a series of microprocessor
instructions. By the way, where’s the microprocessor?

In a SOC, the microprocessor itself may be a series of instructions17 for the silicon
fabricators to create within the SOC. Also, major functional blocks within the SOC can
be designed directly by the ASIC designer, or purchased as intellectual property (IP)
from IP suppliers. One IP block that might be purchased could be an RTC circuit
element. Or, the hardware designer could create one, since it is only a serial counter
with a special algorithm attached to calculate leap years. This is easily described as a
software algorithm or hardware algorithm.

The above discussion on ASIC technology has implications for someone who is trying
to determine Y2K sensitivity by examining the IC’s within an instrument. The inspector
may find one or more ASIC devices that are not available as commercial off-the-shelf
parts. From this, the inspector may erroneously conclude that there is no RTC circuitry
in the product, when, in fact, the circuitry is there, but it is buried within the ASIC.

17 Typically, it would also be encrypted Verilog code.

0

Designing Embedded Hardware

4-3

1- LOGICAL STATEMENT: C is true if and onl y if A is true AND B is true

2- C Language Construct:

Boolean A, B, C ;

C = A&&B ;

A

B
C

3- Gate Level HW Desi gn

+5VDC

GND

C1

A1

B1

C2

A2

B2

C4

A4

B4

C3

A3

B3

4- Verilo g Language Construct:

reg C ;
wire A,B ;

assi gn C = A&B ;

Figure 4-1
Implementation of the logical AND function in hardware and software

One last question that is worth answering is, “What is the difference between an ASIC
and a microcontroller?” The simple answer is that a microcontroller is an ASIC that has
gone public. The particular core and peripheral devices are generic enough that the
device finds applicability in many different design environments.

0

0

5-1

5
ANALYTICAL TOOLS

Embedded systems have one particular feature that makes debugging18 them a more
specialized process then debugging a program on your PC. This feature is the real time
nature of the operation of an embedded system and its ability to properly interact with
the outside world around it. Embedded systems may be roughly divided into two
categories: those that are time-critical and those that are time-sensitive.

A time-sensitive system slows down if some perturbation is introduced, but it continues
to function at a lower level of performance. A time-critical system ceases to work if its
ability to complete a task within a critical time window is compromised. Real-time
embedded systems are most often time-sensitive, but they may be time-critical,
depending upon the design and the external dependencies.

An example will help here. Suppose you have a data logger that records a data value
every five minutes. If it records the data one minute late, most likely nothing bad will
happen. However, suppose you have a fast waveform recorder that has to be able to
capture a glitch that may only happen once a month. It can’t slow down to the point
that it fails to record the waveform of interest. It is a time-critical application.

A debugger is a common program used to debug software. It is a supervisory program
that is always in control, even when your application code is executing. In order to see
what your program is doing, you enable the debugger and execute one line of your
application software at a time, very slowly (single-stepping), as you watch how the
program behaves. Under these conditions your software may be running a million
times slower then normal. It is easy to imagine embedded systems that cannot be
debugged under these conditions, especially when the faults are associated with the
interaction of the software and the real time stimuli of the outside world. If you can’t
use your debugger, what do you do?

The first piece of information that you have at your disposal is the design of your
hardware and the design of your software. You know what you wrote and how the

18 Debugging is the process of finding and removing defects and errors in the hardware and software.
These defects are known as bugs. Legend has it that one of the earliest computing machines, based
mostly on relays and vacuum tubes, stopped working because a housefly got caught inside it, and was
cooked by a power relay. This was the first computer malfunction traced to a bug. Hence, the name.

0

Analytical Tools

5-2

hardware and software are supposed to behave. You have access to the software source
code listings and software location maps, as well as the schematic diagrams of the
hardware. As a competent engineer and member of the embedded system design team
you should be able to uncover the bugs in your hardware, software or both.

The most commonly used hardware debug tool is the logic analyzer (LA). The LA is a
passive instrument that connects to the microprocessor busses in such a way that it can
record (trace) all of the bus activity of the processor. The tool captures every bit of the
processor activity; instruction executions, memory reads and writes, interrupts, etc., up
to the limits of its memory. Thus, if you want to see an event of interest, such as why
the software is going in one direction at a decision point (branch) when you think it
should be going in another direction, you can set the LA to record the events of interest
when the processor begins to execute the critical instruction.

The logic analyzer is really nothing more than a very wide circular memory. When it
gets to the end of the memory it keeps on going from the beginning. Thus, the last
memory address and the first are adjacent to each other. As long as the logic analyzer is
turned on, it is always recording. You retain information by deciding when the LA
should stop recording new information over the old information. This fact means that
you can decide to record information (trigger point) anywhere in time. You can thus
record everything up to the trigger point, everything that occurs after the trigger point,
or anything in between. In this manner, you may watch all the activity up to the event
of interest and then what happens after that.

For embedded system development the premier tool is the in-circuit emulator (ICE).
The microprocessor emulator takes the place of the actual microprocessor in the
embedded system. To the system, it looks like the processor, but to the designer, it is a
window into the microprocessor. The in-circuit emulator integrates all the functionality
of a debugger, logic analyzer, and overlay memory in one package.

Overlay memory is a convenient tool for developing software because it allows you to
quickly load and test software without having to try to load it into the EPROM or
FLASH memory of the system. Overlay memory is simply RAM memory inside the
emulator that is accessed by the emulator instead of the actual memory of the
embedded system. By tightly combining the functionality of these three devices into
one tool, with a common user interface, the emulator has become the central tool for
embedded system development.

The last tool that is worth mentioning is a device called a ROM emulator. It is very
similar to the overlay memory in the ICE, but it functions as a stand-alone tool and
connects to the ROM socket rather than the microprocessor socket. To the system, it
looks like the ROM is plugged in, but, like the emulator, it also connects to the software
engineer’s computer via an Ethernet connection. It can provide a rapid conduit into the
target system for code substitution.

0

Analytical Tools

5-3

Why did we go through this explanation of the tools used in embedded system
development? First, it is useful to understand the constraints imposed by trying to
develop software that can only be tested under operational conditions. Second, because
these tools tend to be non-intrusive, they may be useful for testing existing embedded
systems for Y2K problems without perturbing the operation of the system. We’ll
explore that in the final section.

0

0

6-1

6
Y2K ANALYSIS STRATEGIES

In the previous section we discussed the tools of embedded system development and
debug. The Logic Analyzer, In-circuit Emulator, and ROM Emulator are complex and
very specialized instruments that are designed to control and observe the behavior of
real-time systems, either during the product development phase, or later on, during the
product’s maintenance and upgrade lifetime. What does this have to do with Y2K? As
you’ll see in this section on Analysis Strategies, the type of knowledge that you have
about the embedded system determines the tools that will be most effective for you to
use to gain the insight that you need to make a decision about that device. What kind of
decision? Is it benign? That is, is it safe to conclude that it does not generate or use date
information. Suppose it does utilize date information in its operation, how will you
decide if the information is safe, or this instrument must be replaced or upgraded?

Here’s an example. Utilities have many Remote Terminal Units (RTU’s) in their
inventory of embedded equipment. Applied Microsystems was asked to perform an in-
depth analysis of an RTU because it was known to manipulate dates, but a visual
inspection of the circuit board did not reveal an identifiable RTC chip. This particular
RTU had a Motorola 68020 microprocessor as its controlling element. An in-circuit
emulator was used to replace the microprocessor and allow the Applied Engineers to
control and observe the low-level behavior of the processor while date information was
being manipulated.19 This demonstrated the date information was being utilized even
though no RTC was present.

Was the analysis worth the effort involved? I think so because there are many identical
RTU’s in this utility’s inventory. They now know the extent of the Y2K sensitivity of
this unit, even though it was manufactured before the date that the vendor identified as
being Y2K compliant.

Now that we’ve raised your level of understanding of your embedded systems so that
you can make somewhat informed decisions about how you can eliminate Y2K
problems from your own environments before midnight, December 31, 1999, we need
to discuss possible strategies that you may want to employ. The key deciding factors are
summarized in the Figure 6-1. Here we’ve recast our “typical” embedded system as a

19 This analysis was sponsored, in part, by EPRI.

0

Y2K Analysis Strategies

6-2

list of characteristics, including the ever-present inputs and outputs (I/O) as well as a
set of “views” of the system. These views, black box, gray box and white box 20 imply
various levels of knowledge about the system under test. Perhaps the single most
important differentiation is whether or not you have access to the software source code
and the hardware design database. With these sources, you can pretty well determine
whether or not a piece of equipment is Y2K sensitive or not.

Is this a practical strategy? Probably not. In the first place, unless you actually designed
and built the embedded system, the real manufacturer is not going to give you access to
their software or hardware IP. Another reality of life is that for an embedded system of
reasonable complexity, trying to decipher software source code21, even at the source
level, can be an expensive and time-consuming task if you were not the original
designer. In fact, much has been written about how to create source code to make it
understandable and maintainable, but we can’t claim that every software designer
follows the guidelines all the time.

20 This terminology is derived from the software world’s definition of how software is to be tested. Black
box testing is analogous to a monkey pounding on the keyboard. Gray box testing implies that you have
some understanding of how the software works so you know what to look for to try to stress it and make it
fail. White box testing implies that you have full knowledge of the software design and focus your testing
efforts on specific software modules and features because you know how to force them to handle
exceptions.
21 Source code is the code that the software engineer actually writes. This is typically written in a high level
language such a C, C++, or ADA. This is also the most readable code. The source code is then translated
by a compiler into assembly language, which represents a 1:1 matching of instructions with machine level
instructions. Assembly language is much more cryptic and low-level, but is often the actual source code as
well. The Assembly language instructions are then passed through an assembler program which
translates instructions written in a pseudo-English form to the actual machine code. The last step in the
process is to link the output of the assembler with other software modules so they form one large,
executable image, or object code. This is the actual blend of instructions and data that form the
embedded program. It is the executable code that gets loaded into a ROM.

0

Y2K Analysis Strategies

6-3

Black Box: Y2K sensitivit y is inferred
• No internal knowled ge
• No internal visibilit y
• No knowled ge of sources Process

Control
Out

Data inData Out

Human Interface

Embedded S ystem
• Micro processor (s)
• Memor y Systems
• Clocks
• Glue Lo gic
• ASIC Devices
• System Bus
• Peripheral Bus
• Communications Ports
• Standard I/O Devices
• JTAG Port
• App lication Code
• Embedded RTOS

Gray Box: Y2K sensitivit y may be predicted
• Some internal knowled ge
• Some internal visibilit y
• Object code is observable

White Box: Y2K sensitivit y is predictable
• Source code is available
• Compiler is known
• RTOS is known
• Verilo g, VHDL or HW desi gn is available
• Any sub-embedded s ystems are known
• All data and human I/O are known

Figure 6-1
Levels of observability into embedded systems

This leaves us with gray box and black box testing. Let’s dive into these methods
because they are the most likely to be the methods available to you. Gray box testing
assumes that you have limited knowledge of the system. Referring back to Figure 6-1,
we see that one of the characteristics of gray box testing is access to the internal
components, both from the hardware and software perspectives. How do we gain this
insight?

Remember the development tools that we discussed in section 4? Although these tools
were developed to assist embedded systems designers in their product development
tasks, particularly the complex process of hardware and software integration, they also
have applicability to probing unknown systems. Remember that one of the key
requirements in observing an embedded system operating in real time is that the probe
does not perturb the system it’s observing. By using an LA or an ICE, a knowledgeable
investigator can locate Y2K date sensitivities in the system being probed.

Let’s investigate how this might be accomplished. Figure 6-2 shows our embedded
system in more detail.

0

Y2K Analysis Strategies

6-4

ADDRESS BUS A0..A31

DATA BUS D0..D31

STATUS BUS

T
O

 M
IC

R
O

P
R

O
C

E
S

S
O

R

A0..A2

D0..D7

RD/WR*

CE

CS1
CS2
CS3

CSN

…
…

..

T
O

 O
T

H
E

R
 P

E
R

IP
H

E
R

A
LS

D
E

V
IC

E
S

RTC ADDRESS MAP

A0 A1 A2 RTC REGISTER

0 0 0 SECONDS
1 0 0 MINUTES
0 1 0 HOURS
1 1 0 DATE
0 0 1 MONTH
1 0 1 YEARS
0 1 1 CENTURY

ADDRESS DECODER RTC

32 KHz
Watch
Crystal

Y2K EXAMINATION OF RTC: DETECTION METHOD

Step 1: Connect LA to Bus Si gnals D0..D7, A0..A2, RD,
 CS1, ADDR_VALID si gnals
Step 2: Set LA tri gger point on CS1= TRUE AND ADDR_VALID=TRUE
 A0=1, A1=0, A2=1 (YEARS REGISTER)
Step 3: Set LA capture to record states before and after tri gger point
Step 4: Run tar get system until LA is tri ggered
Step 5: Review recorded trace for access to YEAR followed by access to
 CENTURY
Step 6: KEY POINT: Does trace show access to CENTURY register around
 access to YEARS register?

Battery
Backup
May be
internal to RTC

Figure 6-2
Analyzing a portion of the embedded system for Y2K detection

The portion of the circuit called the address decoder contains a memory map of the
system so that as different address combinations are sent out by the microprocessor, it
determines which part of the circuit (RAM, ROM, RTC, etc) should become active and
respond. This is a more efficient method than having each individual subsystem decide
if it is being addressed.

The address decoder contains the starting address of the RTC. For example, let that be
address 04567890. Each of the seven distinct clock registers occupy one address location
up from the base address, with the first register, SECONDS, located at the base address.
Therefore any address from the microprocessor in the range of 04567890 through
04567896 will cause a memory storage cell of the RTC (register) to send its contents back
to the microprocessor.

Our objective is to see if, in fact, the software is accessing the CENTURY data as well as
the YEAR data. How do we know that this RTC chip has a CENTURY register? We
could have looked it up in a data book, and determined if it had a CENTURY register,
but this is more definitive. We’ll connect our LA to the A0, A1 and A2 so that we can
observe the data coming out of the RTC. Furthermore, we’ll filter this information even

0

Y2K Analysis Strategies

6-5

further by qualifying the trigger value to detect an access to the YEAR register. Why not
trigger on the CENTURY register? The reason is if we require that we see a CENTURY
access, then by not triggering the analyzer, we haven’t conclusively solved the problem,
we only know that the LA didn’t trigger. By triggering on the YEAR register, we can
manually examine the code around the access to the YEAR register and see if the
CENTURY register was also accessed. Typically, we would expect to see the software
driver go out and read all of the RTC information, not just the year, so not seeing a
CENTURY read is reasonably conclusive evidence of a Y2K problem.22

What about our ICE? Assuming that we could replace the processor in the system with
the ICE probe, then the internal logic analyzer of the ICE would have been able to
gather the same information as the external logic analyzer. Also, an ICE has more
sophisticated software analysis tools then a logic analyzer, but the ICE is specific to the
microprocessor that it is being used with, while the LA is a more generic tool.

Therefore, while it is technically feasible to do this kind of analysis on your embedded
devices, ultimately you will have to decide for yourself if its worth the effort. If you
have a large number of identical embedded systems, then perhaps the economies of
scale will make an in-depth analysis of a few devices worth the effort because you can
amortize it over the large number of systems in use.

The above example was straightforward. In real life, things are never that
straightforward, and I can’t hope to explain all of the subtle “gotcha’s” that may occur
in the real work. Figure 6-3 is probably a lot closer to what you will encounter in your
facilities.

22 Since LA’s are pretty sophisticated instruments we could have set the trigger condition to trigger on an
access to YEAR OR TO CENTURY. This would have further eliminated any ambiguity.

0

Y2K Analysis Strategies

6-6

System Processor

Sensor

Data Lo gger

Remote
Controller

PLC RTU

Other Computers

WAN

Sensor

SensorData Lo gger

RS-232

Current Loop

Fiber Optic

Ethernet

RS-232
VXI

LAN

LAN

Current Loop

Current Loop

LAN

T1

Figure 6-3
A model of a real embedded system

In Figure 6-3 we see many interconnected and interdependent pieces making up our
embedded system. We could draw a dotted line around any subgroup of these
components and call that an embedded system as well. So what, if anything, can we do
about it? Recall that in Figure 6-1, the black box analysis is most likely to be the real
situation that you’ll be faced with. Let me suggest one approach. We’ll call it divide and
conquer. While not absolutely foolproof, it’s a good starting point method.23 I could
imagine a stand-alone device that generates and digests date information without ever
transmitting it to something else, thus making its Y2K sensitivity invisible to a black box
scrutiny method.

We’ll assume that we have a situation similar to Figure 6-3. Divide the larger system in
smaller units and draw the dividing line at the communications interfaces between the
various units. Suppose that we’re looking at a Remote Terminal Unit (RTU) that
concentrates sensor data from several sensors and transmits the data over an RS-232
link to another processor controller in the system. If we can afford to watch all of the
data traffic going back and forth over the RS-232 serial line and don’t see any dates
going by over some suitable period of time, then we can make some informed decisions
about what is going on in this particular sub-system. Is it foolproof? No. It is your
detailed knowledge of how your facilities operate that will enable you to put the
information in its proper context.

23 There are a number of excellent articles written on Y2K test methods and analysis protocols. My intent
is not to devalue these approaches. Rather it is to present a specific example of how a Y2K detection
team might actually gather information.

0

Y2K Analysis Strategies

6-7

With my disclaimer taken care of, let’s move on. Assuming that you are willing to
monitor your RS-232 data traffic, how can you hope to detect an errant date flying by in
millions of other data characters. There are instruments, called protocol analyzers, that
can monitor a serial data stream in a similar manner to a logic analyzer monitoring
parallel data streams. The first problem is how to set-up the protocol analyzer to trigger
on the date pattern of interest if you’re not sure what the date pattern looks like. The
second problem is that you need trained personnel to operate the analyzer.

EPRI and Applied Microsystems are working together to create a product to analyze
RS-232 serial data streams for date information. Tentatively we’re calling it the Y2K
Sniffer, and we intend to demonstrate a prototype of the device at the EPRI Y2K
Workshop in San Diego, August 24 through 27, 1998.

The Sniffer™ is designed to be used by general plant personnel, rather than highly
trained, embedded systems experts. The device is inserted in the serial stream between
RS232 devices and automatically configures itself for the data stream. It then watches
for date-like patterns on the data line. Examples of date-like patterns could be :

· spXX/XX/XXXXsp ;where X is a number and sp means space

· XXjunXX ;This one is obvious

· 12-31-99 ;This one is not so obvious

The design challenge is the sophistication of the Sniffer’s date filtering algorithms. The
goal is to trap every common date pattern and most of the uncommon ones. The Sniffer
can also be upgraded in the field, so that new patterns can be loaded into the device as
we gain information about the types of date patterns that are in use in real life.24 It is
being designed so that other communications protocols, such as Ethernet, can be
monitored as well.

Whenever the Sniffer detects suspicious date patterns it stores them in its own non-
volatile memory. The stored patterns can be reviewed by scrolling the display or by
saving the contents of the memory to a portable computer for later analysis by trained
personnel. Every suspicious date will be date-and-time-stamped by a Y2K compliant
real-time clock.

How would you use the Sniffer? The Sniffer will assist you in deciding where to
concentrate your energy and resources as you undertake your Y2K investigations. It
will uncover those layers and boundaries in your environment where date information
is being exchanged. It is a tool that is designed to help you in your Y2K analysis. It
cannot substitute for your knowledge of your environment.

24 For further information about the Y2K Sniffer contact arnieb@amc.com or joeweiss@epri.com

0

0

7-1

7
SUMMARY AND CONCLUSIONS

Even though embedded systems are found in many varied applications, there are
common characteristics that are found in almost all of them. We saw how the elements
of an embedded system interact with each other and with the outside world. We looked
at the design methods employed in the development of embedded systems and the
applicability of these methods to detecting Y2K problems.

Finally, we discussed possible strategies for analyzing embedded systems for Y2K
issues and also looked at a new tool being developed specifically for the task of
monitoring RS-232 communications between embedded systems and looking for date
patterns.

Where do you go from here? For more information, an afternoon spent surfing the
World Wide Web would be time well spent. A good place to start, with links to many
other sites is the Embedded Software Association’s (ESOFTA) website,
www.esofta.com. Two papers are featured on the ESOFTA website,

“A Suggested Process To Assist In Identifying Embedded Devices And Systems With A
Year 2000 Compliance Problem (33KB, PDF format)” written by Ron Strem and Mike
Smith in association with TransAlta Utilities, Calgary, Alberta, Canada.

This brief article is put forward as a starting point for a simple designation standard to
help clarify the Y2K compliance investigation and associated communication now in
progress. Also see,

“Testing Guidelines” by Kim Smith and John Catterall, Western Power.

Finally, I came upon another interesting article, “Software design for life-critical
systems”25 that discusses the process of designing critical software in more depth than I
could cover in this paper. Though not specific to the Y2K problem, the author expands
upon several of the software design methods that I only mentioned.

25 Peter Varhol, Computer Design, Vol. 37, No. 7, July 1998, Pg. 43

0

0

